

Using Traditional Feature Extraction to Improve MobileNetV2 Tree Segmentation Accuracy

Michael Scott

TREESEG

Patrick Marais & Deshen Moodley

August 2019, Cape Town, Western Cape, South Africa M. Scott

Using Traditional Feature Extraction to Improve Deeplab’s Tree

Segmentation Accuracy

Michael Scott
 Department of Computer Science

 University of Cape Town

 Western Cape South Africa
 michael.ross.scott@gmail.com

ABSTRACT

The act of crop surveying is a long and arduous process crucial to

the continued lifespan of a farm. The automation of this task has

been achieved with the use of tree-crop aerial imagery, in

conjunction with Convolutional Neural Networks (CNNs) which

are used as a segmentation and classification system for those

images. This work investigates how traditional feature extractors,

as inputs for a CNN named Deeplab, can improve both the

learning rate and mean IoU segmentation accuracy of the Deeplab

framework. To perform this investigation, a feature extraction

framework is first built. This framework uses traditional machine

vision approaches to highlight certain features in an image.

Secondly, Deeplab is modified to work as an efficient testbed for

those image features. Thereafter two batches of experiments are

run to address this investigation. In these experiments CNNs train

on images modified by certain feature extractors and then

compared to one CNN that trains on plain RGB images.

In the first batch of experiments a heterogenous dataset of tree-

crop images is used. Here the evaluation images are widely

different to their training counterparts and the CNN is trained on

many tree crop variants. The goal is to determine whether feature

extractors, as inputs to a CNN, can generalize tree features better

than an RGB baseline. In the second batch of experiments a

largely homogenous dataset is used. In this dataset, there is a

higher degree of substantiation to the image variants (within the

training set) and its evaluation images are closely related to the

CNN’s training images. The goal is to determine whether feature

extractors can capture finer-grain details better than their RGB

variants. Results show that select feature extractors achieve 2%

better mean IoU over RGB for a non-homogenous dataset.

However, for datasets with a high degree of homogeneity, using

raw RGB input produced 2% more accurate mean IoU than the

closest performing feature extractor. This implies that RGB

performs better in homogenous datasets given its ability to capture

fine-grained details and texture; whereas select feature extractors

perform better in non-homogenous datasets given their ability to

generalize. Loss functions did not differ significantly over all

experiments, which is an indication that feature extractors did not

affect the CNN’s ability to learn.

CCS CONCEPTS

• Machine Learning

• Image Processing

• Computer Vision

KEYWORDS

MobileNetV2, Deeplab, Hand-crafted Features, Tree Segmentation

1 INTRODUCTION

Famers all around the world, face the unique challenge of trying

to feed growing populations in the context of a world that is

battling climate change. Oleg et al. [23] estimated that the

population could range anywhere from 8.5 billion to 10 billion in

2050. Zhao et al. [24] also predicted significant decreases in crop

yield following rising temperatures as a result of climate change.

Thus farmers, now more than ever, need methods of automating

manually intensive tasks in order to scale their production in a

challenging environment.

An important part of optimizing crop yields is field surveying.

This is where farmers assess their crop conditions in order to

determine potential yields and the health of their farm. This

procedure requires many hours of manual labour and often times

domain-specific knowledge. Without this survey information,

farmers cannot prevent crops from dying, give business partners

accurate estimates of their yield, or change farming strategies

when presented with a pattern of behaviour. Given its integral

function in running the farm and labour-intensive nature, this

function of field surveying is an excellent candidate for

automation. Currently, there are a number of services that exist in

order to perform this specific function. Most of these (semi-

automated) systems use aerial images in order to perform the

initial survey. This is done by photographing crop fields from

above and extracting information related to the crop state from

those images. The full automation of this approach has been

achieved by a company based in South Africa, named Aerobotics.

They capture image information using drone technology, in a

variety of image bands. These images are then processed by

neural networks in order to identify tree crops. They then analyse

the characteristics of those photographed trees to give farmers a

broad base of information to make informed decisions.

This approach is not without shortcomings. For example, neural

networks often struggle when segmenting class borders (in this

case, borders between crops) accurately. Nonetheless, neural

networks are widely considered the best choice of machine

learning approaches given the data variety and subtle differences

in characteristics they can display. This begs the question, are

there techniques one could use in order to make the borders

between classes more accurate?

Traditionally, feature extraction - which is the approach of

August 2019, Cape Town, Western Cape, South Africa M. Scott

algorithmically transforming image content in order to emphasize

image features such as edges – is used to process images so that

less complex image analysis systems can segment regions of

interest based on those features. It is hypothesized that using

feature extraction on input images could allow neural networks to

more readily pick up on important features, allowing them to

segment pictures more accurately.

The principal aim of this work is to examine the accuracy

implications of using feature extractors, as inputs into a neural

network, rather than directly using image band data. To facilitate

this, the secondary aim of this work is to develop a feature

extraction framework that supports the exploration of image

feature classes. This framework should automate the procedure of

extracting features from crop photo sources.

The following research questions have been formulated in order to

address the principal research aim:

1. Do traditional hand-engineered features in tree crop

segmentation, as inputs to select neural networks,

improve accuracy over their base (raw image band)

neural network implementations?

2. How does the use of different features affect the loss

function of the neural network?

This is important given that loss functions that converge

to 0 more quickly, need fewer epochs in order to train.

