
1

Tree segmentation by combining CNNs with engineered features

Michael Scott
 Computer Science

 University of Cape Town

 Western Cape, South Africa

 sctmic012@myuct.ac.za

Charl Ritter
 Computer Science

 University of Cape Town

Western Cape, South Africa

 rttcha002@myuct.ac.za

Fergus Strangways-Dixon
 Computer Science

 University of Cape Town

 Western Cape, South Africa

strfer001@myuct.ac.za

CCS Concepts

• Machine Learning
• Image Processing
• Computer Vision

KEYWORDS

Image segmentation, Convolutional Neural Networks, U-Net,

Fully Convolutional Network, Atrous Convolutional Network,

Per-pixel Transforms, Small Width Feature Extractor, Large
Feature Extractor.

1 PROJECT DESCRIPTION

Aerobotics is a company in Cape Town that makes use of drones

to capture high resolution images of consumer’s tree farms, in a

variety of colour spaces. Pixel information is extracted from
these images (RGB, Near Infrared, chlorophyll absorption and

height) and a neural network is used to segment the image into

predetermined classes (healthy tree, grass, dirt, diseased tree etc).

This is done to provide consumers with analytics and information

about their farm, so that they can make decisions based on their
crop’s health.

A neural network is a network of interconnected layers and

operations, each with their own associated weights. These

operations and weights are applied to pixel information to make
a decision on their classification. They are then adjusted by the

errors produced in pixel classification. The network can “learn”

a set of rules to classify image pixels and improves these rules as

more data is provided. The term for this is semantic segmentation

i.e. self-learning segmentation [6, 7, 15]. Currently the
Aerobotics machine learning system achieves very accurate crop

segmentation accuracy. Unfortunately, their system is unable to

accurately segment image boundaries and edges and this

provides an opportunity to explore methods to address this issue.

To obtain better accuracy, our project aims to take a novel

approach to improve Aerobotics’ image segmentation strategy,

by using hand engineered features as input for enhanced neural

network models. This is due to the fact that hand engineered

features are traditionally used in computer vision to eliminate
background noise and emphasize certain characteristics of

objects that are of interest [14].

These enhanced models are neural networks that have been

specifically developed and tweaked to segment images. They
have seen great success on extremely noisy datasets and have

performed an order of magnitude better than their competitors.

With this in mind, Aerobotics requested that our team investigate

selected enhanced neural network models as a mechanism to

process hand engineered features. The overarching aim of which

is to investigate the accuracy implications of processing hand
engineered features against raw images in these enhanced

models.

There following neural network models will be investigated:

• Fully Convolutional Neural Network: A neural network

using a fully connected layer to improve segmentation [15]

• U-Net: A neural network that uses skip convolutions,
upsampling and concatenation to achieve even better

segmentation accuracy [6]

• Atrous: A neural network that uses specialised convolutions

to capture spatial information [7]

The categories of hand engineered features explored in this
project are as follows:

• Per-pixel transforms: These are modifications dedicated to

transforming single pixels

• Small width feature extractors: These are modifications

dedicated to transforming a small neighbourhood of pixels

• Large feature extractors: These are modifications dedicated

to transforming a large neighbourhood of pixels [14]

We intend to use these features and neural networks in a four-

step process to investigate our aim. The first step of which is to

pre-process the images using our feature extractors (i.e. hand

engineered features), eliminating background noise. The second

is to configure the neural networks for training. The third step is
to train models with pre-processed images as an input as well as

with raw images as a base case. The final step is to compare the

resultant accuracy of these networks using metrics discussed

further in this proposal.

2 PROBLEM STATEMENT

Although neural networks achieve state of the art segmentation
accuracy for many applications. There are still a host of minor

issues which can cause parties to question their usefulness in

select scenarios. This is due to the fact that neural networks still

produce segmented objects that have inaccurate boundaries or

have low quality resolution (when compared to the original
image). Furthermore, these architectures are data intensive,

requiring huge training samples in order to learn basic image

features [7, 15]. This is despite many advances made in neural

network architectures, which suggests that a different approach

should be used to solve these challenges.

These challenges are of a particular concern to Aerobotics for

two reasons. Revenue and customers may be lost because of

2

incorrect advice given to the consumer, based on inaccurate

segmentation. Secondly, training these architectures require lots

of annotated data, which is costly particularly in their niche
application.

Aerobotics, through internal investigations, have identified that

using engineered features and modern neural network models

might solve some of those problems. However, they want to
investigate to what extent they do before going forward with any

implementation.

