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ABSTRACT 

The act of crop surveying is a long and arduous process crucial to 

the continued lifespan of a farm. The automation of this task has 

been achieved with the use of tree-crop aerial imagery, in 

conjunction with Convolutional Neural Networks (CNNs) which 

are used as a segmentation and classification system for those 

images. This work investigates how traditional feature extractors, 

as inputs for a CNN named Deeplab, can improve both the 

learning rate and mean IoU segmentation accuracy of the Deeplab 

framework. To perform this investigation, a feature extraction 

framework is first built. This framework uses traditional machine 

vision approaches to highlight certain features in an image. 

Secondly, Deeplab is modified to work as an efficient testbed for 

those image features. Thereafter two batches of experiments are 

run to address this investigation. In these experiments CNNs train 

on images modified by certain feature extractors and then 

compared to one CNN that trains on plain RGB images.                                                                 

In the first batch of experiments a heterogenous dataset of tree-

crop images is used. Here the evaluation images are widely 

different to their training counterparts and the CNN is trained on 

many tree crop variants. The goal is to determine whether feature 

extractors, as inputs to a CNN, can generalize tree features better 

than an RGB baseline. In the second batch of experiments a 

largely homogenous dataset is used. In this dataset, there is a 

higher degree of substantiation to the image variants (within the 

training set) and its evaluation images are closely related to the 

CNN’s training images. The goal is to determine whether feature 

extractors can capture finer-grain details better than their RGB 

variants. Results show that select feature extractors achieve 2% 

better mean IoU over RGB for a non-homogenous dataset. 

However, for datasets with a high degree of homogeneity, using 

raw RGB input produced 2% more accurate mean IoU than the 

closest performing feature extractor. This implies that RGB 

performs better in homogenous datasets given its ability to capture 

fine-grained details and texture; whereas select feature extractors 

perform better in non-homogenous datasets given their ability to 

generalize. Loss functions did not differ significantly over all 

experiments, which is an indication that feature extractors did not 

affect the CNN’s ability to learn.  
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1 INTRODUCTION 

Famers all around the world, face the unique challenge of trying 

to feed growing populations in the context of a world that is 

battling climate change. Oleg et al. [23] estimated that the 

population could range anywhere from 8.5 billion to 10 billion in 

2050. Zhao et al. [24] also predicted significant decreases in crop 

yield following rising temperatures as a result of climate change. 

Thus farmers, now more than ever, need methods of automating 

manually intensive tasks in order to scale their production in a 

challenging environment.                                                    

An important part of optimizing crop yields is field surveying. 

This is where farmers assess their crop conditions in order to 

determine potential yields and the health of their farm. This 

procedure requires many hours of manual labour and often times 

domain-specific knowledge. Without this survey information, 

farmers cannot prevent crops from dying, give business partners 

accurate estimates of their yield, or change farming strategies 

when presented with a pattern of behaviour. Given its integral 

function in running the farm and labour-intensive nature, this 

function of field surveying is an excellent candidate for 

automation. Currently, there are a number of services that exist in 

order to perform this specific function. Most of these (semi-

automated) systems use aerial images in order to perform the 

initial survey. This is done by photographing crop fields from 

above and extracting information related to the crop state from 

those images. The full automation of this approach has been 

achieved by a company based in South Africa, named Aerobotics. 

They capture image information using drone technology, in a 

variety of image bands. These images are then processed by 

neural networks in order to identify tree crops. They then analyse 

the characteristics of those photographed trees to give farmers a 

broad base of information to make informed decisions. 

This approach is not without shortcomings. For example, neural 

networks often struggle when segmenting class borders (in this 

case, borders between crops) accurately. Nonetheless, neural 

networks are widely considered the best choice of machine 

learning approaches given the data variety and subtle differences 

in characteristics they can display. This begs the question, are 

there techniques one could use in order to make the borders 

between classes more accurate?                                                  

Traditionally, feature extraction - which is the approach of 
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algorithmically transforming image content in order to emphasize 

image features such as edges – is used to process images so that 

less complex image analysis systems can segment regions of 

interest based on those features. It is hypothesized that using 

feature extraction on input images could allow neural networks to 

more readily pick up on important features, allowing them to 

segment pictures more accurately.  

The principal aim of this work is to examine the accuracy 

implications of using feature extractors, as inputs into a neural 

network, rather than directly using image band data. To facilitate 

this, the secondary aim of this work is to develop a feature 

extraction framework that supports the exploration of image 

feature classes. This framework should automate the procedure of 

extracting features from crop photo sources.  

The following research questions have been formulated in order to 

address the principal research aim:  

1. Do traditional hand-engineered features in tree crop 

segmentation, as inputs to select neural networks, 

improve accuracy over their base (raw image band) 

neural network implementations?      

