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ABSTRACT 

Convolution Neural Networks (CNN) are an industry-standard 

variant of neural networks for the classification and manipulation 

of two-dimensional image data. Although they are able to reach 

high levels of accuracy, they require large data sets to train on 

before becoming acceptably accurate. The U-Net variation of 

CNNs is a novel architecture designed to significantly reduce 

training times while preserving equivalent accuracy metrics. Little 

is understood about the effects of image pre-processing techniques 

on these models. An investigation into small to medium scale 

image transformation techniques and their effect on accuracy and 

loss of the U-Net model in the context of tree canopy 

segmentation is performed. This investigation establishes that the 

model reaches acceptable segmentation results with non-

processed images, however, the addition of Morphological 

Closing and Histogram Equalization as additional layers to the 

base image results in higher accuracy, and lower cross-entropy 

and therefore higher confidence of the model when performing 

segmentation on tree canopy images. The most challenging areas 

for the model to segment around are ground vegetation at the base 

of the tree, and shadows caused by the tree. These processing 

techniques create a more contiguous and outlined tree canopy for 

the model to segment, therefore making it more confident when 

segmenting a canopy as well as reducing false negatives produced 

by shadows and ground vegetation. 

CCS CONCEPTS 

• Computing Methodologies → Machine Learning → 

Segmentation    • Applied Computing → Agriculture 

KEYWORDS 

Artificial Intelligence, Image Processing, Feature Extraction, 

Colour Spaces, Segmentation, Vegetation 

1 Introduction 

There are many existing segmentation algorithms applied in the 
agricultural industry, these algorithms are designed to identify tree 

crops from the underlying landscape in an image. Due to the 

nature of the industry, image data is captured by remote-
controlled drones capable of travelling the distances required. 
Once the images are captured, the images can be processed by a 
variation of a Convolutional Neural Network (CNN) called a U-
Net to perform the segmentation. A CNN is a neural network 

designed specifically to exploit and analyse the 2-dimensional 
nature of image data. CNNs often have the drawback of requiring 
vast amounts of training data to become accurate, however the U-
Net architecture was designed to reach industry-standard accuracy 
with training sets as small as 300 images. A robust solution will 
be able to reliably segment the images during any time of day, in 
any season. This may be achievable through vast amounts of 
training data captured at various times and seasons, however, this 

will greatly increase the cost of training the model and may not be 
guaranteed to work. This paper investigated alternative image 
representations that positively impact the accuracy of the model 
while keeping training costs to a minimum. While the architecture 
of the U-Net is important, the focus of this paper is the impact 
various techniques of pre-processing have on the accuracy of the 
model compared to the base RGB image. Specifically, image 
processing methods are separated into small scale transformations, 

such as colour space manipulation, Principal Component Analysis 
and Independent Component Analysis, as well as medium scale 
transformations, such as Mean Shift and Histogram Equalization 
transforms. The images provided for experimentation also 
included non-standard layers such as Near Infrared and height 
mapping layers. The purpose of this research is to determine 
which of these transformation methods increase accuracy by 1% 
or higher or reduce loss and cross-entropy by 0.05 or more when 

compared to the control models to justify them as a useful 
transformation for the purpose of improving the segmentation 
abilities of the U-Net model. 
 
This research forms part of a wider evaluation of these image 
transformations on a variety of CNN architectures, and so the 
image transformations were implemented by the research group. 
Results from the group are yet to be published.  

2 Background and Related Work 

Since the development of digital image formats, researchers have 
manipulated image data for a variety of purposes. A large portion 
of this research was transforming the colour space of the existing 
image formats into new colour spaces for a wide variety of use 

cases. A detailed description of these colour spaces is defined 
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further in this paper, as well as their potential advantages towards 
more accurate tree segmentation. Furthermore, niche research 
groups have developed a wide variety of algorithms at various 
scales to extract useful features from an image, such as histogram 
equalization for contrast adjustment.  

2.1 Per-Pixel Transformations 

Per-pixel transformations are manipulations of the data in a single 
pixel and are often colour space transformations. These 

transforms convert image data from a source, usually RGB, into 
various other formats for different use cases. 
 
The most common colour space is RGB, as this is the format 
computer screens require to display data. This format works well 
for describing light as components of 3 LEDs embedded in 
display pixels, however, is not a direct representation of how a 
human eye perceives light. This colour space can be useful for the 

task of image segmentation as the Green component can be 
weighted as the most important value of the pixel in the CNN, 
using the Red and Blue as auxiliary components to help isolate 
background data. 
 