The next section introduces literature around images, neural

networks and feature extraction which is integral to the

understanding of this paper. Section 3 outlines the architecture

used for the neural network, the system overview of the feature

extractor framework and the implementation details for the feature

extractors. Thereafter, section 4 describes the experimental

conditions and system information under which experiments are

performed. Section 5 highlights the results of those experiments

and briefly analyses them. Section 6 concludes this paper with

findings and suggests future work in this domain.

2 BACKGROUND AND RELATED WORK

Since the advent of digital images, researches have investigated

the effect of manipulating image data for a variety of uses.

One such use, known as image segmentation, refers to the

decomposition of an image (or a group of image bands) into sets

of logically related pixels, called ‘segments’. Object

identification and classification necessarily require a segmentation

phase; once segments have been determined a classifier can assign

a class label to them. The groundwork in the area of segmentation

was first laid in the 1960s by Lawrence Roberts who developed an

algorithm to partition digital images based on their edges. This

would inspire many machine vision techniques used today; as

segmentation strategies often rely on segmenting one or more

pixels [1].

However, due to advances in processing power and breakthroughs

made in other domains, increasingly complex architectures are

automating the process of image segmentation and subsequent

classification. One such architecture class, known as

Convolutional Neural Networks (CNNs), has seen wide success in

image processing tasks [3].

This section gives background on some of the machine vision

techniques and architectures discussed in this paper. Thereafter, it

touches on some of the related work being done in the field.

2.1 Image Bands

Images are made up of small encoded picture elements called

pixels. These pixels, arranged in a regular 2D grid or matrix, form

a single image band. An image band, also known as a channel,

represents an aspect of a scene being imaged [27]. Corresponding

pixels across image bands have the same (x, y) coordinates but

can be used to store completely different data types and aspects of

measurement (such as light and reflection). In the context of this

work, the following multi-band information, will be examined.

2.1.1 Greyscale: This is a single band image that stores pixel

values in a range of grey intensities from lightest to darkest or 255

to 0 (see left of Figure 1).

2.1.2 RGB (Red Green Blue): This is a digital colour

representation of a real-world scene. This is achieved by using

three ‘channels’ of primary colours - namely red, green and blue –

to represent any composite colour [15]. This is stored as a three-

tuple integer, each integer measuring the intensity of a particular

colour (red, green or blue) in a range from 0 to 255. This image

format allows the storage of rich texture information, crucial for

many feature extraction techniques.

2.1.3 DEM (Digital Elevation Map): This is an image

representation of a heightmap. Usually, Digital Elevation Maps

are quantified using two-dimensional locational data. These

dimensions specify a particular point of reference for image

height [16]. This height is represented by a scalar value. Digital

Elevation Maps are often useful when other features, such as

colour, are not a reliable discriminator between different image

classes.

2.1.4 NIR (Near Infrared): This is the measurement of light

absorption in the electromagnetic spectrum between 800 nm and

2500 nm. This can emphasize features of images due to the

differences in how matter absorbs light [17]. It is particularly

useful, as objects in images which are close in RGB colour space

may have completely different spectrums of values in the NIR

image band.

2.1.5 NDVI (Normalized Difference Vegetation Index): This is an

image index commonly used to represent vegetation in spectral

form. It is based on the difference between red and near-infrared

light absorption of crops [18]. The use case for NDVI is much the

same as NIR, covered in section 2.1.3.

2.2 Single Pixel Feature Extraction

This feature extraction methodology is characterised by hand-

crafted transforms applied pixel by pixel to certain image bands.

This emphasizes certain attributes/structures in the image which

may improve the segmentation ability of subsequent

computational systems.

2.2.1 LAB Colour-Space Transform: This transforms RGB

channels into a colour space which allows for easier feature

identification, particularly with reference to plant matter [8, 9]. In

the lab colour space ‘L’ represents the brightness of the image,

‘A’ represents the green or blue intensity and ‘B’ represents the

August 2019, Cape Town, Western Cape, South Africa M. Scott

blue or yellow intensity [8]. This colour space can be converted

from RGB by converting to CIEXYZ and performing some

mathematical manipulations to arrive at the LAB colour space [9].

2.2.2 HSL Colour-Space Transform: Similar to LAB, HSL

converts the RGB colour channel into a colour space that allows

for plant matter feature differentiation [8, 10]. In this colour

space, ‘H’ represents the hue of the pixel, ‘S’ represents the

saturation and ‘L’ represents the intensity of the pixel [8]. The

HSL colour space can also be derived from RGB in a similar

fashion to LAB [10].

2.2.3 ICA (Independent Component Analysis): This is a

statistical technique that allows separation of mixed signals into

their ‘independent components’. ICA is based on the assumption

of statistical independence of those signals without assuming

anything about those signals’ underlying distributions [11]. This

can be applied to image data in order to extract the statistically

significant aspects of a given image, as seen in Figure 1 [12]. ICA

can be used to emphasize certain aspects of a coloured image.

Figure 1: Example of ICA feature extraction

2.3 Local Pixel Feature Extraction

This feature extraction methodology is characterised by

transforms that modify a source pixel based on a small

neighbourhood of pixels around each source pixel. Again, the goal

is to emphasize features in images to improve computational

ability to segment images.

2.3.1 Mean Shift: This technique computes the average value of

data in a given neighbourhood of data items. This can be used to

get rid of image noise and segment areas of interest [13]. This is

useful when there are certain textures in the image that need to be

exaggerated so that algorithms can differentiate between object

classes.