In light of this, we have devised the following aims in order to

address the above:
1. Investigate the feasibility of using feature extractors to

decrease training time

2. Determine to what extent engineered features increase

output accuracy (a 2% difference will be accepted as

significant)
3. Test specific feature extractor and feature extraction

combinations to determine the best combination to use as an

input for a neural network

4. Investigate whether the performance of some feature

extractors is dependant or independent of architecture

The aforementioned aims were then distilled into the following

research questions:

1. Do traditional hand engineered features in tree crop

segmentation, as inputs to select neural networks,
significantly improve accuracy over their base neural

network implementations.

2. Is the segmentation accuracy of certain hand engineered

features dependant on the specific type of neural network it

is used in or is their performance independent of neural
network architecture?

3. Is there a significant positive or negative impact of the hand

engineered features on the rate that these neural networks

learn to segment tree crops?

3 RELATED WORK

As there are many ways to extract features from an image, the

following literature was reviewed as a guideline for which

combinations of feature extraction methods to perform.

In terms of colour. Wang et al., focused primarily on the L*a*b*
colour space method, which is a small feature extractor. They

used this method to identify trees in images by looking for

colours matching the green spectrum. They found that the

method was very fast but had some shortcomings when different

plants that were next to each other, did not have a drastic enough
difference in their shades of greens. This resulted in them being

grouped together.[1] In a follow up paper Wang et al. separated

individual trees from the surrounding landscape in images. For

images with simple backgrounds, they proposed using Edge-

detectors, however for images with more complex backgrounds
they devised their own method, based on Edge-detectors coupled

with colour space methods, of which they recommended the

L*a*b* colour space method, and mathematical morphology

based on their results [2].

In the context of combining feature extractors to improve image

segmentation, several papers proved useful. Zheng et al., firstly

applied two per pixel feature extractor, namely HSI colour spaces

RGB colour spaces, to the images. After this they applied a small

feature extractor, namely Mean-shift, to the images. This

separated the images into two parts, green and non-green

vegetation. They tested this algorithm on a 100 images of

different plant types, with different illuminations and soil types
and achieved a median of mis-segmentation of 4.2% between

green and non-green vegetation.[3] In the paper by Tao et al.,

they also use the Mean-shift feature extractor. They however

apply this feature extractor first to the images and then they apply

the Normalized cuts method. By applying the Mean-shift method
first, it allows the Normalized cuts method to be applied to the

resulting segments of the Mean-shift, rather than directly to the

image pixels. They found this combination requires significantly

lower computational complexity and therefore, is feasible for

real-time image processing, while yielding superior image
segmentation performance.[4] Finally, in their paper, Tellaeche

et al., used a combination of per pixel feature extractors and large

feature extractors. They first apply an RGB colour space method

to the images, that results in a binary image. This image shows

crops as white and the soil, stones and residual as black. After
the binary image is obtained, they apply a Hough transform to it,

to detect the furrows of the crops in the image.[5] Tellaeche et

al., did not comment on the performance of this combination on

its own, but as a whole used with Support Vector Machines. They

found that it performed well, although results may vary in over
exposed images. The use of combining feature extractors to

improve image segmentation was established to have a high

possibility of leading to improved image segmentation, through

the literature review as well.

3

4 PROCEDURES AND METHODS

The proposed research project is split into two distinct

components, namely the pre-processing for creation of

engineered features, and testing the impact on accuracy that these

features have on a variety of Convolutional Neural Networks
(CNNs). We hypothesise manually highlighting features on

behalf of a CNN will lead to an increase in the rate at which a

model becomes accurate.

4.1 Design

Our overall structure for the software needed to test the
hypotheses will be split into layers:

4.2 Development Tools

Our project will be developed in Python. This is because Python

has many frameworks and libraries useful for our applications.

The libraries used for image processing are ImageMagick and
OpenCV as they have all the functionality we need to implement

these our feature extractors. The library used for model training

is the TensorFlow library. TensorFlow is a leading framework in

the machine learning industry, therefore it has vast support and

documentation allowing us to easily implement our design.

4.3 Implementation

The first component requires the creation of a driver class for the

image feature extraction. This will be done as group.

Implementing each of the actual transformations within this

driver will be done individually, with each member

implementing 2 of the 6 feature extractors.

As input for the next stage, one-many feature extractors will be

applied to raw images, this will be guided by our own testing, our
literature reviews and the related work section. These will then

be fed into our architectures. In order to establish a base-accuracy

to compare to, CNN models will also be trained on raw image

data.

The second stage of testing these transformations with 3 different

FCNN architectures will be performed individually. We will

each be exploring one of: U-Nets, Atrous CNNs, and Fully

Convolutional Neural Networks. All these architectures have
implementations in Google’s TensorFlow framework, which

allows us to create a common training handler for them and

perform minor tweaks per architecture.