The L*a*b* colour space is closer to human vision as it includes a 
Lightness channel, as well as a* and b* chrominance channels. 
This allows us to separate the light factor from the colour values 

themselves, not possible in RGB. Hernández-Hernández et al. [6] 
tests a wide variety of colour spaces in the context of weed 
detection in agriculture and found their technique resulted in 
99.2% accuracy in the L*a*b* colour space. Xiaosong et al. [13] 
found that the hues of tree canopies are predominantly found in 
the negative end of the a-channel, they then performed 2-
dimensional OTSU segmentation of automatic threshold in the a-
channel in order to reliably segment trees from an image. Xiao-
Song Wang et al. [12] corroborate these findings, stating that 

differences in pixels in the L*a*b* colour space represents an 
equivalent difference in the human eyes’ visual system and 
resulting in more accurate segmentation. 
 
Another industry standard for a digital format of human-like 
vision representation is the HSI colour space. The Hue component 
represents the dominant wavelength of the colour, the Saturation 
component is the relative purity of the Hue, and Intensity of zero 

describes pure white, and one describes pure black. L. Tang et al. 
[11] show that it is possible to decouple the intensity component 
to better represent how human vision perceives light in a digital 
manner, they also provide criticism of the HSI space by 
describing issues with sensor noise and minor reflectance 
variations leading to instabilities in the converted images, which 
can have serious negative effects on single dimension 
segmentation algorithms, however they find normalization of the 

pixel values in  HSI colour space can theoretically lead to higher 
accuracy in higher-dimensional segmentation strategies. 
 
G. Ruiz-Ruiz et al. [9] found that due to the separable nature of 
the HSI colour space, they were able to reduce the computational 
time of their clustering process and Bayesian classifier as they 
required only 2 and 1 components of the HSI space respectively. 
The removal of the Intensity component also increased accuracy 

for images with varying illumination levels present in real farm 
fields. This strategy resulted in a 25 times improvement in 

segmentation time compared to the original RGB segmentation 
strategy without a significant loss of accuracy. Dianyuan Han et 
al. [5] used an interesting approach to manipulate the HSI format 
for segmenting based on a dominant colour, green in the case of 
vegetation segmentation. The hue of tree canopies in an image 
was established, and the difference of each pixel to that hue was 

calculated and normalised, and used for segmentation. As with the 
L*a*b* space, Liying Zheng et al. [14] found that they could 
isolate green in the HSI colour space by the Hue component being 
roughly 120◦. They then used this in a mean-shift segmentation 
strategy discussed further in this paper to achieve better 
segmentation results for green vegetation. 
 
A new approach to vegetation detection and segmentation is the 

use of infrared image overlays over original data, giving the 
segmentation an additional attribute to segment on. A. Colturato 
et al. [15] use drone-mounted FLIR cameras to detect potential 
diseases in vegetation, specifically tree trunks. This additional 
spectrum of light provided to the CNN can aid in both traditional 
segmentation, especially in detecting trees from background 
vegetation, as well as the additional feature of being able to assess 
the overall health of an area when compared to past data. 

 
Principal Component Analysis (PCA), as well as Independent 
Component Analysis (ICA),  are other image transformations 
tested in the following experiments. PCA is useful for 
compressing and collating data points. The transformation result 
is designed such that the first component explains the largest part 
of the variance in the data as possible, with further components 
following as long as they are orthogonal to preceding components 

[16]. This will highlight to the CNN where areas have the most 
variation and highlight edges of tree canopies. ICA is useful for 
separating sections of the data, specifically separating statistically 
independent portions of the light spectrum and eliminating noise 
from a mixed sensor source [17]. Adding these 2 layers to the 
base RGB channels should give more dimensions for the U-Net to 
make predictions on, and improve accuracy.  
 

2.2 Medium-scale transformations 

Medium-scale transforms are algorithms that take a local 

neighbourhood of pixels and perform operations on them, rather 

than the per-pixel operations. This is done with the goal of 

extracting features from the image, such as edge detection, or 

normalisation of outlying pixel values. This research examines the 

effects of Mean Shift, Histogram Equalization, Edge Detector, 

and Morphological Closing on the U-Net model’s accuracy. 