2.3.2 Morphological Closing: Morphological closing is a

technique which is used to minimise image noise (scattering of

pixels) in a particular image object. This is done with minimal

changes to the object shape. It is useful when these objects have a

high degree of pixel irregularities which would hinder a

classification system [19]. This has the effect of making the object

smoother and more ‘complete’.

2.4 Global Pixel Feature Extraction

This feature extraction methodology is characterised by

transforms that modify a source pixel based on all pixels

contained in the image. As discussed in 2.2 and 2.3 this is used to

extract features in images to improve segmentation ability.

2.4.1 Greyscale Histogram Equalisation: This is a greyscale

transform that seeks to emphasize certain image features by

increasing the contrast between grey pixels. This is achieved by

modifying the probability density function (PDF) of grayscale

values. The result is a much more uniform PDF that better

occupies the range of intensities [14]. As seen in Figure 2, this

increases the contrast between grey pixels, bringing certain image

characteristics to the foreground.

Figure 2: Histogram Equalization on Image

2.4.2 Thresholding: Thresholding is a technique where a pixel is

assigned a new value depending on what value range it falls into.

The most common thresholding scheme is called binary

thresholding where the output pixel is either black or white (0 or

255) depending on which class the pixel is in [21].

2.5 Automated Feature Extraction - CNNs

Convolutional Neural Networks have ushered in a new era where

machine learning is being used to automate image segmentation

and classification. A CNN is a subset of an artificial neural

network (ANN), which makes use of special hidden layers called

convolutions.

Generally, ANNs have the following layers (see Figure 3 for

illustration):

1. Input layer: layers used to feed information into the

network [4]. In CNNs these are neurons used to store

images of a fixed height (H), width (W) and number of

image channels (C) [3].

2. Hidden layers: layers used to perform operations and

transforms on the input data [4]. In CNNs these are a

combination of convolutional and other traditional ANN

hidden layers which automatically extract features

(called feature maps) [3]. Convolutional layers are

essentially the dot product computation of an image

matrix (of dimensions H, W and C) and a filter of image

weights. These weights are progressively tweaked by

the network [3].

3. Output layer: layers used to make decisions based on

an ‘ever evolving ruleset’ due to weights that the

network learns [4]. For the purposes of this body of

work, fully connected layers in CNNs perform semantic

segmentation [3].

August 2019, Cape Town, Western Cape, South Africa M. Scott

Figure 3: Convolutional Neural Network

2.6 Deeplab Elements

Deeplab is a more modern implementation of a CNN architecture

that has tweaked vital components of the basic CNN described

above, in order to obtain better results. Important modifications

include the following.

2.6.1 Atrous Convolutions: Simply, atrous convolutional filters

appear as a ‘kernel with holes’ (see Figure 4) [2].

Figure 4: Atrous Filter

This is an upsampling operation which restores feature map

information that is lost as a result of pooling (downsampling)

operations [6].

2.6.2 Atrous Spatial Pyramid Pooling (ASPP): this uses

simultaneous atrous convolutions at different rates on one feature

map. The goal is to capture features at multiple scales. The use of

ASPP leads to a more accurate segmentation [2, 5]. An example

of which is seen in Figure 5.

Figure 5: Atrous Pyramid Pooling

2.6.3 Fully Connected Conditional Random Fields (CRFs): This

is a post-processing step to ‘smooth’ feature maps for a more

accurate segmentation [5].

Figure 6: Output of Fully Connected CRF smoothing

2.7 MobileNetV2 Elements

MobileNetV2 is another modern variant of a CNN which has

tweaked vital components in order to obtain better results.

Important modifications include the following.

2.7.1 Depthwise Separable Convolutions: This is a factorized

version of a standard convolution. The use of depthwise separable

convolutions is claimed to reduce computational cost “by a factor

of k2” with very small accuracy reductions [7].

2.7.2 Linear Bottlenecks: These are bottlenecks inserted into

convolutions which represent multiple channels of pixel image in

one dimension. This again trades off spatial accuracy with

computational cost [6].

2.7.3 Inverted Residuals: This is an upsampling operation which

allows the network to preserve feature information before

expansion and convolutional operations. Expansion layers are

mainly used to allow non-linear transforms on data, such as

activation functions. This information, when combined with

previous operations, helps the network to make better predictions

[6].

Figure 7: Shortcut Inverted Residual Operations

2.8 Related Work

Many architectures have used feature extractors in order to

segment images, particularly in farming. However, there is very

little literature on feature extraction use in Neural Networks. The

following architectures are the most commonly encountered in

this context.

2.8.1 Support Vector Machines (SVM): These are used in order

to classify points separated by a hyper-plane, by determining the

best equation of said hyper-plane. This is decided by maximizing

the separation accuracy between known data points, belonging to

two separate classes. Thus, SVMs are used as a discriminator to

perform the final segmentation rule [21].

Ganzola et al. [22] used a combination of masking and Hough

transforms in order to differentiate crops and weeds. This yielded

two different type of pixels, assumed to be either crop or weed.

The two classes were processed by the SVM after the image had

undergone these transforms, thereafter a discrimination value was

decided by the separation of these classes.

August 2019, Cape Town, Western Cape, South Africa M. Scott

2.8.2 Decision Trees (DT): These are typically used in

classification tasks. The goal of a decision tree is to identify a

system of hierarchical refinement rules and their ordering, using

various operations such as pruning and splitting, in order to

produce a DT with the lowest cross-validated error.