The third stage will be to implement a presentation layer to
collate and clearly show various statistical outputs measured

from training. It will also be used to perform image segmentation

comparisons.

5 RESULT EVALUATION

5.1 Evaluation Process

Testing the performance of our newly created CNN models will
be crux of our implementation. We cannot justify the success of

our feature extraction methods without objectively validating

their accuracy improvements. We aim to create a reproducible

testing process that will evaluate the improvement in accuracy of

models using image feature extraction. We will each train and
test our models first on unprocessed images to observe the base

accuracy. Then we will train our other models on images with

engineered features to validate the improvement in segmentation

accuracy. Great care will be taken to ensure the raw and

transformed images are in the same order and come from the
same base image. As an extension, we hope to select a

combination of these image transformations which will be

guided by our own results as well as literature (some of which

has been explored in related work). This combination will be
similarly evaluated to determine its effectiveness.

An example of one test run would be:

1. Choose CNN architecture

2. Compute base accuracy on raw image data
3. Choose 1 or more image processing techniques

4. Compute accuracy using processed image data

5. Compare accuracy gains

During training the TensorFlow framework provides real time

metrics for accuracy, allowing us to evaluate the segmentation

accuracy, as well as the training time required to gain an

acceptable level of accuracy. When we perform manual

validation, we will compare the correct segmentation maps to the
maps generated by the model trained on raw images, as well as

processed images. Segmentation accuracy validation is

represented as a percentage change measuring the predicted

segmentation map to the correct one.

5.2 Measured Metrics

We will measure the base accuracy of the models from each
architecture by training and evaluating them on the raw images

received and comparing this accuracy to the accuracy of models

trained and evaluated on images with the transforms applied. We

will view any improvement of 2% or greater from the base
accuracy as a significant improvement in segmentation accuracy.

4

An additional metric we wish to evaluate will be the accuracy

over time for each model and feature extraction. We shall capture
accuracy throughout intervals of the training process, for

example at 25%, 50%, and 75% of the dataset.

6 KEY SUCCESS FACTORS

Key success factors are measures that should be reached in order

accomplish one or more desirable goals. To achieve the goals, set
by this research project, it is expected that the project achieves

all or most of the following key success factors:

• Finding competent implementations of a FCNN model, a U-

net model and an Atrous model.

• Building different feature extractors that perform well with

the chosen CNNs.:

• Whether using engineered features as inputs to CNNs can

improve their segmentation performance for tree data.

• Whether there are trends associated with certain CNN and
feature extractor combinations

• What combinations of engineered features and CNNs

perform the best.

• That the percentage increase in performance, between the

CNNs using the different transformations and the CNNs

using raw data, is a worthwhile increase.

7 ANTICIPATED OUTCOMES

7.1 Expected Impact

The results of this research project will benefit Aerobotics

directly and will indirectly benefit any other parties doing similar

research or feasibility studies. Currently, we hypothesise that the

use of engineered features as inputs for various CNNs will

improve segmentation performance on tree data. It was, however,
observed that segmentation performances between different

unsupervised architectures had an almost negligible difference in

the project preceding this one. Similarly, many research projects

dedicate a huge amount resources into developing new CNNs or

engineered feature models, only to experience a very small
increase in either efficiency, speed or both. Thus, although it is

expected that we will improve the segmentation performance for

tree data of CNNs, the margin of this improvement and how

worthwhile the improvement will be is uncertain. The outcome

of this project will allow any groups wishing to do research in
this field to decide whether they wish to: adopt this technology

into their projects, invest more resources into better researching

a certain aspect of the project or to discontinue research in this

field in favour of another. It will also display the effectiveness or

ineffectiveness of combining feature extractors to improve image
segmentation, allowing other researchers to build on this premise

and develop better feature extractor methods or combinations

thereof.

7.2 System Outcomes

One system outcome is the feature extractors that will be built for
this project. For this project there will be six different feature

extractors, two methods from each of the three types of feature

extractors, namely per pixel feature extractors, small feature

extractors and large feature extractors. The two per pixel feature

extractors are, L*a*b* colour spaces and HSI colour spaces, the

two small feature extractors are, Edge-detectors and Mean-shifts,

and the two large feature extractors are, Hough transforms and

Templating.

Another system outcome is the Convolutional Neural Networks

that will be used for this project. There are three CNNs that will

be used, namely a Fully Convolutional Network, a U-net and an

Atrous Convolution Network.