2. How does the use of different features affect the loss 

function of the neural network?                                            

This is important given that loss functions that converge 

to 0 more quickly, need fewer epochs in order to train.               

The next section introduces literature around images, neural 

networks and feature extraction which is integral to the 

understanding of this paper. Section 3 outlines the architecture 

used for the neural network, the system overview of the feature 

extractor framework and the implementation details for the feature 

extractors. Thereafter, section 4 describes the experimental 

conditions and system information under which experiments are 

performed. Section 5 highlights the results of those experiments 

and briefly analyses them. Section 6 concludes this paper with 

findings and suggests future work in this domain.  

2 BACKGROUND AND RELATED WORK 

Since the advent of digital images, researches have investigated 

the effect of manipulating image data for a variety of uses.  

One such use, known as image segmentation, refers to the 

decomposition of an image (or a group of image bands) into sets 

of logically related pixels, called ‘segments’.  Object 

identification and classification necessarily require a segmentation 

phase; once segments have been determined a classifier can assign 

a class label to them. The groundwork in the area of segmentation 

was first laid in the 1960s by Lawrence Roberts who developed an 

algorithm to partition digital images based on their edges. This 

would inspire many machine vision techniques used today; as 

segmentation strategies often rely on segmenting one or more 

pixels [1]. 

However, due to advances in processing power and breakthroughs 

made in other domains, increasingly complex architectures are 

automating the process of image segmentation and subsequent 

classification. One such architecture class, known as 

Convolutional Neural Networks (CNNs), has seen wide success in 

image processing tasks [3]. 

This section gives background on some of the machine vision 

techniques and architectures discussed in this paper. Thereafter, it 

touches on some of the related work being done in the field. 

2.1 Image Bands  

Images are made up of small encoded picture elements called 

pixels. These pixels, arranged in a regular 2D grid or matrix, form 

a single image band. An image band, also known as a channel, 

represents an aspect of a scene being imaged [27]. Corresponding 

pixels across image bands have the same (x, y) coordinates but 

can be used to store completely different data types and aspects of 

measurement (such as light and reflection). In the context of this 

work, the following multi-band information, will be examined.  

2.1.1  Greyscale:  This is a single band image that stores pixel 

values in a range of grey intensities from lightest to darkest or 255 

to 0 (see left of Figure 1). 

2.1.2  RGB (Red Green Blue):  This is a digital colour 

representation of a real-world scene. This is achieved by using 

three ‘channels’ of primary colours - namely red, green and blue – 

to represent any composite colour [15]. This is stored as a three-

tuple integer, each integer measuring the intensity of a particular 

colour (red, green or blue) in a range from 0 to 255. This image 

format allows the storage of rich texture information, crucial for 

many feature extraction techniques. 

2.1.3  DEM (Digital Elevation Map):  This is an image 

representation of a heightmap. Usually, Digital Elevation Maps 

are quantified using two-dimensional locational data. These 

dimensions specify a particular point of reference for image 

height [16]. This height is represented by a scalar value. Digital 

Elevation Maps are often useful when other features, such as 

colour, are not a reliable discriminator between different image 

classes. 

2.1.4  NIR (Near Infrared):  This is the measurement of light 

absorption in the electromagnetic spectrum between 800 nm and 

2500 nm. This can emphasize features of images due to the 

differences in how matter absorbs light [17]. It is particularly 

useful, as objects in images which are close in RGB colour space 

may have completely different spectrums of values in the NIR 

image band. 

2.1.5  NDVI (Normalized Difference Vegetation Index):  This is an 

image index commonly used to represent vegetation in spectral 

form. It is based on the difference between red and near-infrared 

light absorption of crops [18]. The use case for NDVI is much the 

same as NIR, covered in section 2.1.3. 

2.2 Single Pixel Feature Extraction 

This feature extraction methodology is characterised by hand-

crafted transforms applied pixel by pixel to certain image bands. 

This emphasizes certain attributes/structures in the image which 

may improve the segmentation ability of subsequent 

computational systems.  

2.2.1  LAB Colour-Space Transform:  This transforms RGB 

channels into a colour space which allows for easier feature 

identification, particularly with reference to plant matter [8, 9]. In 

the lab colour space ‘L’ represents the brightness of the image, 

‘A’ represents the green or blue intensity and ‘B’ represents the 
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blue or yellow intensity [8]. This colour space can be converted 

from RGB by converting to CIEXYZ and performing some 

mathematical manipulations to arrive at the LAB colour space [9]. 

2.2.2  HSL Colour-Space Transform:  Similar to LAB, HSL 

converts the RGB colour channel into a colour space that allows 

for plant matter feature differentiation [8, 10]. In this colour 

space, ‘H’ represents the hue of the pixel, ‘S’ represents the 

saturation and ‘L’ represents the intensity of the pixel [8]. The 

HSL colour space can also be derived from RGB in a similar 

fashion to LAB [10]. 