Yang et al. [20] used DTs to model the differences between crop

types. This was done by measuring the different HSV components

(namely hue, saturation and intensity) in photos of different crop

types, then generalizing those values in order to classify those

crops.

3 ARCHITECTURE AND SETUP

This section outlines the systems developed to support the

experiments required for this work. Thereafter, it discusses many

of the feature extraction techniques implemented.

3.1 Neural Network Framework

This paper uses a combination of architectural elements in order

to segment images. The first is the Atrous Neural Network known

as Deeplab, which has been praised in the field for its accuracy.

Deeplab has also made a variety of backbones available to make

training easier. The backbone of focus is entitled MobileNetV2,

which promotes fast inference and training at the cost of accuracy.

The details and limitations of these frameworks will be outlined

below.

3.1.1 Underlying Architecture Limitations: Deeplab has achieved

extremely good results on wide and varied datasets (at the time of

writing). It uses many modern architecture elements that improve

its ability to segment images. However, as noted by the authors of

the framework, the architecture requires a large training batch and

multiple GPUs in order to realize the full potential of reported

results. This presents a problem due to resource limitations of the

hardware framework which ran this architecture, as well as the

time limitations of this paper [5]. Fortunately, the Deeplab

framework has access to the MobileNetV2 network backbone, as

well as pre-trained network checkpoints that mitigate this issue.

3.1.2 Inference Training: The first optimization technique used is

inference training. This is a technique that sets hyper-parameters

based on a fully trained network rather than training from scratch.

In theory, this allows the network to learn much more quickly and

converge to good results in less time, which is important given

hardware resources and time are pertinent issues. Given the

above, a decision was made to use pre-configured network hyper-

parameters based on a network trained on the general ImageNet

dataset.

3.1.3 Network Backbone: The second optimization technique is

performed due to poor results obtained on deeper network

backbone variants, as a result of constrained training batch size.

This is due to some of the underlying architectural limitations

outlined in section 3.1.1. With this in mind, the network backbone

for the initial experiments is MobileNetV2, which employs

depthwise separable convolutions, linear bottlenecks and inverted

residuals in order to speedup computation. This has the effect of

fewer hyper-parameters which helps the model train faster [6, 7].

3.1.4 Training Parameters: Given the above considerations, the

setup for initial training is given below. Any parameters left off

this table were set to the training default:

Parameters MobileNetV2

Train batch 4

Epochs 30 000

Atrous rates [6, 12, 18, 16]

Table 1: Architecture Training Parameters

Preliminary experimentation showed that the number of epochs

required for this work is significantly higher than those tested in

the initial Deeplab paper. This is a consequence of setting the train

batch size to the low value of 4 due to limited graphical memory

on the testing system. Thus, more epochs needed to be added in

order to achieve better results, given memory limitations.

3.2 Feature Extraction Framework

The feature extraction framework is a command line tool built in

python. Python was chosen since it possesses mature image

processing libraries and supports open source practices. Extensive

documentation was generated to ensure readability of this

framework’s code given python’s dynamic run-time nature

(variable types are assigned on run-time).

Users can run this framework by either executing the ImgDriver

python file and submitting arguments as prompted or

using/modifying the supplied script files to automate the

execution of the program.

Figure 8: UML Diagram

3.2.1 ImgDriver Functionality: The primary functionality of this

class is to carry out read operations on HDF5 files (these are a

container used to store image path to the tree files). Thereafter it

calls the appropriate classes to perform operations specified in the

imgDriver’s arguments i.e. small-scale transforms are delegated to

the small-scale feature extractor.

Finally, Operational results – from those image classes - are then

stored in a list which contains all relevant image transforms over

all h5 images supplied. This list is then converted into a ndstack

which is an n-dimensional numpy array that contains all image

transform channels. These image transform channels would then

August 2019, Cape Town, Western Cape, South Africa M. Scott

be written to either a png, numpy array or gif (also specified with

arguments) using the class writer. The last operation is to generate

a text file specifying which images will be used for training and

evaluation; these files are also written using writer. The neural

network will then use this to read in these images for training.

3.2.2 Writer Functionality: This class is used to write images to a

specified path, as well as keep track of files that are used as

training and validation. It achieves this by taking a numpy ndstack

and outputting all the bands within the stack to a png, gif or

numpy file. File writing is performed using the Pillow, numpy or

ImageIO Python frameworks [30, 31, 33].

3.2.3 NormLayers Functionality: This class is used to extract

layer information from the HDF5 file supplied by imgDriver.

Namely NIR, NDVI, RGB, DEM and tree masks. It then uses

arguments supplied by imgDriver in order to fetch the given

layers from h5 files. An array of images containing the needed

transformations are returned to imgDriver.

3.2.4 SmallScale Functionality: This class is used to do small

scale feature transforms on images. These are namely LAB and

HSL (colour space transforms), as well as ICA. An array of the

given transformations are then returned to imgDriver.

3.2.5 MedScale Functionality: The final class is used to do local

and global transforms on images. These are namely mean shift,

histogram equalizations and a combination of thresholding and

morphological closing. The mean shift implementation was done

using an external class named pymeanshift [30].

More in-depth documentation can be found in the online

repository [29].

3.3 Feature Extraction Implementation

The implementations mentioned below are largely evaluated using

visual inspection. This means that they were not rigorously tested,

but rather evaluated on the ease of visual identification of ‘tree’ or

‘not tree’ given the transformation. This is because most of the

feature extraction methodologies used in this body of work have

already been extensively researched and tested. All feature

extractors discussed, can be viewed in Figure 9.