 

The Mean Shift algorithm estimates the average of surrounding 

pixels at a point. In practice, this results in homogenising colours 

in the image. This should result in the canopies of trees all 

becoming 1-pixel value representing green, and thus easier for the 

U-Net to identify. [18] 

 

Histogram Equalization algorithms seek to enhance the contrast of 

a given image by spreading out the most frequent intensity values, 

theoretically allowing for a more distinguishable edge to tree 

canopies and thus allowing the U-Net to notice borders more 

effectively. [19] 
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Edge Detectors, specifically Canny edge detection performs a 

complex series of filters, gradient analysis and thresholding to 

detect the edges of objects in an image. Although the U-Net may 

eventually learn rules like this, providing the result as a channel in 

an image may significantly reduce training time required, as well 

as improving accuracy. [21] 

 

Morphological closing uses mathematical dilation and erosion 

techniques on an image to fill in gaps of a grayscale image. This is 

expected to make the canopies of trees smoother, as gaps between 

branches and leaves should be removed, resulting in a more 

continuous surface for the U-Net to make predictions on, 

theoretically making segmentation simpler. [20] 

2.3 U-Net architecture 

Neural networks are machine learning models that consist of 
layers of neurons, with weighted connections between layers 
determining values at each layer. Data is entered at one side of the 
model and fed through these layers, with output being a 
segmentation mask in the context of this research. Convolutional 

Neural Networks (CNN) are variations of neural networks 
characterized by having at least one convolutional layer [7]. These 
convolutional layers aggregate neighbouring data points to draw 
relations between them. 
 
U-Nets are a novel architecture that is based on a CNN proposed 
by Olaf Ronneberger et al. [8] initially for use in the medical field. 
The architecture connects all layers to each other, rather than the 

data following a linear path through each layer to the next. Their 
focus was segmenting cells from medical images, however, the 
task of segmenting cells in an image is similar to segmenting trees 
from a field.  
 
 

 

Figure 1: U-net architecture (example for 32x32 pixels in the 

lowest resolution). [8] 

Figure 1 shows the architecture of a U-Net model. The 
differentiating factor of a U-Net is the down and up convolutional 
layers, that are also connected across the U. Due to this the model 

requires far fewer training images and results in higher accuracy 
on segmentation than existing industry-standard CNN models. [8]  

3 Experimental Framework 

3.1 Design 

The experimental framework was divided into 3 layers: the image 
processing layer, the AI training harness, and the presentation 
layer as can be seen in figure 2. This research paper forms part of 
a larger investigation into the effects of image transformations on 

CNNs. The initial image processing layer was developed in 
cooperation with other student researchers investigating the 
effects of these same transformations on Fully Convolutional 
Neural Networks, and Atrous Neural Networks. 

 

Figure 2: Framework architecture 

The image processing layer takes HDF5 files as input, as this is 
the default format supplied by Aerobotics. These image files have 
many layers included, namely RGB, DEM, NDVI, NIR, and the 
ground truth segmentation mask. The image processing layer is 

responsible for reading in a batch of these images, extracting the 
specified existing layers, as well as performing small and medium 
scale transformations on these layers as additional channels to the 
image, and save it in a variety of formats. For example, a user 
may specify the RGB, NIR and DEM layers as well as histogram 
equalisation of the RGB layer as an additional layer to generate a 
deeper representation of the image to train a CNN model on. 
 
The AI training harness layer is responsible for retrieving input 
images prepared by the initial processing layer and separating this 
batch into verification and training images for cross-validation. 
Additionally, this layer defines the training regimen the user 
wishes to perform in terms of epochs, training intervals and batch 
sizes, as well as configure the structure of the model, such as 

number of layers or pooling size. This layer is closely linked to 
the final presentation layer. 
 
The presentation layer is responsible for displaying various 
statistics regarding the current training regime being conducted, as 

well as saving historical data for future analysis. This layer also 
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allows a user to view the structure of the model at various 
granularities in order to fine-tune its configuration. 

3.2 Implementation 

Each layer is implemented in Python, to generate easy to read and 

maintain code, as well as Python being a popular and mature data 

science language. 

