TREESEG

Segmentation improvements with CNNs & engineered features

Convolution Neural Networks (CNN) are an industry-standard A1 architecture for image processing. This investigation analysed the effects of single pixel, local pixel and global pixel feature engineering as input to 3 different CNN architectures. The aim of which was to increase segmentation accuracy in the context of drone-captured images of trees provided by Aerobotics.

Convolutional Neural Network Architectures

Fully CNN

- Allows for arbitrary-sized input images
- The last fully connected layer has a large receptive field

U-Net

- Developed for medical segmentation
- Low data requirement for accuracy
- Convolutions create a "U"

Atrous CNN

- Use atrous convolutions
- These capture space between features
- Uses less computation than standard convolutions

Engineered Features

Single Pixel

Manipulating single pixel data:

- Color Spaces (HSI, Lab, RGB)
- Principle Component Analysis

Local Pixel

Manipulating a region of pixels:

- Mean Shift
- Canny Edge Detector
- Morphological Closing

Global Pixel

Manipulating all pixels:

- Thresholding
- Greyscale Histogram Equalization
- Independent Component Analysis

Improvements in segmentation metrics

(% increase from base RGB accuracy)

	Morph.		
	Closing	Histogram Equalization	
U-Net	0.73%	1.14%	

Findings & Conclusion

Large scale feature extractors removed image noise and performed better

- Accurately highlighted tree boundaries
- Removed tree shadows

Improved segmentation in challenging cases

(Determined by visual analysis)

	LAB	Histogram Equalization
FCNN	2%	6 1%
		Morph. Closing, ICA,
	LAB	Histogram Equalization
Atrous	0.12%	1.97%

i'Vun

• Excluded other ground vegetation

This allowed the CNNs to segment input images more accurately

Result with Feature Extraction

Computer Science Department University of Cape Town Private Bag X3

Rondebosch

7701

Supervisor

A/Prof. Patrick Marais A/Prof. Deshen Moodley **Team Members** Charl Ritter Fergus Strangways-Dixon Michael Scott