3.3.1 Colour Space Transform Details: The colour transforms,

performed in this class, are done by converting RGB into either

HSL or LAB colour spaces using python built-in library functions

[25]. These are chosen due to their success in extracting features

from vegetation [8, 9, 10].

3.3.2 ICA details: ICA was initially performed by converting the

RGB colour space into grayscale and then doing a fastICA

transformation on the greyscale image using the sklearn

framework [26]. However, after carefully examining the outputs

there was no significant difference between channels. Thus a 4th

channel, namely height, is included. This produces a greyscale

image with better feature emphasis between ‘tree’ and ‘not tree’

due to trees being more elevated.

3.3.3 Histogram equalization details: Histogram equalization is

performed using OpenCV histogram equalisation in conjunction

with the NDVI image channel [25]. The NDVI channel is used

because it best captured the difference between tree and ground,

when they were the same shades of green. Differences in the

NDVI channel is very faint to the naked eye, thus histogram

equalisation brightens these contrasts which in turn emphasize the

position of trees.

3.3.4 Thresholding and Morphological Closing: This is

performed using OpenCV implementations of thresholding and

binary closing [25]. Thresholding is performed on the NDVI

channel in order to segment tree and non-tree, due to the

observation note in Section 3.3.3. This produces images that are

very close to the masks of those trees, albeit with some locational

inaccuracies due to tree shadows. Binary closing is then used to

reduce pixel noise, this allows the creation of more uniform tree

segments.

Figure 9: Image Transforms

3.4 Pipelined Testbed

Figure 10: Testbed Framework

This system is used to perform experimentation which is

discussed later in the paper. It is comprised of the feature

extraction and DeeplabV3 Neural Network components. The

testbed uses the feature extraction component to generate images

and their masks. This feature extraction component can also be

used to track which images are used for training and which are

used for validation. It then uses the DeeplabV3 framework to

subsequently train, evaluate and segment those images.

August 2019, Cape Town, Western Cape, South Africa M. Scott

Outputting training and evaluation statistics, as well as

visualizations [28]. This process is performed using a single script

file to automate the process (Figure 10).

Further documentation can be found on the online repository [32].

3.5 System Setup

The configuration for the system that ran the neural network and

feature extraction framework is as follows.

GPU GTX 1060 Max-Q 6GB

GDDR5

RAM 16GB DDR4 RAM

CPU Intel Core i7 4.1 GHz CPU

Hard Drive 1TB Hard Drive

OS Ubuntu 18.04

Python version 2.7 for CNN

3.6 for Feature Extraction

Tensorflow-GPU version 14.04

Table 2: System Configuration

4 EXPERIMENT DESIGN

This section outlines the limitations of the framework used in

experimentation. It then discusses experimentation details and

how experiments will be evaluated.

4.1 Limitations

4.1.1 Framework Limitations: Due to the limitations of the

Deeplab framework only three channels of information can be

processed by the neural network. This limits input data to 3

channels of values per pixel, thus multi-band images with 4 or

more channels cannot be effectively tested.

4.1.2 System Limitations: The hardware used to run the neural

networks has GPU memory limitations. Thus, the CNN needs to

be set to a low training batch for the DeeplabV3 network

backbones. This causes backbones that occupy more memory,

such as Xception41, to achieve very poor segmentation results

(even when using pre-trained checkpoints).

4.2 Training Data and Split

4.2.1 Training Data: The first training set size is 1692 images, all

supplied by Aerobotics. These images were picked due to their

varying light conditions, varying distances of capture and

variation in green (foliage/grass).

The second image set contains 2991 images. This image set had

the same degree of image variety but possessed more image

examples (as compared to the first images set).

The underlying training and evaluation images are kept consistent

across experiments (i.e. consistent training and evaluation over all

sets of experiments in experiment 1).

 4.2.2 Train/Evaluation Split: This paper settles on a 70/30 split

on training to evaluation data i.e. 70% of images are used to train

the neural network and 30% of the image set are used to evaluate

the network.

4.3 Experiments

Given the framework limitations above, these are the experiments

tested on the Deeplab framework using the parameters listed for

MobileNetV2 in Section 3.2.4. A baseline of plain RGB values is

used as a measure of comparison to the performance of image

transforms. This is chosen because RGB is the primary input for

many CNNs.

4.3.1 First Experiments: This experiment uses the first hand-

picked image set of 1885 images for training and 508 images for

validation. The evaluation images are image variants that the

neural network is never trained on i.e. images where trees were

slightly different shades of green or arranged in different patterns.

The purpose of this test is to evaluate how well the transforms in

table 3 captured general image features, as opposed to learning

more fine-grained details. The expectation is that feature

extractors will perform better in this experiment due to the non-

homogenous nature of the training data vs. the evaluation data.

Baseline RGB

Experiment 1 LAB

Experiment 2 HSI

Experiment 3 ICA

Experiment 4 Histogram Equalization

Experiment 5 Morphological Closing and

Thresholding

Experiment 6 Mean Shift

Experiment 7 Histogram Equalization,

Morphological Closing and

Thresholding, and ICA

Table 3: First Batch of Experiments on MobileNetV2

4.3.2 Second Experiments: The second set of experiments are

performed using the same parameters and a similar method of

comparison. This time the image set is larger: 2991 images (with

2093 images used to train and 898 used for validation). However,

the training and validation images are randomly assigned and then

briefly assessed to ensure that the data was not skewed. The

purpose of this test is to evaluate how well transforms captured

feature information for similar classes of images, which the neural

network is trained on i.e. has the neural network learned more

fine-grained features effectively. Only the top two image

transforms from Section 4.3.1, along with RGB, are considered.