 

3.2.1 Image transformation layer 

The image transformation layer uses a combination of the cv2, 

numpy, skimage, and sklearn Python libraries, as well as some 

other supporting libraries such as pandas and PIL. We used the 

h5py library to extract the various layers from the h5 images. The 

user is expected to specify the path to the source directory of the 

images, a list of layers and transformations required, as well as the 

output directory to save these images. The user may also specify 

the output format, such as a png, gif, or numpy array. When run, 

the image driver will give information as well as regular updates 

on the progress of the processing. Once complete, the resulting 

output image is an array of up to 20 channels per pixel, and ready 

to be processed by the training harness. 

 

The driver can extract the existing layers as mentioned earlier, as 

well as any combination of the following small scale/pixel level 

transformations: 

• 2 variations of RGB to HSI 

• RGB to L*a*b* 

• Independent Component Analysis (ICA) 

• Principal Component Analysis (PCA) 

 

The driver can produce the following medium-scale 

transformations: 

• Mean Shift - Performed on RGB values to smooth green 

pixel areas 

• Histogram Equalization - Performed on NDVI values to 

strengthen borders between shadow and tree canopy on 

NDVI spectrum 

• Canny Edge Detection - Performed on RGB values to 

extract edges from RGB pixel values 

• Morphological Closing - on NDVI values to fill gaps in 

the tree canopy 

 

3.2.2 Image transformation layer.  

The training harness was built on the Python TensorFlow 

framework, in particular using a U-Net implementation by Joel 

Akeret et al. [22] developed for use in radio frequency 

interference mitigation. TensorFlow requires access to the Nvidia 

cuDNN libraries which can be complex to install, and so to ensure 

easy reproducibility this layer also includes a Docker image based 

on the Nvidia TensorFlow Docker image to simplify setup. 

 

3.2.3 Image transformation layer 

The presentation layer was handled automatically by the 

TensorFlow implementation, leveraging the functionality of 

Tensorboard in order to track and graph the progress of each 

training run, as well as allowing the user to view historical data 

from past runs. Tensorboard also generates a graph representing 

the structure of the AI model at a point in time, allowing for 

further insight into the performance of the model.  

4 Segmentation Tests 

4.1 Test Dataset 

The dataset used for segmentation testing was provided by 
Aerobotics, containing 636 drone-captured images of an apricot 
orchard from various times and days. The dataset was not 
randomized for each model’s training run to keep the results as 
equivalent as possible. From this dataset, 6 images were kept 
aside as a verification batch, shown in Appendix 1. These images 

were selected to represent the different classes of challenges the 
model may face while performing segmentation. 
 

• Images 1 and 4 were selected as tests for continuous 
rows of trees, under different lighting conditions. 

• Image 2 was selected to test the response to the mask 
Aerobotics applies to neighbouring properties, visible in 
the top left corner, as well as severe shadows. 

• Images 3 and 5 were considered the most 
straightforward and easy segmentation tasks. 

• Image 6 was selected to test accuracy around the green 
vegetation at the base of each tree. 

4.2 Test Strategy 

In order to measure the relative change in accuracy of the model 

when transformations are applied, a base case is needed. This base 

case is a model trained on only the RGB channels, as this is 

considered the most standard image format. Aerobotics also 

provides additional layers such as NIR, and so a model trained on 

RGB as well as these additional layers will be a secondary base 

case for comparison. 

 

The foundation of an image is its colour channels, for the purpose 

of this research, this is limited to RGB, HSI and Lab formats. 

After investigating the effect these formats have on the accuracy 

of the model, a comparison will be made to discard the format 

with the worst accuracy statistics. 

 

Taking these two foundations, various transformations will be 

added to them as additional channels to measure their interaction 

with the model. Due to time constraints, the initial two tests done 

per foundation as mentioned above are all small-scale transforms 

as additional layers, and all medium-scale transforms as additional 

layers. 

 

A comparison will then be made between the performance of the 

groups of transforms and either small or medium scale 

transformations as a group may be discarded at this stage 

depending on their impact, or lack thereof, on accuracy. This is 

due to time constraints on the experimentation phase and justified 
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by the ability of a CNN to effectively discard channels that are not 

suitable. If there is an effective transform in the collection, the 

CNN will identify it and make use of it. If the collection as a 

whole does not impact accuracy positively, it can be safely 

discarded. 

 

Finally, in order to isolate effective transformations, the 

transformation groups with an increase in accuracy will be split 

for test runs, for example running RGB with Edge Detection, as 

well as Lab with Edge Detection. At this stage, we will be able to 

make recommendations for the accuracy impact of each 

transformation. 

