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1 PROJECT DESCRIPTION 

Aerobotics is a company in Cape Town that makes use of drones 

to capture high resolution images of consumer’s tree farms, in a 

variety of colour spaces. Pixel information is extracted from 
these images (RGB, Near Infrared, chlorophyll absorption and 

height) and a neural network is used to segment the image into 

predetermined classes (healthy tree, grass, dirt, diseased tree etc). 

This is done to provide consumers with analytics and information 

about their farm, so that they can make decisions based on their 
crop’s health.  

 

A neural network is a network of interconnected layers and 

operations, each with their own associated weights. These 

operations and weights are applied to pixel information to make 
a decision on their classification. They are then adjusted by the 

errors produced in pixel classification. The network can “learn” 

a set of rules to classify image pixels and improves these rules as 

more data is provided. The term for this is semantic segmentation  

i.e. self-learning segmentation [6, 7, 15]. Currently the 
Aerobotics machine  learning system achieves very accurate crop 

segmentation accuracy. Unfortunately, their system is unable to 

accurately segment image boundaries and edges and this 

provides an opportunity to explore methods to address this issue.  

 
To obtain better accuracy, our project aims to take a novel 

approach to improve Aerobotics’ image segmentation strategy, 

by using hand engineered features as input for enhanced neural 

network models. This is due to the fact that hand engineered 

features are traditionally used in computer vision to eliminate 
background noise and emphasize certain characteristics of 

objects that are of interest [14].  

 

These enhanced models are neural networks that have been 

specifically developed and tweaked to segment images. They 
have seen great success on extremely noisy datasets and have 

performed an order of magnitude better than their competitors. 

With this in mind, Aerobotics requested that our team investigate 

selected enhanced neural network models as a mechanism to 

process hand engineered features. The overarching aim of which 

is to investigate the accuracy implications of processing hand 
engineered features against raw images in these enhanced 

models. 

 

There following neural network models will be investigated: 

• Fully Convolutional Neural Network: A neural network 

using a fully connected layer to improve segmentation [15] 

• U-Net: A neural network that uses skip convolutions, 
upsampling and concatenation to achieve even better 

segmentation accuracy [6] 

• Atrous: A neural network that uses specialised convolutions 

to capture spatial information [7] 

 

The categories of hand engineered features explored in this 
project are as follows: 

• Per-pixel transforms: These are modifications dedicated to 

transforming single pixels  

• Small width feature extractors: These are modifications  

dedicated to transforming a small neighbourhood of pixels  

• Large feature extractors: These are modifications dedicated 

to transforming a large neighbourhood of pixels [14] 

 
We intend to use these features and neural networks in a four-

step process to investigate our aim. The first step of which is to 

pre-process the images using our feature extractors (i.e. hand 

engineered features), eliminating background noise. The second 

is to configure the neural networks for training. The third step is 
to train models with pre-processed images as an input as well as 

with raw images as a base case. The final step is to compare the 

resultant accuracy of these networks using metrics discussed 

further in this proposal. 

2 PROBLEM STATEMENT 

Although neural networks achieve state of the art segmentation 
accuracy for many applications. There are still a host of minor 

issues which can cause parties to question their usefulness in 

select scenarios. This is due to the fact that neural networks still 

produce segmented objects that have inaccurate boundaries or 

have low quality resolution (when compared to the original 
image). Furthermore,  these architectures are data intensive, 

requiring huge training samples in order to learn basic image 

features [7, 15]. This is despite many advances made in neural 

network architectures, which suggests that a different approach 

should be used to solve these challenges.  

 

These challenges are of a particular concern to Aerobotics for 

two reasons. Revenue and customers may be lost because of 
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incorrect advice given to the consumer, based on inaccurate 

segmentation. Secondly, training these architectures require lots 

of annotated data, which is costly particularly in their niche 
application.  

 

Aerobotics, through internal investigations, have identified that 

using engineered features and modern neural network models  

might solve some of those problems. However, they want to 
investigate to what extent they do before going forward with any 

implementation. 

 

In light of this, we have devised the following aims in order to 

address the above: 
1. Investigate the feasibility of using feature extractors to 

decrease training time 

2. Determine to what extent engineered features increase 

output accuracy (a 2% difference will be accepted as 

significant) 
3. Test specific feature extractor and feature extraction 

combinations to determine the best combination to use as an 

input for a neural network 

4. Investigate whether the performance of some feature 

extractors is dependant or independent of architecture  
 

The aforementioned aims were then distilled into the following 

research questions: 

1. Do traditional hand engineered features in tree crop 

segmentation, as inputs to select neural networks, 
significantly improve accuracy over their base neural 

network implementations. 

2. Is the segmentation accuracy of certain hand engineered 

features dependant on the specific type of neural network it 

is used in or is their performance independent of neural 
network architecture?  