The expectation is that feature extractors will perform as well or

August 2019, Cape Town, Western Cape, South Africa M. Scott

worse than the RGB cohorts as the training and evaluation data is

particularly homogenous.

Baseline RGB

Experiment 1 Best Performing

Experiment 2 Second Best Performing

Table 4: Second Batch of Experiments on MobileNetV2

4.4 Evaluation Metrics

4.4.1 Mean IOU: To maintain consistency with the Deeplab and

MobileNetV2 frameworks, the evaluation metric of mean IoU is

selected (Equation 1). This measure is an unbiased estimate of

model accuracy [5-7] since it accounts for the distribution of

object classes in the calculations. In the equation, TP denotes true

positives, FP denotes false positives, and FN denotes false

negatives.

Equation 1: Calculation of IoU

This calculates IoU for every class. Mean IoU is then obtained by

averaging all IoU’s captured. This metric informs the answer to

the first research question: does feature extraction improve image

accuracy.

4.4.2 Loss Function: The loss function of the neural network is

also examined in order to compare training vs. classification

accuracy. A loss function is a common measure of how well a

model trains over time, where loss is some functional difference

between what the network predicted and the ground truth. This

metric informs the answer of the second research question i.e.

how feature extraction affects the loss function.

5 RESULTS AND ANALYSIS

This section outlines and discusses the results of the paper’s

experimentation.

5.1 First Experiments

5.1.1 Results: As previously outlined the first batch of

experiments is performed with the MobileNetV2 backbone and

1692 images, with a training split of 70/30. The Mean IoU

performance can be found in Table 5, the loss functions of top-

performing transforms can be found in Figure 11, and Figure 12

depicts a comparison between top-performing transforms.

Experiments Layers Layers Mean IOU

Histogram

Equalization,

Morphological Closing

and Thresholding, ICA

3 73.21%

LAB 3 71.36%

RGB 3 71.24%

Morphological Closing

and Thresholding

1 69.24%

Histogram Equalization 1 69.23%

HSI 3 66.39%

ICA 1 60.39%

Mean Shift 3 60.39%

 Table 5: Experimental 1 Results

Surprisingly the top five results are within 2-5 percentile points of

each other, with a combination of ICA, morphological closing

with thresholding and histogram equalization being one of the

highest performing transforms with a mean IOU of 73.21%.

Indicating top performing transforms performed quite similarly.

Another interesting finding is that the loss functions all tended to

stay within the range of 1.5 to 0.5, whilst training. Most ending at

around 0.5 loss (depicted in Figure 11). This is interesting

because the training error in a neural network should tend towards

0 as training proceeds. This is symptomatic of under-fitting and

suggests a problem with the training set data size or the training

batch size.

Figure 11: Experiment 1 Loss Functions

Visual analysis of segmentation performance of top-scoring image

transforms (seen in Figure 12), indicates that these image

transforms are achieving serviceable results (i.e. results that are

0

0,5

1

1,5

2

0 5000 10000 15000 20000 25000 30000

LO
SS

EPOCHS

Loss Funct ion s of Se lected Transforms

RGB
Histogram Equal
Morphological Closing with Thresholding, Histogram Equalisation and ICA

August 2019, Cape Town, Western Cape, South Africa M. Scott

strongly correlated to their image masks) when segmenting

unseen images.

Actual Image Ground Truth Hist, Morph, ICA

 RGB LAB

 Figure 12: Segmentation Comparison.

5.1.2 Discussion: The combination of histogram equalization,

morphological closing and ICA achieves the best results. This is

likely due to the manner in which these transforms emphasize the

difference between ‘tree’ and ‘non-tree’ regions i.e. the colour and

texture of ‘not-tree’ classes vary greatly as compared to their

‘tree’ counterparts. The trade-off is often a loss of some textural

and locational accuracy in favour of feature emphasis (see Figure

12 smooth feature maps). However, the same cannot be said for

LAB, as colour and texture variation was not as stark between

‘tree’ and ‘not-tree’. This indicates the ability of neural networks

to further emphasize features, not apparent to the naked eye.

Most of the single-layer transforms perform measurably worse

than RGB. The apparent reason is that these transforms over-

generalized ‘tree’ and ‘not-tree’ regions, causing the resultant

segmentation to misclassify class boundaries.

Underperforming three-channel image transforms face similar

issues. Mean shift under-performance is due to the issue of

segmentation generality (already discussed above), whereas HSI

seems to possess little to no differentiation between classes. This

set of results show that transforms do make a certain amount of

difference in segmentation accuracy. The results of the first

experiment partially answer the first research question (repeated

below) in the case where there is a variation between training and

evaluation data.

• “Do traditional hand-engineered features in tree crop

segmentation, as inputs to select neural networks,

improve accuracy over their base neural network

implementations”

In general, the top-performing Mean IoU results are very similar.

One possible explanation is that CNNs have an upper threshold of

performance given three channels of information, a small training

set of images and a limited batch size. This means that there could

be more of a difference between results obtained given more

resources.

Although segmentation accuracy differs, the same cannot be said

for loss functions. All loss functions of top-performing transforms

seem to follow the same trends and patterns, indicating that

feature extraction had no significant impact on how a neural

network trains. Given the learning rate is tied to a specific

algorithm that adjusts weights according to the number of

mistakes, there doesn’t seem to be a significant information

difference between the image transforms tested, causing loss

functions to differ. This answers the second research question

(repeated below).