 

The U-Net implementation allows for various configurations of 

both the structure of the U-Net model and its training regime. The 

model used to produce the results in this paper consisted of 5 

active layers, 64 feature roots, a filter size of 3x3 and pool size of 

2x2. The cost function used was cross-entropy, with no explicit 

class weights and a learning rate starting at 0.2. The data provided 

to it varied from 3 to 20 channels, and always 2 classes, tree or 

not-tree. The training regime for each run was done over 300 

epochs with 25 training iterations, with a batch size of 3 images 

and a verification set of 6 images. All runs were conducted on an 

RTX2070 with 8Gb of VRAM. Runs take between 2 to 5 hours 

each, depending on the number of channels. 

4.3 Performance Metrics 

The key performance indicator for each run will be accuracy and 

will be supported by the loss and cross-entropy. Accuracy is 

measured as a percentage with 100% being perfectly correct 

segmentation and calculated as an average across the final training 

epoch. Cross entropy is a log loss function used for calculating 

loss on models that present a probability of classification, with 0 

cross-entropy being a perfect classification, and increasing 

exponentially as the prediction tends to a complete incorrect 

classification. The aim of these transformations is to increase the 

accuracy, and reduce loss and cross-entropy when compared to 

the model trained on the original RGB image base case. Manual 

examination of the verification batch will also be made to analyze 

the effect the transforms have on each of the challenging test 

classes, such as shadow detection. 

5 Results and Discussion 

The purpose of these transformations is to improve the accuracy 
of the final trained model, as well as improve the confidence of 
the segmentation results produced. In the below tables, 
‘Aerobotics’ layers are all the layers mentioned earlier provided 
with the base RGB image from Aerobotics, such as DEM and 
NDVI. Accuracy, cross-entropy and loss readings were taken 

from Tensorboard at the end of each training session. 

5.1 Impacts on Metrics 

5.1.1 Control Models 

 

Image Base  Additional Layers Accuracy Cross-Entropy Loss 

RGB - 88.64% 0.14 0.27 

RGB Aerobotics 91.63% 0.12 0.24 

Table 1 – Control models 

The additional layers provided by Aerobotics increased the 
accuracy when combined with the RGB image by 2.99%. These 2 
models serve as the control models to compare all following 
experiments to. Each of the transformations applied is designed to 
increase accuracy, and reduce cross-entropy and loss when 

compared to these control results. 

 
5.1.2 Small scale transforms 

 

Image Base Additional Layers Accuracy Cross-Entropy Loss 

HSI - 73.90% 23 0.45 

LAB - 86.97% 0.15 0.3 

Table 2.1 – Colour space transformation results 

RGB and Lab performed at similar accuracy levels, with RGB 

being marginally more accurate by 1.67% on the verification 
batch as well as slightly lower cross-entropy and loss. HSI had a 
significant negative effect on accuracy of 14.74%, and so can be 
discarded for future test combinations. HSI’s loss of accuracy may 
be attributed to the transformation losing accuracy on floating-
point values of the Hue channel, or simply not having enough 
contrast between areas important for segmentation. 
 

Image Base Additional Layers Accuracy Cross-Entropy Loss 

RGB Aerobotics 91.63% 0.12 0.24 

LAB Aerobotics 89.98% 0.14 0.29 

Table 2.2 – Lab colour space with Aerobotics layers, 

compared to control case 

The additional layers provided by Aerobotics increased 
segmentation accuracy when paired with the Lab base image by 
3.01%. These layers give the model more context around a tree to 
make predictions, such as height, or NDVI values and so are 
expected to increase accuracy. The baseline accuracy of the RGB 
image and Aerobotics layers is still the most accurate, with 1.65% 
greater accuracy than the Lab image with the same additional 
layers, with lower cross-entropy and loss implying greater 

confidence in the segmentation effort. 
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Image Base Additional Layers Accuracy Cross-Entropy Loss 

RGB ICA and PCA 87.69% 0.15 0.29 

LAB ICA and PCA 70.51% 0.25 0.50 

Table 2.3 – RGB and Lab image with ICA and PCA 

The addition of the small-scale transformations, namely PCA and 
ICA, reduced accuracy of both the RGB and Lab base images. 
This was a small loss in the case of the RGB image, only reducing 
accuracy by 0.95%, however, the U-Net model failed on the Lab 
image with the small-scale transformation layers applied. 