3. Is there a significant positive or negative impact of the hand 

engineered features on the rate that these neural networks 

learn to segment tree crops? 

3 RELATED WORK 

As there are many ways to extract features from an image, the 

following literature was reviewed as a guideline for which 

combinations of feature extraction methods to perform. 

 

In terms of colour. Wang et al., focused primarily on the L*a*b* 
colour space method, which is a small feature extractor. They 

used this method to identify trees in images by looking for 

colours matching the green spectrum. They found that the 

method was very fast but had some shortcomings when different 

plants that were next to each other, did not have a drastic enough 
difference in their shades of greens. This resulted in them being 

grouped together.[1] In a follow up paper Wang et al. separated 

individual trees from the surrounding landscape in images. For 

images with simple backgrounds, they proposed using Edge-

detectors, however for images with more complex backgrounds  
they devised their own method, based on Edge-detectors coupled 

with colour space methods, of which they recommended the 

L*a*b* colour space method, and  mathematical morphology 

based on their results [2].  

 
In the context of combining feature extractors to improve image 

segmentation, several papers proved useful. Zheng et al., firstly 

applied two per pixel feature extractor, namely HSI colour spaces 

RGB colour spaces, to the images. After this they applied a small 

feature extractor, namely Mean-shift, to the images. This 

separated the images into two parts, green and non-green 

vegetation. They tested this algorithm on a 100 images of 

different plant types, with different illuminations and soil types 
and achieved a median of mis-segmentation of 4.2% between 

green and non-green vegetation.[3] In the paper by Tao et al.,  

they also use the Mean-shift feature extractor. They however 

apply this feature extractor first to the images and then they apply 

the Normalized cuts method. By applying the Mean-shift method 
first, it allows the Normalized cuts method to be applied to the 

resulting segments of the Mean-shift, rather than directly to the 

image pixels. They found this combination requires significantly  

lower computational complexity and therefore, is feasible for 

real-time image processing, while yielding superior image 
segmentation performance.[4] Finally, in their paper, Tellaeche 

et al., used a combination of per pixel feature extractors and large 

feature extractors. They first apply an RGB colour space method 

to the images, that results in a binary image. This image shows 

crops as white and the soil, stones and residual as black. After 
the binary image is obtained, they apply a Hough transform to it, 

to detect the furrows of the crops in the image.[5] Tellaeche et 

al., did not comment on the performance of this combination on 

its own, but as a whole used with Support Vector Machines. They 

found that it performed well, although results may vary in over 
exposed images. The use of combining feature extractors to 

improve image segmentation was established to have a high 

possibility of leading to improved image segmentation, through 

the literature review as well. 
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4 PROCEDURES AND METHODS 

The proposed research project is split into two distinct 

components, namely the pre-processing for creation of 

engineered features, and testing the impact on accuracy that these 

features have on a variety of Convolutional Neural Networks 
(CNNs). We hypothesise manually highlighting features on 

behalf of a CNN will lead to an increase in the rate at which a 

model becomes accurate. 

4.1 Design 

Our overall structure for the software needed to test the 
hypotheses will be split into layers: 

 

4.2 Development Tools 

Our project will be developed in Python. This is because Python 

has many frameworks and libraries useful for our applications. 

The libraries used for image processing are ImageMagick and 
OpenCV as they have all the functionality we need to implement 

these our feature extractors. The library used for model training 

is the TensorFlow library. TensorFlow is a leading framework in 

the machine learning industry, therefore it has vast support and 

documentation allowing us to easily implement our design. 

4.3 Implementation 

The first component requires the creation of a driver class for the 

image feature extraction. This will be done as group. 

Implementing each of the actual transformations within this 

driver will be done individually, with each member 

implementing 2 of the 6 feature extractors. 

 

As input for the next stage, one-many feature extractors will be 

applied to raw images, this will be guided by our own testing, our 
literature reviews and the related work section. These will then 

be fed into our architectures. In order to establish a base-accuracy  

to compare to, CNN models will also be trained on raw image 

data. 
 

The second stage of testing these transformations with 3 different 

FCNN architectures will be performed individually. We will 

each be exploring one of: U-Nets, Atrous CNNs, and Fully 

Convolutional Neural Networks. All these architectures have 
implementations in Google’s TensorFlow framework, which 

allows us to create a common training handler for them and 

perform minor tweaks per architecture.  

 

The third stage will be to implement a presentation layer to 
collate and clearly show various statistical outputs measured 

from training. It will also be used to perform image segmentation 

comparisons.  