• “How does the use of different features affect the loss

function of the neural network?”

As noted in the experiments - the loss functions did not tend to 0,

rather tending to 0.5 - which means that there might be too much

data variety in the dataset used and not enough training examples.

Data variety, in this case, would mean that there is a large amount

of variation in the dataset (i.e. different light conditions, tree sizes

and colours) without the substantiation for the network to learn

properly. Another possible explanation is that the ground truth

data (Figure 12) is segmented inaccurately. The last explanation

could be that the small training batch size causes the network to

converge to a local minimum, rather than a global minimum. It is

likely that all three of these problems are contributing to the loss

function stagnation.

5.2 Second Experiments

5.2.1 Results: The second batch of experiments are performed

with the same parameters as the first. However, now 2991 images

are used for training and testing. The training split still remains at

70/30 whilst image variants are randomly assigned in that training

split (as explained in Section 4.2.2). The Mean IoU performance

can be found in Table 6. Thereafter, the loss functions of the

various transforms tested can be found in Figure 13.

Experiments Layers Layers Mean IOU

RGB 3 73.18%

Histogram

Equalization,

Morphological Closing

and Thresholding, ICA

3 71.69%

LAB 3 70.46%

Table 6: Experimental 2 Results

Transformations once again only differ slightly. However, it is

now RGB - which is the top performing transform – that

increasing its Mean IoU obtained in experiment 1 by 2%. The

other transforms retain their performance ordering, but

performance decreased by approximately 2% across those

transforms.

August 2019, Cape Town, Western Cape, South Africa M. Scott

Figure 13: Experiment 2 Loss Functions

The loss function also follows a similar trend to experiment 1,

with RGB again achieving the lowest loss values post training.

5.2.2 Discussion: The implications of RGB’s surge in

performance are as follows; the RGB channel retains more

accurate texture and boundary information when the variation

between training and evaluation data is minimal. The other

transforms perform 2% worse as they generalize a lot of these

details. This means that when training data has less variation,

CNNs which operate on image transforms alone will not be able

to capture accurate boundary information. This answers our

second research question (which is repeated below) in the context

of a fairly homogenous dataset.

• “Do traditional hand-engineered features in tree crop

segmentation, as inputs to select neural networks,

improve accuracy over their base neural network

implementations?”

Loss functions also perform similarly, which indicates that data

variety is not the source of the problem. Thus, the two remaining

sources are either ground truth inaccuracy or a batch size issue.

Using visual inspection of some of the results, the most likely

outcome is that loss function is the source of the problem. The fact

of the matter is that:

1. Ground truth data is accurate enough that masks roughly

correlate to tree locations and boundaries

2. The loss value barely changes even when a significant

number of images were added

Thus, the problem of the loss function not converging to 0 is

systemic of training batch size as a result of limited graphic

memory space.

6 CONCLUSIONS

In summary, the proposed feature extraction and Deeplab

components automate the process of field surveying and attempt

to solve some of the accuracy shortcomings of traditional neural

networks, using feature extraction. The feature extraction

techniques of LAB and a combination of histogram equalization,

thresholding and ICA as inputs for Deeplab have shown to

produce more accurate segmentation results, over RGB baselines,

given a heterogeneous small dataset. However, for relatively

homogenous datasets, RGB was found to be more accurate. This

was found by analysing mean IoU scores for neural networks

trained using those aforementioned inputs. The learning rate of the

neural network was also found to be unaffected by any input,

which shows that feature extractor information did not

significantly improve the network’s loss functions.

The implications are that feature extractors could be used in

conjunction with RGB to obtain even better segmentation

accuracy, as evidenced by the accuracy increase obtained by

combining feature extractors together.

6.1 Future Work

As mentioned in the limitations section, future work would

include modifying the DeeplabV3 framework to accept variable

multi-channel input sizes, as well as testing on a more powerful

system so that deeper model backbones could be used. More

complex feature extraction could also be used to test the

hypothesis more broadly. Finally, a combination of RGB and

other transforms could be tested against the baseline data (NIR,

NDVI, DEM, etc.) collected by Aerobotics in order to perform a

deeper investigation of the accuracy differences between baseline

data and the derived image transforms.

7 ACKNOWLEDGEMENTS

Training and evaluation data was provided to Aerobotics. A

special thanks to Patrick Marais who provided constant guidance,

reassurance and support over this project’s duration.

0

0,5

1

1,5

2

0 5000 10000 15000 20000 25000 30000

LO
SS

EPOCHS

Loss Funct ion s of Se lected Transforms

LAB RGB Histogram Equalization, Morphological Closing and ICA

August 2019, Cape Town, Western Cape, South Africa M. Scott

8 REFERENCES

[1] Yu-Jin Zhang. 2006. An Overview of Image and Video Segmentation in

the Last 40 Years. Advances in Image and Video Segmentation (2006),

1–16. DOI: http://dx.doi.org/10.4018/978-1-59140-753-9.ch001

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff and Hartwig

Adam. 2017. Rethinking atrous convolution for semantic image

segmentation. arXiv: 1706.05587. Retrieved from

https://arxiv.org/abs/1706.05587

[3] Vivienne Sze, Yu-Hsin Chen, Joel Emer, and Tien-Ju Yang . 2017.