Accuracy was reduced by 16.46%, and close to doubling loss and 
cross-entropy. This may be due to the PCA and ICA still being 
performed on the RGB values before being added to the Lab 
image, resulting in the model not understanding the relationship 
between the underlying Lab image, additional layers and 
segmentation mask. Due to this and loss of accuracy on the RGB 
image, small scale transformations other than the Lab base image 
will not be investigated further. 
 

5.1.3 Medium-scale transformations 

 

Image 

Base Additional Layers Accuracy 

Cross-

Entropy Loss 

RGB 

All Medium Scale 

Transforms 89.22% 0.12 0.24 

LAB 

All Medium Scale 

Transforms 88.14% 0.13 0.27 

Table 3.1 – RGB and Lab with all medium scale 

transformation layers 

Both experiments with all of the medium-scale layers increased 

accuracy, with a 0.58% increase in RGB accuracy, and lower loss 

and cross-entropy. The medium-scale transformation layers 

increased the accuracy of predictions made on the Lab image by 

1.17% and lowered cross-entropy loss. As the medium-scale 

transformations had a positive impact on accuracy, we will 

investigate which specific transformations had the most positive 

interaction on accuracy with the U-Net model. 

 

 

 

 

 

 

 

 

Image 

Base Additional Layers Accuracy 

Cross-

Entropy Loss 

RGB 

All Medium scale + 

Aerobotics 90.80% 0.10 0.21 

LAB 

All Medium scale + 

Aerobotics 90.72% 0.11 0.22 

Table 3.2 – RGB and Lab images with all medium scale and 

Aerobotics layers 

Adding the medium-scale transformations to the base image and 

layers provided by Aerobotics, there was a minor negative impact 

on accuracy of less than 1% for the RGB image, and a less than 

1% increase in accuracy on the Lab image, however it resulted in 

a fairly significant reduction in cross-entropy and loss when 

compared to the control case metrics, implying the model was 

more confident about the predictions it made, however, they were 

not more accurate. This may be a limitation of the ground truth 

masks supplied by Aerobotics, as they are not always completely 

accurate. These results show that although the additional layers 

did not improve accuracy, having additional channels to segment 

on made the model more confident in these segmentations. 

 

Image 

Base Additional Layers Accuracy 

Cross-

Entropy Loss 

RGB 

Morphological 

Closing 89.37% 0.12 0.24 

LAB 

Morphological 

Closing 88.10% 0.13 0.26 

Table 3.3 – RGB and Lab with Morphological Closing 

Morphological closing had a positive impact on accuracy, 

increasing it by 0.73% on the RGB base image, and 1.13% on the 

Lab base image. It also slightly decreased cross-entropy and loss, 

implying the transform did not improve confidence, only 

accuracy. This can be expected as the purpose of morphological 

closing is to remove small blemishes in tree canopies, presenting a 

more contiguous surface to the U-Net for segmentation. 

 

Image Base Additional Layers Accuracy Cross-Entropy Loss 

RGB Mean Shift 86.50% 0.16 0.33 

LAB Mean Shift 74.12% 0.24 0.49 

Table 3.4 – RGB and Lab with Mean shift layer 

The addition of the mean shift layer to the RGB and Lab base 

images resulted in a reduction in accuracy, and a gain in cross-
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entropy and loss. The RGB base image with mean shift was not 

impacted as heavily as the Lab image, which had an accuracy 

reduction of 12.85%, as well as significant gains in cross-entropy 

and loss. 

 

Image 

Base Additional Layers Accuracy 

Cross-

Entropy Loss 

RGB 

Histogram 

Equalization 89.78% 0.14 0.27 

LAB 

Histogram 

Equalization 82.04% 0.23 0.45 

Table 3.5 – RGB and Lab with histogram equalization layer 

Adding the histogram equalization result to each of the base 

images marginally increased the accuracy of the RGB image, and 

significantly lowered the accuracy on the Lab image. The 

combination of the histogram equalization layer and the Lab 

image hindered the ability of the U-Net model to perform reliable 

segmentation. 