2.2.3  ICA (Independent Component Analysis):  This is a 

statistical technique that allows separation of mixed signals into 

their ‘independent components’. ICA is based on the assumption 

of statistical independence of those signals without assuming 

anything about those signals’ underlying distributions [11]. This 

can be applied to image data in order to extract the statistically 

significant aspects of a given image, as seen in Figure 1 [12]. ICA 

can be used to emphasize certain aspects of a coloured image. 

 

Figure 1: Example of ICA feature extraction 

2.3 Local Pixel Feature Extraction 

This feature extraction methodology is characterised by 

transforms that modify a source pixel based on a small 

neighbourhood of pixels around each source pixel. Again, the goal 

is to emphasize features in images to improve computational 

ability to segment images. 

2.3.1  Mean Shift:  This technique computes the average value of 

data in a given neighbourhood of data items. This can be used to 

get rid of image noise and segment areas of interest [13]. This is 

useful when there are certain textures in the image that need to be 

exaggerated so that algorithms can differentiate between object 

classes. 

2.3.2  Morphological Closing:  Morphological closing is a 

technique which is used to minimise image noise (scattering of 

pixels) in a particular image object. This is done with minimal 

changes to the object shape. It is useful when these objects have a 

high degree of pixel irregularities which would hinder a 

classification system [19]. This has the effect of making the object 

smoother and more ‘complete’. 

2.4 Global Pixel Feature Extraction 

This feature extraction methodology is characterised by 

transforms that modify a source pixel based on all pixels 

contained in the image. As discussed in 2.2 and 2.3 this is used to 

extract features in images to improve segmentation ability. 

2.4.1  Greyscale Histogram Equalisation:  This is a greyscale 

transform that seeks to emphasize certain image features by 

increasing the contrast between grey pixels. This is achieved by 

modifying the probability density function (PDF) of grayscale 

values. The result is a much more uniform PDF that better 

occupies the range of intensities [14]. As seen in Figure 2, this 

increases the contrast between grey pixels, bringing certain image 

characteristics to the foreground. 

 

Figure 2: Histogram Equalization on Image 

2.4.2  Thresholding:  Thresholding is a technique where a pixel is 

assigned a new value depending on what value range it falls into. 

The most common thresholding scheme is called binary 

thresholding where the output pixel is either black or white (0 or 

255) depending on which class the pixel is in [21].  

2.5 Automated Feature Extraction - CNNs  

Convolutional Neural Networks have ushered in a new era where 

machine learning is being used to automate image segmentation 

and classification. A CNN is a subset of an artificial neural 

network (ANN), which makes use of special hidden layers called 

convolutions. 

Generally, ANNs have the following layers (see Figure 3 for 

illustration): 

1. Input layer: layers used to feed information into the 

network [4]. In CNNs these are neurons used to store 

images of a fixed height (H), width (W) and number of 

image channels (C) [3]. 

2. Hidden layers: layers used to perform operations and 

transforms on the input data [4]. In CNNs these are a 

combination of convolutional and other traditional ANN 

hidden layers which automatically extract features 

(called feature maps) [3]. Convolutional layers are 

essentially the dot product computation of an image 

matrix (of dimensions H, W and C) and a filter of image 

weights. These weights are progressively tweaked by 

the network [3]. 

3. Output layer: layers used to make decisions based on 

an ‘ever evolving ruleset’ due to weights that the 

network learns [4]. For the purposes of this body of 

work, fully connected layers in CNNs perform semantic 

segmentation [3]. 
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Figure 3: Convolutional Neural Network 

2.6 Deeplab Elements 

Deeplab is a more modern implementation of a CNN architecture 

that has tweaked vital components of the basic CNN described 

above, in order to obtain better results. Important modifications 

include the following. 

2.6.1  Atrous Convolutions:  Simply, atrous convolutional filters 

appear as a ‘kernel with holes’ (see Figure 4) [2]. 

 

Figure 4: Atrous Filter 

This is an upsampling operation which restores feature map 

information that is lost as a result of pooling (downsampling)  

operations [6]. 

2.6.2  Atrous Spatial Pyramid Pooling (ASPP):  this uses 

simultaneous atrous convolutions at different rates on one feature 

map. The goal is to capture features at multiple scales. The use of 

ASPP leads to a more accurate segmentation [2, 5]. An example 

of which is seen in Figure 5. 

 

Figure 5: Atrous Pyramid Pooling 

2.6.3  Fully Connected Conditional Random Fields (CRFs):  This 

is a post-processing step to ‘smooth’ feature maps for a more 

accurate segmentation [5]. 