The last system outcome is the accuracy tests. Firstly, a ground

truth accuracy test will be performed on the CNNs, with raw

image data. After this, multiple accuracy tests will be performed,

one for every type of feature extractor and one for every chosen
combination of the feature extractors. Every one of these tests

will also be split into four tests, each testing different sizes of the

data set used to train the systems. This split will be on 25%, 50%,

75% and 100% of the dataset to measure the amount of data

required to achieve industry-standard accuracy for each
combination of transformation and CNN model.

8 ETHICAL, PROFESSIONAL AND LEGAL

ISSUES

We do not foresee any ethical issues as we are not researching

humans or animals, using personal data, or generally interacting

with people outside of the project team. As this project was

initially put forward by Aerobotics, and they are providing the
training data for the CNN models, they will expect some form of

acknowledgement in our final paper. We do not foresee them

making claims to intellectual property, as the engineered features

were not novel ones provided by Aerobotics, and the platform we

design to test the hypothesis will be our own, and our
supervisor’s, intellectual property.

We will also be extending software licensed under GPL-3.0

(github.com/jakeret/tf_unet & github.com/fjean/pymeanshift).

This means our sections handling mean-shift transformations, as
well as the U-Net implementation will need to be released under

the same licence.

9 PROJECT PLAN

9.1 Risks

See appendix A.

9.2 Timeline

See appendix B and C.

5

9.3 Deliverables

• Literature Review 02 May

• Project Proposal 23 May

• Revised Proposal 10 June

• Paper Plan 27 June

• Background 19 July

• First Implementation 19 July

• Final Prototype 29 July

• Implementation and Testing 02 August

• Outline of Complete Paper 09 August

• Final Draft of Paper 16 August

• Poster 23 September

• Web Page 30 September

• Reflection Paper 07 October

9.4 Milestones

• Presentation of Proposal 27 - 29 May

• Feasibility Demonstration 15 - 19 July

• Final Paper Submission 26 August

• Final Code Submission 02 September

• Final Project Demonstration 02 - 16 September

9.5 Resources Required

We will require the training data from Aerobotics. This will be
in the form of pre-labelled images from drone mounted sensors,

layered with the segmentation map. We may need to improve the

accuracy of the maps provided using Fiji. Fiji is an open source

image processing software package that has native support for

segmentation map creation and adjustment. We will also need to
use the Python implementations of ImageMagick and OpenCV

to handle the image feature extractions. We will use the

TensorFlow framework to handle all aspects of the machine

learning layer. TensorFlow is created by Google, and provides

comprehensive support for model design, training and usage.
There are various GitHub repositories provided highlighted in

the Procedures section, we will need to use these to provide the

foundations of our models. The repositories are all licenced with

Open Source licences (GPL-3.0 & MIT). As we are using a

package licensed with GPL-3.0, those sections of the platform
will need to be open sourced under the same licence as well.

These sections will be the mean-shift transformation, and the U-

Net implementation. Our only costly requirement may be access

to a GPU cluster for training our models, this will only be

necessary if the data set provided by Aerobotics to too large to
effectively train on our own personal PCs.

9.6 Work Allocation

As mentioned above, there are 3 layers to our experimental

system. For layer 1 - image processing, we will create a basic

handler/API to process images together. The implementation of
each of the transformations and feature extractions will be

individually. Fergus will implement the per-pixel

transformations (HSI and L*a*b* colour space transforms).

Charl will implement the local-area feature extractors (Mean-

Shift and edge detectors). Michael will implement the large-scale
feature extractors (Hough transforms and Templating).

Layer 2 is responsible for the CNN models. Together we will

create a simple interface for interacting with the training harness.

We will implement training procedures for each of the CNN
models specified individually. Fergus will implement the

framework around the U-Net model, Charl will implement the

FCNN model, and Michael will implement the Atrous model.

This will result in a program able to import images of all forms

from layer 1 and train a certain model on them.

Layer 3 is the presentation layer. As TensorFlow provides a

common interface for monitoring and using models, this will be

done together, and will provide feedback for an end user wishing

to segment new images.

REFERENCES

[1] Xiaosong Wang, Xinyuan Huang, and Hui Fu. 2010. A Colour Texture

Segmentation Method to Extract Tree Image in Complex Scene. 2010

International Conference on Machine Vision and Human machine Interface
(2010). DOI:http://dx.doi.org/10.1109/mvhi.2010.138

[2] Xiao Song Wang, Xin Yuan Huang, and Hui Fu. 2009. The Study of Colour

Tree Image Segmentation. 2009 Second International Workshop on

Computer Science and Engineering (2009), 303 307.
DOI:http://dx.doi.org/10.1109/wcse.2009.818

[3] Zheng, L., Zhang, J. and Wang, Q., 2009. Mean-shift-based color

segmentation of images containing green vegetation. Computers and

Electronics in Agriculture, 65(1), pp.93-98.
DOI:https://www.sciencedirect.com/science/article/pii/S016816990800182

8

[4] Tao, W., Jin, H. and Zhang, Y., 2007. Color Image Segmentation Based on
Mean Shift and Normalized Cuts. IEEE Transactions on Systems, Man and

Cybernetics, Part B (Cybernetics), 37(5), pp.1382-1389.