5 RESULT EVALUATION 

5.1 Evaluation Process 

Testing the performance of our newly created CNN models will 
be crux of our implementation. We cannot justify the success of 

our feature extraction methods without objectively validating 

their accuracy improvements. We aim to create a reproducible 

testing process that will evaluate the improvement in accuracy of 

models using image feature extraction. We will each train and 
test our models first on unprocessed images to observe the base 

accuracy. Then we will train our other models on images with 

engineered features to validate the improvement in segmentation 

accuracy. Great care will be taken to ensure the raw and 

transformed images are in the same order and come from the 
same base image. As an extension, we hope to select a 

combination of these image transformations which will be 

guided by our own results as well as literature (some of which 

has been explored in related work). This combination will be 
similarly evaluated to determine its effectiveness. 

 

An example of one test run would be: 

1. Choose CNN architecture 

2. Compute base accuracy on raw image data 
3. Choose 1 or more image processing techniques 

4. Compute accuracy using processed image data 

5. Compare accuracy gains 

 

During training the TensorFlow framework provides real time 

metrics for accuracy, allowing us to evaluate the segmentation 

accuracy, as well as the training time required to gain an 

acceptable level of accuracy. When we perform manual 

validation, we will compare the correct segmentation maps to the 
maps generated by the model trained on raw images, as well as 

processed images. Segmentation accuracy validation is 

represented as a percentage change measuring the predicted 

segmentation map to the correct one. 

5.2 Measured Metrics 

We will measure the base accuracy of the models from each 
architecture by training and evaluating them on the raw images  

received and comparing this accuracy to the accuracy of models  

trained and evaluated on images with the transforms applied. We 

will view any improvement of 2% or greater from the base 
accuracy as a significant improvement in segmentation accuracy. 
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An additional metric we wish to evaluate will be the accuracy 

over time for each model and feature extraction. We shall capture 
accuracy throughout intervals of the training process, for 

example at 25%, 50%, and 75% of the dataset. 

6 KEY SUCCESS FACTORS 

Key success factors are measures that should be reached in order 

accomplish one or more desirable goals. To achieve the goals, set 
by this research project, it is expected that the project achieves 

all or most of the following key success factors: 

• Finding competent implementations of a FCNN model, a U-

net model and an Atrous model. 

• Building different feature extractors that perform well with 

the chosen CNNs.: 

• Whether using engineered features as inputs to CNNs can 

improve their segmentation performance for tree data. 

• Whether there are trends associated with certain CNN and 
feature extractor combinations 

• What combinations of engineered features and CNNs 

perform the best. 

• That the percentage increase in performance, between the 

CNNs using the different transformations and the CNNs 

using raw data, is a worthwhile increase. 

7 ANTICIPATED OUTCOMES 

7.1  Expected Impact 

The results of this research project will benefit Aerobotics 

directly and will indirectly benefit any other parties doing similar 

research or feasibility studies. Currently, we hypothesise that the 

use of engineered features as inputs for various CNNs will  

improve segmentation performance on tree data. It was, however, 
observed that segmentation performances between different 

unsupervised architectures had an almost negligible difference in 

the project preceding this one. Similarly, many research projects 

dedicate a huge amount resources into developing new CNNs or 

engineered feature models, only to experience a very small 
increase in either  efficiency, speed or both. Thus, although it is 

expected that we will improve the segmentation performance for 

tree data of CNNs, the margin of this improvement and how 

worthwhile the improvement will be is uncertain. The outcome 

of this project will allow any groups wishing to do research in 
this field to decide whether they wish to: adopt this technology 

into their projects, invest more resources into better researching 

a certain aspect of the project or to discontinue research in this 

field in favour of another. It will also display the effectiveness or 

ineffectiveness of combining feature extractors to improve image 
segmentation, allowing other researchers to build on this premise 

and develop better feature extractor methods or combinations  

thereof. 

7.2 System Outcomes 

One system outcome is the feature extractors that will be built for 
this project. For this project there will be six different feature 

extractors, two methods from each of the three types of feature 

extractors, namely per pixel feature extractors, small feature 

extractors and large feature extractors. The two per pixel feature 

extractors are, L*a*b* colour spaces and HSI colour spaces, the 

two small feature extractors are, Edge-detectors and Mean-shifts, 

and the two large feature extractors are, Hough transforms and 

Templating. 
 

Another system outcome is the Convolutional Neural Networks 

that will be used for this project. There are three CNNs that will 

be used, namely a Fully Convolutional Network, a U-net and an 

Atrous Convolution Network. 
 

The last system outcome is the accuracy tests. Firstly, a ground 

truth accuracy test will be performed on the CNNs, with raw 

image data. After this, multiple accuracy tests will be performed, 

one for every type of feature extractor and one for every chosen 
combination of the feature extractors. Every one of these tests 

will also be split into four tests, each testing different sizes of the 

data set used to train the systems. This split will be on 25%, 50%, 

75% and 100% of the dataset to measure the amount of data 

required to achieve industry-standard accuracy for each 
combination of transformation and CNN model. 