 

Figure 6: Output of Fully Connected CRF smoothing 

2.7 MobileNetV2 Elements 

MobileNetV2 is another modern variant of a CNN which has 

tweaked vital components in order to obtain better results. 

Important modifications include the following. 

2.7.1  Depthwise Separable Convolutions:  This is a factorized 

version of a standard convolution. The use of depthwise separable 

convolutions is claimed to reduce computational cost “by a factor 

of k2” with very small accuracy reductions [7].  

2.7.2  Linear Bottlenecks:  These are bottlenecks inserted into 

convolutions which represent multiple channels of pixel image in 

one dimension. This again trades off spatial accuracy with 

computational cost [6]. 

2.7.3  Inverted Residuals:  This is an upsampling operation which 

allows the network to preserve feature information before 

expansion and convolutional operations. Expansion layers are 

mainly used to allow non-linear transforms on data, such as 

activation functions. This information, when combined with 

previous operations, helps the network to make better predictions 

[6]. 

 

Figure 7: Shortcut Inverted Residual Operations 

2.8 Related Work 

Many architectures have used feature extractors in order to 

segment images, particularly in farming. However, there is very 

little literature on feature extraction use in Neural Networks. The 

following architectures are the most commonly encountered in 

this context. 

2.8.1  Support Vector Machines (SVM):  These are used in order 

to classify points separated by a hyper-plane, by determining the 

best equation of said hyper-plane. This is decided by maximizing 

the separation accuracy between known data points, belonging to 

two separate classes. Thus, SVMs are used as a discriminator to 

perform the final segmentation rule [21].                                        

Ganzola et al. [22] used a combination of masking and Hough 

transforms in order to differentiate crops and weeds. This yielded 

two different type of pixels, assumed to be either crop or weed. 

The two classes were processed by the SVM after the image had 

undergone these transforms, thereafter a discrimination value was 

decided by the separation of these classes. 
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2.8.2  Decision Trees (DT):  These are typically used in 

classification tasks. The goal of a decision tree is to identify a 

system of hierarchical refinement rules and their ordering, using 

various operations such as pruning and splitting, in order to 

produce a DT with the lowest cross-validated error.      

Yang et al. [20] used DTs to model the differences between crop 

types. This was done by measuring the different HSV components 

(namely hue, saturation and intensity) in photos of different crop 

types, then generalizing those values in order to classify those 

crops. 

3 ARCHITECTURE AND SETUP 

This section outlines the systems developed to support the 

experiments required for this work. Thereafter, it discusses many 

of the feature extraction techniques implemented. 

3.1 Neural Network Framework 

This paper uses a combination of architectural elements in order 

to segment images. The first is the Atrous Neural Network known 

as Deeplab, which has been praised in the field for its accuracy. 

Deeplab has also made a variety of backbones available to make 

training easier. The backbone of focus is entitled MobileNetV2, 

which promotes fast inference and training at the cost of accuracy. 

The details and limitations of these frameworks will be outlined 

below. 

3.1.1 Underlying Architecture Limitations:  Deeplab has achieved 

extremely good results on wide and varied datasets (at the time of 

writing). It uses many modern architecture elements that improve 

its ability to segment images. However, as noted by the authors of 

the framework, the architecture requires a large training batch and 

multiple GPUs in order to realize the full potential of reported 

results. This presents a problem due to resource limitations of the 

hardware framework which ran this architecture, as well as the 

time limitations of this paper [5]. Fortunately, the Deeplab 

framework has access to the MobileNetV2 network backbone, as 

well as pre-trained network checkpoints that mitigate this issue. 

3.1.2 Inference Training:  The first optimization technique used is 

inference training. This is a technique that sets hyper-parameters 

based on a fully trained network rather than training from scratch. 

In theory, this allows the network to learn much more quickly and 

converge to good results in less time, which is important given 

hardware resources and time are pertinent issues. Given the 

above, a decision was made to use pre-configured network hyper-

parameters based on a network trained on the general ImageNet 

dataset. 

3.1.3 Network Backbone:  The second optimization technique is 

performed due to poor results obtained on deeper network 

backbone variants, as a result of constrained training batch size. 

This is due to some of the underlying architectural limitations 

outlined in section 3.1.1. With this in mind, the network backbone 

for the initial experiments is MobileNetV2, which employs 

depthwise separable convolutions, linear bottlenecks and inverted 

residuals in order to speedup computation. This has the effect of 

fewer hyper-parameters which helps the model train faster [6, 7].                                                     

3.1.4 Training Parameters: Given the above considerations, the 

setup for initial training is given below. Any parameters left off 

this table were set to the training default: 

Parameters MobileNetV2 

Train batch 4 

Epochs 30 000 

Atrous rates [6, 12, 18, 16] 

Table 1: Architecture Training Parameters 

Preliminary experimentation showed that the number of epochs 

required for this work is significantly higher than those tested in 

the initial Deeplab paper. This is a consequence of setting the train 

batch size to the low value of 4 due to limited graphical memory 

on the testing system. Thus, more epochs needed to be added in 

order to achieve better results, given memory limitations.  