 

Image Base Additional Layers Accuracy Cross-Entropy Loss 

RGB Edge Detector 78.34% 0.20 0.41 

LAB Edge Detector 79.10% 0.22 0.43 

Table 3.6 – RGB and Lab with edge detector layer 

Combining the result of the edge detector with each of the base 

images resulted in significantly lower segmentation accuracy. The 

features extracted by the edge detector confused the U-Net model 

and did not allow for it to construct its own more accurate 

understanding of edges. 

 

Image 

Base Additional Layers Accuracy 

Cross-

Entropy Loss 

RGB - 88.64% 0.14 0.27 

RGB 

Morphological Closing and 

Histogram Equalization 90.31% 0.13 0.27 

Table 3.7 – RGB control result, and RGB with Histogram 

Equalization and Morphological Closing layers 

The addition of Morphological Closing and Histogram 

Equalization layers to the base RGB image increased 

segmentation accuracy by 1.67%, with negligible changes in loss 

and cross-entropy. This combination of transformations therefore 

successfully improved the segmentation performance of the U-Net 

model 

 

Image 

Base Additional Layers Accuracy 

Cross-

Entropy Loss 

RGB Aerobotics 91.63% 0.12 0.24 

RGB 

Aerobotics, Morphological 

Closing and Histogram 

Equalization  92.91% 0.09 0.19 

Table 3.8 – RGB with Aerobotics layer control result, and 

RGB, Aerobotics, Histogram Equalization and Morphological 

Closing result 

The addition of Morphological Closing and Histogram 

Equalization layers to the base RGB image with Aerobotics layers 

increased segmentation accuracy by 1.28% from the control 

image with only RGB and Aerobotics layers, as well as lowering 

cross-entropy by 0.03 and loss by 0.05. This is the highest 

accuracy model, with the lowest cross-entropy and loss. The final 

verification batch for this model can be found in the 

Supplementary Information appendix 2. 

 

5.1.4 Accuracy Findings 

These results provide evidence that manipulating the colour space 
of an image does not improve segmentation accuracy of the U-Net 
model in the case of drone-captured tree images. PCA and ICA do 
not improve performance metrics either. The U-Net model can 

learn the most effective small scale or pixel-level transformations 
without our assistance, and so adding these extra channels only 
added noise to the model’s input data, and so reduced accuracy 
and increased cross-entropy and loss. 
 

Medium-scale transformations were able to extract features that 
marginally aided the U-Net in segmentation. Specifically, the 
results show that morphological closing increased accuracy and 
decreased cross-entropy and loss on both variants of the base 
image. The histogram equalization transformation also increased 
the accuracy of the model when paired with the RGB base image, 
however, decreased accuracy significantly when paired with the 
Lab base image. 
 

The model with the best performance metric results was the RGB 
base image along with Aerobotics layers, Morphological closing, 
and histogram equalization. This resulted in 92.91% final epoch 
accuracy, successfully improving upon both control models. 

5.2 Manual analysis of verification batch 

The verification batch was selected to test a wide variety of 
segmentation challenges the model will encounter. Manual 

verification is focused on how the model segments rows of trees 
as well as individual trees, and exclusion of ground vegetation and 
shadows from tree segmentation. Verification image 2 also has a 
farm border that is masked in the image, the model should not 
identify any trees in that area. In the figures below, the leftmost 
image is the base RGB or Lab image, the middle is the 
segmentation mask provided by Aerobotics, and the rightmost 
image shows the segmentation performed by the U-Net model on 
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the 300th training epoch. The closer the colour is to white, the 
more confident the model is segmenting that pixel as “tree”. 
 

5.2.1 Control model results 

 

 

 

Figure 3. RGB verification results 

With only the RGB channels, the model was able to reliably 
segment most well-defined tree canopy borders for both rows of 

trees and individual trees. However, it did not reliably exclude 
shadows and ground vegetation shown in figure 3. The model was 
able to exclude most of the shadow along the border of the final 
image shown in figure 3, however still identified portions of it as 
a tree which is incorrect. 
 

 

Figure 4. RGB with Aerobotics layers (Left) with ground 

truth (middle) and model segmentation (right) 

The addition of layers provided by Aerobotics such as NIR and 
DEM gave the model far more context to use in its segmentation 
task, shown in figure 4. These layers allowed the model to define 
clearer borders between the tree and the ground for both rows of 
trees and individual trees, as well as reduce the amount of shadow 
and ground vegetation incorrectly segmented as tree. The addition 
of these layers also reduced the amount of incorrect segmentation 
at the border of the final image. 