8 ETHICAL, PROFESSIONAL AND LEGAL 

ISSUES 

We do not foresee any ethical issues as we are not researching 

humans or animals, using personal data, or generally interacting 

with people outside of the project team. As this project was 

initially put forward by Aerobotics, and they are providing the 
training data for the CNN models, they will expect some form of 

acknowledgement in our final paper. We do not foresee them 

making claims to intellectual property, as the engineered features 

were not novel ones provided by Aerobotics, and the platform we 

design to test the hypothesis will be our own, and our 
supervisor’s, intellectual property.  

 

We will also be extending software licensed under GPL-3.0 

(github.com/jakeret/tf_unet & github.com/fjean/pymeanshift).  

This means our sections handling mean-shift transformations, as 
well as the U-Net implementation will need to be released under 

the same licence. 

9 PROJECT PLAN 

9.1 Risks 

See appendix A. 

9.2 Timeline 

See appendix B and C. 
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9.3 Deliverables 

•  Literature Review  02 May 

• Project Proposal  23 May 

• Revised Proposal  10 June 

• Paper Plan   27 June 

• Background   19 July 

• First Implementation  19 July 

• Final Prototype  29 July 

• Implementation and Testing 02 August 

• Outline of Complete Paper 09 August 

• Final Draft of Paper  16 August 

• Poster   23 September 

• Web Page    30 September 

•  Reflection Paper   07 October  

9.4 Milestones 

• Presentation of Proposal  27 - 29 May 

• Feasibility Demonstration 15 - 19 July 

• Final Paper Submission  26 August  

• Final Code Submission  02 September 

• Final Project Demonstration 02 - 16 September 

9.5 Resources Required 

We will require the training data from Aerobotics. This will be 
in the form of pre-labelled images from drone mounted sensors, 

layered with the segmentation map. We may need to improve the 

accuracy of the maps provided using Fiji. Fiji is an open source 

image processing software package that has native support for 

segmentation map creation and adjustment. We will also need to 
use the Python implementations of ImageMagick and OpenCV 

to handle the image feature extractions. We will use the 

TensorFlow framework to handle all aspects of the machine 

learning layer. TensorFlow is created by Google, and provides 

comprehensive support for model design, training and usage. 
There are various GitHub repositories provided highlighted in 

the Procedures section, we will need to use these to provide the 

foundations of our models. The repositories are all licenced with 

Open Source licences (GPL-3.0 & MIT). As we are using a 

package licensed with GPL-3.0, those sections of the platform 
will need to be open sourced under the same licence as well.  

These sections will be the mean-shift transformation, and the U-

Net implementation. Our only costly requirement may be access 

to a GPU cluster for training our models, this will only be 

necessary if the data set provided by Aerobotics to too large to 
effectively train on our own personal PCs.  

9.6 Work Allocation 

As mentioned above, there are 3 layers to our experimental 

system. For layer 1 - image processing, we will create a basic 

handler/API to process images together. The implementation of 
each of the transformations and feature extractions will be 

individually. Fergus will implement the per-pixel 

transformations (HSI and L*a*b* colour space transforms). 

Charl will implement the local-area feature extractors (Mean-

Shift and edge detectors). Michael will implement the large-scale 
feature extractors (Hough transforms and Templating). 

 

Layer 2 is responsible for the CNN models. Together we will 

create a simple interface for interacting with the training harness. 

We will implement training procedures for each of the CNN 
models specified individually. Fergus will implement the 

framework around the U-Net model, Charl will implement the 

FCNN model, and Michael will implement the Atrous model. 

This will result in a program able to import images of all forms 

from layer 1 and train a certain model on them. 
 

Layer 3 is the presentation layer. As TensorFlow provides a 

common interface for monitoring and using models, this will be 

done together, and will provide feedback for an end user wishing 

to segment new images. 
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APPENDICES 

Appendix A: 

 

Risk Impact Probability Mitigation 

Integration issues High Low Research common frameworks to 
perform functionalities and maintain 

constant communication 

Inaccurate ground truth data Medium High Reannotate samples with Fiji. If data 
annotation is not usable, use an existing 
trained architecture to automatically 

reannotate 

Long training times for 
neural networks 

Medium Medium Ask permission to use a cluster to speed 
up model training 

Number of models to train 

cause bottleneck 

High Low Train models on many different clusters 

Implementation difficulties 
with image extractors or 

neural network models 

Medium Low Research alternative implementations of 
the models. 

Feature extractor does not 
improve accuracy 

Medium Very low Research image extractors that work 
well together and perform eye test on 

some of the samples that the feature 
extractor has processed 

CNN model not 
implementable 

Medium Low Discard CNN model and continue with 
other 2 functional models 
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Appendix B 
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Appendix C 

 