3.2 Feature Extraction Framework 

The feature extraction framework is a command line tool built in 

python. Python was chosen since it possesses mature image 

processing libraries and supports open source practices. Extensive 

documentation was generated to ensure readability of this 

framework’s code given python’s dynamic run-time nature 

(variable types are assigned on run-time).                                                                                                

Users can run this framework by either executing the ImgDriver 

python file and submitting arguments as prompted or 

using/modifying the supplied script files to automate the 

execution of the program.  

Figure 8: UML Diagram 

3.2.1 ImgDriver Functionality:  The primary functionality of this 

class is to carry out read operations on HDF5 files (these are a 

container used to store image path to the tree files). Thereafter it 

calls the appropriate classes to perform operations specified in the 

imgDriver’s arguments i.e. small-scale transforms are delegated to 

the small-scale feature extractor.                                                             

Finally, Operational results – from those image classes - are then 

stored in a list which contains all relevant image transforms over 

all h5 images supplied. This list is then converted into a ndstack 

which is an n-dimensional numpy array that contains all image 

transform channels. These image transform channels would then 
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be written to either a png, numpy array or gif (also specified with 

arguments) using the class writer. The last operation is to generate 

a text file specifying which images will be used for training and 

evaluation; these files are also written using writer. The neural 

network will then use this to read in these images for training.                    

3.2.2 Writer Functionality:  This class is used to write images to a 

specified path, as well as keep track of files that are used as 

training and validation. It achieves this by taking a numpy ndstack 

and outputting all the bands within the stack to a png, gif or 

numpy file. File writing is performed using the Pillow, numpy or 

ImageIO Python frameworks [30, 31, 33].                    

3.2.3 NormLayers Functionality:  This class is used to extract 

layer information from the HDF5 file supplied by imgDriver. 

Namely NIR, NDVI, RGB, DEM and tree masks. It then uses 

arguments supplied by imgDriver in order to fetch the given 

layers from h5 files. An array of images containing the needed 

transformations are returned to imgDriver. 

3.2.4 SmallScale Functionality:  This class is used to do small 

scale feature transforms on images. These are namely LAB and 

HSL (colour space transforms), as well as ICA. An array of the 

given transformations are then returned to imgDriver. 

3.2.5 MedScale Functionality:  The final class is used to do local 

and global transforms on images. These are namely mean shift, 

histogram equalizations and a combination of thresholding and 

morphological closing. The mean shift implementation was done 

using an external class named pymeanshift [30]. 

More in-depth documentation can be found in the online 

repository [29]. 

3.3 Feature Extraction Implementation 

The implementations mentioned below are largely evaluated using 

visual inspection. This means that they were not rigorously tested, 

but rather evaluated on the ease of visual identification of ‘tree’ or 

‘not tree’ given the transformation. This is because most of the 

feature extraction methodologies used in this body of work have 

already been extensively researched and tested. All feature 

extractors discussed, can be viewed in Figure 9. 

3.3.1 Colour Space Transform Details:  The colour transforms, 

performed in this class, are done by converting RGB into either 

HSL or LAB colour spaces using python built-in library functions 

[25]. These are chosen due to their success in extracting features 

from vegetation [8, 9, 10]. 

3.3.2 ICA details:  ICA was initially performed by converting the 

RGB colour space into grayscale and then doing a fastICA 

transformation on the greyscale image using the sklearn 

framework [26]. However, after carefully examining the outputs 

there was no significant difference between channels. Thus a 4th 

channel, namely height, is included. This produces a greyscale 

image with better feature emphasis between ‘tree’ and ‘not tree’ 

due to trees being more elevated. 

3.3.3 Histogram equalization details:  Histogram equalization is 

performed using OpenCV histogram equalisation in conjunction 

with the NDVI image channel [25]. The NDVI channel is used 

because it best captured the difference between tree and ground, 

when they were the same shades of green. Differences in the 

NDVI channel is very faint to the naked eye, thus histogram 

equalisation brightens these contrasts which in turn emphasize the 

position of trees. 

3.3.4 Thresholding and Morphological Closing:  This is 

performed using OpenCV implementations of thresholding and 

binary closing [25]. Thresholding is performed on the NDVI 

channel in order to segment tree and non-tree, due to the 

observation note in Section 3.3.3. This produces images that are 

very close to the masks of those trees, albeit with some locational 

inaccuracies due to tree shadows. Binary closing is then used to 

reduce pixel noise, this allows the creation of more uniform tree 

segments. 