 
5.2.2 Highest accuracy transformations 

Although the two control cases had high accuracy, some medium 
scale transforms had positive effects on accuracy and served to 
reduce cross-entropy and loss. No medium-scale transform is 
perfect on its own, but rather serve to provide different aids 

reflected in figures 5 and 6. 
 

 

Figure 5. RGB with Aerobotics (middle) and Medium-scale 

transformations & Aerobotics layers (right) 

Figure 5 shows the results of combining all the medium-scale 
transformations with the RGB image and Aerobotics layers 
(right), compared to the original RGB with Aerobotics results 
(middle). This model displayed equivalent accuracy results, but 

lower cross-entropy and loss. This can be confirmed visually by 
analysing the solid white colouring of these segmentation 
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attempts, showing the model was far more confident when 
segmenting the centre of each tree canopy. The results also show 
more confidence when discarding shadow and vegetation, 
however, some reaction to it is still present.  
 

 

Figure 6. RGB with Morphological Closing (middle) and 

Histogram Equalization (right) results 

Morphological closing and Histogram equalization resulted in the 
highest accuracy when paired with the RGB base image. These 

transformations are based on the NDVI channel, and so provide 
the U-Net model with a modified spectrum to perform 
segmentation with. Morphological closing is intended to fill gaps 
in the canopy resulting in the high confidence seen in figure 6 and 
the centre of each canopy. It is also an effective transformation for 
reducing the false positives around shadows and ground 
vegetation. Histogram equalization served to create clean borders 
around the edges of each tree, at the cost of often including 
ground vegetation within these borders. 

5.2.2 Lowest accuracy transformations 

Some transformations significantly reduced the ability of the U-
Net model to perform segmentation tasks, shown in figures 7 and 
8 
 

 

Figure 7. HSI with ground truth (middle) and verification 

results (right) 

The U-Net model was hampered by the HSI format, classifying 
the entire border region as a tree in the second image of figure 7, 
as well as failing to identify the gaps between rows of trees in 
both images. Shadows and ground vegetation were segmented 
with the same confidence as the tree canopy, leading to this 
transformation being discarded early in the experimental process. 
 

 

Figure 8. RGB and Lab image with ground truth (middle) and 

Canny Edge Detector (right) 

The addition of the edge detector to each set of images shown in 
figure 8 resulted in higher confidence when segmenting the tree 
canopy, as the edges were already highlighted for the U-Net 
model. However, due to this, the U-Net was unable to discard 

shaded areas as they were contained within the edges, leading to a 
nearly 10% loss in accuracy when compared to the base images. 
The model was also unable to distinguish individual trees when 
the edge detector layer was added, further reducing accuracy. 
From these results it is recommended to allow the U-Net model to 
create its own smaller-scale rules and transformations, rather than 
adding unneeded noise and focusing efforts on extracting larger-
scale features the model finds difficult to understand. 

5.3 Conclusion 

The U-Net CNN model is well suited to the task of segmenting 

tree canopies from the underlying landscape, reaching industry-
standard accuracy results on a training set of only 600 images.  
Although the control models performed with acceptable accuracy, 
the addition of Morphological Closing and Histogram 
Equalization layers served to reduce cross-entropy and therefore 
improve the confidence of the model when performing 
segmentation. The ideal model from these experiments was that 
trained on an RGB base, with layers supplied by Aerobotics and 

Morphological Closing, and Histogram Equalization layers. The 
transformations found to have the most significant positive 
impacts on performance metrics when compared to both control 
models were Histogram Equalization and Morphological closing. 
Small scale transformations such as colour space manipulation, as 
well as ICA and PCA,  had negative effects on the key success 
metrics of the model and should not be used to improve 
segmentation. 
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6 Future Work 

This research was performed as an initial investigation into the 
effects of various image transformation techniques on the U-Net 
model, using a limited dataset and training hardware. Future 

research may investigate the effects these transformations have on 
a larger production scale dataset, as well as testing on live 
segmentation tasks in various contexts. This research also 
identified transformations that were not successful in improving 
the segmentation ability of the model, and so future research may 
investigate a new set of transformations. As this was an initial 
investigation, hardware resources were limited and so 
investigation into the effects these transformations have on larger 

models with more layers and feature neurons should be 
performed. 
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