DOI:https://ieeexplore-

ieeeorg.ezproxy.uct.ac.za/stamp/stamp.jsp? tp=&arnumber=4305291
[5] Alberto Tellaeche, Gonzalo Pajares, Xavier P . Burgos-Artizzu, and Angela

Ribeiro. 2011. A computer vision approach for weeds identification through

Support Vector Machines. Applied Soft Computing 11, 1 (2011), 908–915.

DOI: http://dx.doi.org/10.1016/j.asoc.2010.01.011
[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.

2017. Rethinking Atrous Convolution for Semantic Image Segmentation.

CoRR abs/1706.05587 (2017).
[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net

Convolutional Networks for Biomedical Image Segmentation. Medical

Image Computing and Computer-Assisted Intervention – MICCAI 2015

9351 (2015), 234–241. DOI:http://dx.doi.org/10.1007/978-3-319-24574-
4_28

[8] Anon. ImageMagick - Python. Retrieved May 21, 2019 fro m

https://wiki.python.org/moin/ImageMagick

[9] Frédéric Jean. 2015. fjean/pymeanshift. (August 2015). Retrieved May 21,
2019 from https://github.com/fjean/pymeanshift

[10] Olli-Pekka Heinisuo. opencv-python. Retrieved May 21, 2019 from

https://pypi.org/project/opencv-python/

[11] Anon. TensorFlow. Retrieved May 21, 2019 fro m
https://www.tensorflow.org/

[12] Joel Akeret. 2019. jakeret/tf_unet. (May 2019). Retrieved May 21, 2019 fro m

https://github.com/jakeret/tf_unet
[13] Marvin Teichmann. 2017. MarvinTeichmann/tensorflow-fcn. (December

2017). Retrieved May 21, 2019 fro m

https://github.com/MarvinTeichmann/tensorflow-fcn

[14] Yu-Jin Zhang. 2006. An Overview of Image and Video Segmentation in the
Last 40 Years. Advances in Image and Video Segmentation (2006), 1–16.

DOI: http://dx.doi.org/10.4018/978-1-59140-753-9.ch001

[15] Jonathon Long, Evan Shelhammer, Trevor Darrell. 2015. Fully convolutional

networks for semantic segmentation. The IEEE Conference on Computer
Vision and Pattern Recognition (CPVR) (2015), 3431-3440. DOI:

https://doi.org/10.1109/cvpr.2015.7298965

http://dx.doi.org/10.1109/mvhi.2010.138
http://dx.doi.org/10.1109/wcse.2009.818
https://www.sciencedirect.com/science/article/pii/S0168169908001828
https://www.sciencedirect.com/science/article/pii/S0168169908001828
https://ieeexplore-ieeeorg.ezproxy.uct.ac.za/stamp/stamp.jsp?tp=&arnumber=4305291
https://ieeexplore-ieeeorg.ezproxy.uct.ac.za/stamp/stamp.jsp?tp=&arnumber=4305291
http://dx.doi.org/10.1016/j.asoc.2010.01.011
https://github.com/fjean/pymeanshift
https://www.tensorflow.org/
https://github.com/jakeret/tf_unet
https://github.com/MarvinTeichmann/tensorflow-fcn
http://dx.doi.org/10.4018/978-1-59140-753-9.ch001
https://doi.org/10.1109/cvpr.2015.7298965

6

APPENDICES

Appendix A:

Risk Impact Probability Mitigation

Integration issues High Low Research common frameworks to
perform functionalities and maintain

constant communication

Inaccurate ground truth data Medium High Reannotate samples with Fiji. If data
annotation is not usable, use an existing
trained architecture to automatically

reannotate

Long training times for
neural networks

Medium Medium Ask permission to use a cluster to speed
up model training

Number of models to train

cause bottleneck

High Low Train models on many different clusters

Implementation difficulties
with image extractors or

neural network models

Medium Low Research alternative implementations of
the models.

Feature extractor does not
improve accuracy

Medium Very low Research image extractors that work
well together and perform eye test on

some of the samples that the feature
extractor has processed

CNN model not
implementable

Medium Low Discard CNN model and continue with
other 2 functional models

7

Appendix B

8

Appendix C