 

Figure 9: Image Transforms 

3.4 Pipelined Testbed 

 

Figure 10: Testbed Framework 

This system is used to perform experimentation which is 

discussed later in the paper. It is comprised of the feature 

extraction and DeeplabV3 Neural Network components. The 

testbed uses the feature extraction component to generate images 

and their masks. This feature extraction component can also be 

used to track which images are used for training and which are 

used for validation. It then uses the DeeplabV3 framework to 

subsequently train, evaluate and segment those images. 
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Outputting training and evaluation statistics, as well as 

visualizations [28]. This process is performed using a single script 

file to automate the process (Figure 10). 

Further documentation can be found on the online repository [32]. 

3.5 System Setup 

The configuration for the system that ran the neural network and 

feature extraction framework is as follows. 

 

GPU GTX 1060 Max-Q 6GB 

GDDR5 

RAM 16GB DDR4 RAM 

CPU Intel Core i7 4.1 GHz CPU 

Hard Drive 1TB Hard Drive 

OS Ubuntu 18.04 

Python version 2.7 for CNN 

3.6 for Feature Extraction 

Tensorflow-GPU version 14.04 

Table 2: System Configuration 

4 EXPERIMENT DESIGN 

This section outlines the limitations of the framework used in 

experimentation. It then discusses experimentation details and 

how experiments will be evaluated. 

4.1 Limitations 

4.1.1 Framework Limitations:  Due to the limitations of the 

Deeplab framework only three channels of information can be 

processed by the neural network. This limits input data to 3 

channels of values per pixel, thus multi-band images with 4 or 

more channels cannot be effectively tested.  

4.1.2 System Limitations:  The hardware used to run the neural 

networks has GPU memory limitations. Thus, the CNN needs to 

be set to a low training batch for the DeeplabV3 network 

backbones. This causes backbones that occupy more memory, 

such as Xception41, to achieve very poor segmentation results 

(even when using pre-trained checkpoints).  

4.2 Training Data and Split 

4.2.1 Training Data:  The first training set size is 1692 images, all 

supplied by Aerobotics. These images were picked due to their 

varying light conditions, varying distances of capture and 

variation in green (foliage/grass).                                                                           

The second image set contains 2991 images. This image set had 

the same degree of image variety but possessed more image 

examples (as compared to the first images set).                                                                                           

The underlying training and evaluation images are kept consistent 

across experiments (i.e. consistent training and evaluation over all 

sets of experiments in experiment 1). 

 4.2.2 Train/Evaluation Split:  This paper settles on a 70/30 split 

on training to evaluation data i.e. 70% of images are used to train 

the neural network and 30% of the image set are used to evaluate 

the network.  

4.3 Experiments 

Given the framework limitations above, these are the experiments 

tested on the Deeplab framework using the parameters listed for 

MobileNetV2 in Section 3.2.4. A baseline of plain RGB values is 

used as a measure of comparison to the performance of image 

transforms. This is chosen because RGB is the primary input for 

many CNNs.  

4.3.1 First Experiments:  This experiment uses the first hand-

picked image set of 1885 images for training and 508 images for 

validation. The evaluation images are image variants that the 

neural network is never trained on i.e. images where trees were 

slightly different shades of green or arranged in different patterns. 

The purpose of this test is to evaluate how well the transforms in 

table 3 captured general image features, as opposed to learning 

more fine-grained details. The expectation is that feature 

extractors will perform better in this experiment due to the non-

homogenous nature of the training data vs. the evaluation data. 

 

Baseline RGB 

Experiment 1 LAB 

Experiment 2 HSI 

Experiment 3 ICA 

Experiment 4 Histogram Equalization 

Experiment 5 Morphological Closing and 

Thresholding 

Experiment 6 Mean Shift 

Experiment 7 Histogram Equalization, 

Morphological Closing and 

Thresholding, and ICA 

Table 3: First Batch of Experiments on MobileNetV2 

4.3.2 Second Experiments:  The second set of experiments are 

performed using the same parameters and a similar method of 

comparison. This time the image set is larger: 2991 images (with 

2093 images used to train and 898 used for validation). However, 

the training and validation images are randomly assigned and then 

briefly assessed to ensure that the data was not skewed. The 

purpose of this test is to evaluate how well transforms captured 

feature information for similar classes of images, which the neural 

network is trained on i.e. has the neural network learned more 

fine-grained features effectively. Only the top two image 

transforms from Section 4.3.1, along with RGB, are considered. 

The expectation is that feature extractors will perform as well or 
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worse than the RGB cohorts as the training and evaluation data is 

particularly homogenous. 

 

Baseline RGB 

Experiment 1 Best Performing 

Experiment 2 Second Best Performing 

Table 4: Second Batch of Experiments on MobileNetV2 

4.4 Evaluation Metrics 

4.4.1 Mean IOU:  To maintain consistency with the Deeplab and 

MobileNetV2 frameworks, the evaluation metric of mean IoU is 

selected (Equation 1).  This measure is an unbiased estimate of 

model accuracy [5-7] since it accounts for the distribution of 

object classes in the calculations. In the equation, TP denotes true 

positives, FP denotes false positives, and FN denotes false 

negatives.  

 
 

Equation 1: Calculation of IoU 

This calculates IoU for every class. Mean IoU is then obtained by 

averaging all IoU’s captured. This metric informs the answer to 

the first research question: does feature extraction improve image 

accuracy. 

4.4.2 Loss Function:  The loss function of the neural network is 

also examined in order to compare training vs. classification 

accuracy. A loss function is a common measure of how well a 

model trains over time, where loss is some functional difference 

between what the network predicted and the ground truth. This 

metric informs the answer of the second research question i.e. 

how feature extraction affects the loss function.                                                    

5    RESULTS AND ANALYSIS 

This section outlines and discusses the results of the paper’s 

experimentation.  

5.1 First Experiments 

5.1.1 Results:  As previously outlined the first batch of 

experiments is performed with the MobileNetV2 backbone and 

1692 images, with a training split of 70/30. The Mean IoU 

performance can be found in Table 5, the loss functions of top-

performing transforms can be found in Figure 11, and Figure 12 

depicts a comparison between top-performing transforms. 

 

 

 

 

 

Experiments Layers Layers Mean IOU 

Histogram 

Equalization, 

Morphological Closing 

and Thresholding, ICA 

3 73.21% 

LAB 3 71.36% 

RGB 3 71.24% 

Morphological Closing 

and Thresholding 

1 69.24% 

Histogram Equalization 1 69.23% 

HSI 3 66.39% 

ICA 1 60.39% 

Mean Shift 3 60.39% 

 Table 5: Experimental 1 Results 

Surprisingly the top five results are within 2-5 percentile points of 

each other, with a combination of ICA, morphological closing 

with thresholding and histogram equalization being one of the 

highest performing transforms with a mean IOU of 73.21%. 

Indicating top performing transforms performed quite similarly. 

Another interesting finding is that the loss functions all tended to 

stay within the range of 1.5 to 0.5, whilst training. Most ending at 

around 0.5 loss (depicted in Figure 11). This is interesting 

because the training error in a neural network should tend towards 

0 as training proceeds. This is symptomatic of under-fitting and 

suggests a problem with the training set data size or the training 

batch size. 

 

Figure 11: Experiment 1 Loss Functions 

Visual analysis of segmentation performance of top-scoring image 

transforms (seen in Figure 12), indicates that these image 

transforms are achieving serviceable results (i.e. results that are 
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strongly correlated to their image masks) when segmenting 

unseen images. 

         

Actual Image    Ground Truth             Hist, Morph, ICA 

         

                  RGB                               LAB                          

  Figure 12: Segmentation Comparison.  

 

5.1.2 Discussion:  The combination of histogram equalization, 

morphological closing and ICA achieves the best results. This is 

likely due to the manner in which these transforms emphasize the 

difference between ‘tree’ and ‘non-tree’ regions i.e. the colour and 

texture of ‘not-tree’ classes vary greatly as compared to their 

‘tree’ counterparts. The trade-off is often a loss of some textural 

and locational accuracy in favour of feature emphasis (see Figure 

12 smooth feature maps). However, the same cannot be said for 

LAB, as colour and texture variation was not as stark between 

‘tree’ and ‘not-tree’. This indicates the ability of neural networks 

to further emphasize features, not apparent to the naked eye.                                                                                       

Most of the single-layer transforms perform measurably worse 

than RGB. The apparent reason is that these transforms over-

generalized ‘tree’ and ‘not-tree’ regions, causing the resultant 

segmentation to misclassify class boundaries.   

Underperforming three-channel image transforms face similar 

issues. Mean shift under-performance is due to the issue of 

segmentation generality (already discussed above), whereas HSI 

seems to possess little to no differentiation between classes. This 

set of results show that transforms do make a certain amount of 

difference in segmentation accuracy. The results of the first 

experiment partially answer the first research question (repeated 

below) in the case where there is a variation between training and 

evaluation data.  

•  “Do traditional hand-engineered features in tree crop 

segmentation, as inputs to select neural networks, 

improve accuracy over their base neural network 

implementations”    

 

In general, the top-performing Mean IoU results are very similar. 

One possible explanation is that CNNs have an upper threshold of 

performance given three channels of information, a small training 

set of images and a limited batch size. This means that there could 

be more of a difference between results obtained given more 

resources.  

 

Although segmentation accuracy differs, the same cannot be said 

for loss functions. All loss functions of top-performing transforms 

seem to follow the same trends and patterns, indicating that 

feature extraction had no significant impact on how a neural 

network trains. Given the learning rate is tied to a specific 

algorithm that adjusts weights according to the number of 

mistakes, there doesn’t seem to be a significant information 

difference between the image transforms tested, causing loss 

functions to differ. This answers the second research question 

(repeated below). 

• “How does the use of different features affect the loss 

function of the neural network?”                                  

 

As noted in the experiments - the loss functions did not tend to 0, 

rather tending to 0.5 - which means that there might be too much 

data variety in the dataset used and not enough training examples. 

Data variety, in this case, would mean that there is a large amount 

of variation in the dataset (i.e. different light conditions, tree sizes 

and colours) without the substantiation for the network to learn 

properly. Another possible explanation is that the ground truth 

data (Figure 12) is segmented inaccurately. The last explanation 

could be that the small training batch size causes the network to 

converge to a local minimum, rather than a global minimum. It is 

likely that all three of these problems are contributing to the loss 

function stagnation.                                                                                    

5.2 Second Experiments 

5.2.1 Results:  The second batch of experiments are performed 

with the same parameters as the first. However, now 2991 images 

are used for training and testing. The training split still remains at 

70/30 whilst image variants are randomly assigned in that training 

split (as explained in Section 4.2.2). The Mean IoU performance 

can be found in Table 6. Thereafter, the loss functions of the 

various transforms tested can be found in Figure 13. 

 

Experiments Layers Layers Mean IOU 

RGB 3 73.18% 

Histogram 

Equalization, 

Morphological Closing 

and Thresholding, ICA 

3 71.69% 

LAB 3 70.46% 

Table 6: Experimental 2 Results 

 

Transformations once again only differ slightly. However, it is 

now RGB - which is the top performing transform – that 

increasing its Mean IoU obtained in experiment 1 by 2%. The 

other transforms retain their performance ordering, but 

performance decreased by approximately 2% across those 

transforms. 
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Figure 13: Experiment 2 Loss Functions 

 

The loss function also follows a similar trend to experiment 1, 

with RGB again achieving the lowest loss values post training. 

 

5.2.2 Discussion:  The implications of RGB’s surge in 

performance are as follows; the RGB channel retains more 

accurate texture and boundary information when the variation 

between training and evaluation data is minimal. The other 

transforms perform 2% worse as they generalize a lot of these 

details. This means that when training data has less variation, 

CNNs which operate on image transforms alone will not be able 

to capture accurate boundary information. This answers our 

second research question (which is repeated below) in the context 

of a fairly homogenous dataset. 

• “Do traditional hand-engineered features in tree crop 

segmentation, as inputs to select neural networks, 

improve accuracy over their base neural network 

implementations?”      

 

Loss functions also perform similarly, which indicates that data 

variety is not the source of the problem. Thus, the two remaining 

sources are either ground truth inaccuracy or a batch size issue. 

Using visual inspection of some of the results, the most likely 

outcome is that loss function is the source of the problem. The fact 

of the matter is that:  

1. Ground truth data is accurate enough that masks roughly 

correlate to tree locations and boundaries  

2. The loss value barely changes even when a significant 

number of images were added 

 

Thus, the problem of the loss function not converging to 0 is 

systemic of training batch size as a result of limited graphic 

memory space.  

6    CONCLUSIONS 

In summary, the proposed feature extraction and Deeplab 

components automate the process of field surveying and attempt 

to solve some of the accuracy shortcomings of traditional neural 

networks, using feature extraction. The feature extraction 

techniques of LAB and a combination of histogram equalization, 

thresholding and ICA as inputs for Deeplab have shown to 

produce more accurate segmentation results, over RGB baselines, 

given a heterogeneous small dataset. However, for relatively 

homogenous datasets, RGB was found to be more accurate. This 

was found by analysing mean IoU scores for neural networks 

trained using those aforementioned inputs. The learning rate of the 

neural network was also found to be unaffected by any input, 

which shows that feature extractor information did not 

significantly improve the network’s loss functions.                                                                                      

The implications are that feature extractors could be used in 

conjunction with RGB to obtain even better segmentation 

accuracy, as evidenced by the accuracy increase obtained by 

combining feature extractors together. 

6.1 Future Work 

As mentioned in the limitations section, future work would 

include modifying the DeeplabV3 framework to accept variable 

multi-channel input sizes, as well as testing on a more powerful 

system so that deeper model backbones could be used. More 

complex feature extraction could also be used to test the 

hypothesis more broadly. Finally, a combination of RGB and 

other transforms could be tested against the baseline data (NIR, 

NDVI, DEM, etc.) collected by Aerobotics in order to perform a 

deeper investigation of the accuracy differences between baseline 

data and the derived image transforms. 
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