Efficient Processing of Deep Neural Networks: A Tutorial and survey.

arXiv: 1703.09039. Retrieved from:

https://arxiv.org/pdf/1703.09039.pdf

[4] Anon. 2018. Convolutional Neural Network (CNN). (October 2018).

Retrieved August 15, 2019 from

https://developer.nvidia.com/discover/convolutional-neural-

networkDeepLab:

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin

Murphy, and Alan L. Yuille. 2018. DeepLab: Semantic Image

Segmentation with Deep Convolutional Nets, Atrous Convolution, and

Fully Connected CRFs. IEEE Transactions on Pattern Analysis and

Machine Intelligence 40, 4 (2018), 834–848.

DOI:http://dx.doi.org/10.1109/tpami.2017.2699184

[6] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,

and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and

Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (2018).

DOI:http://dx.doi.org/10.1109/cvpr.2018.00474

[7] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreeto, Hartwig Adam. 2017.

MobileNets : Efficient Convolutional Neural Networks for Mobile

Vision Applications. arXiv: 1704.04861. Retrieved from:

https://arxiv.org/pdf/1704.04861.pdf

[8] Isabelle Philipp and Thomas Rath. 2002. Improving plant discrimination

in image processing by use of different colour space transformations.

Computers and Electronics in Agriculture 35, 1 (2002), 1–15.

DOI:http://dx.doi.org/10.1016/s0168-1699(02)00050-9

[9] Xiao-Song Wang, Xin-Yuan Huang, and Hui Fu. 2009. The Study of

Colour Tree Image Segmentation. 2009 Second International Workshop

on Computer Science and Engineering (2009), 303–307.

DOI:http://dx.doi.org/10.1109/wcse.2009.818

[10] Dianyuan Han and Xinyuan Huang. 2010. A Tree Image Segmentation

Method Based on 2-D OTSU in HSI Color Space. 2010 International

Conference on Computational Intelligence and Software Engineering

(2010). DOI:http://dx.doi.org/10.1109/wicom.2010.5600669

[11] Aapo Hyvärinen and Erkki Oja. Independent Component Analysis:

Algorithms and Applications. Neural Networks 5, 13, 411–430. DOI:

https://doi.org/10.1016/s0893-6080(00)00026-5

[12] Patrik Hoyer and Aapo Hyvärinen. 2000. Independent component

analysis applied to feature extraction from colour and stereo images.

Network: Computation in Neural Systems 11, 3 (2000), 191–210.

DOI:http://dx.doi.org/10.1088/0954-898x/11/3/302

[13] Liying Zheng, Jingtao Zhang, and Qianyu Wang. 2009. Mean-shift-

based color segmentation of images containing green vegetation.

Computers and Electronics in Agriculture 65, 1 (2009), 93–98.

DOI:http://dx.doi.org/10.1016/j.compag.2008.08.002

[14] M. Abdullah-Al-Wadud, Md. Hasanul Kabir, Md. Hasanul Kabir, and

Oksam Chae. 2007. A Dynamic Histogram Equalization for Image

Contrast Enhancement. 2007 Digest of Technical Papers International

Conference on Consumer Electronics (2007).

DOI:http://dx.doi.org/10.1109/icce.2007.341567

[15] George H. Joblove and Donald Greenberg. 1978. Color spaces for

computer graphics. Proceedings of the 5th annual conference on

Computer graphics and interactive techniques - SIGGRAPH 78 (1978).

DOI:http://dx.doi.org/10.1145/800248.807362

[16] James R. Carter. 1988. Digital Representations of topographical

surfaces. Photogramm. Eng. Remote Sens 54, 11 (1988), 1577–1580.

[17] Hiren J. Patel. 2017. Near Infrared Spectroscopy: Basic principles and

use in tablet evaluation. International Journal of Chemical and Life

Sciences 6, 2 (2017), 2006.

DOI:http://dx.doi.org/10.21746/ijcls.2017.2.1

[18] G.Meera Gandhi, S. Parthiban, Nagaraj Thummalu, and A. Christy.

2015. Ndvi: Vegetation Change Detection Using Remote Sensing and

Gis – A Case Study of Vellore District. Procedia Computer Science 57

(2015), 1199–1210. DOI:http://dx.doi.org/10.1016/j.procs.2015.07.415

[19] Luc Vincent. 1994. Morphological Area Openings and Closings for

Grey-scale Images. Shape in Picture (1994), 197–208.

DOI:http://dx.doi.org/10.1007/978-3-662-03039-4_13

[20] Wenzhu Yang, Sile Wang, Xiaolan Zhao, Jingsi Zhang, and Jiaqi Feng.

2015. Greenness identification based on HSV decision tree. Information

Processing in Agriculture 2, 3-4 (2015), 149–160.

DOI:http://dx.doi.org/10.1016/j.inpa.2015.07.003

[21] J.m. Guerrero, G. Pajares, M. Montalvo, J. Romeo, and M. Guijarro.

2012. Support Vector Machines for crop/weeds identification in maize

fields. Expert Systems with Applications 39, 12 (2012), 11149–11155.

DOI:http://dx.doi.org/10.1016/j.eswa.2012.03.040

[22] Alberto Tellaeche, Gonzalo Pajares, Xavier P. Burgos-Artizzu, and

Angela Ribeiro. 2011. A computer vision approach for weeds

identification through Support Vector Machines. Applied Soft

Computing 11, 1 (2011), 908–915.

DOI:http://dx.doi.org/10.1016/j.asoc.2010.01.011

[23] Samir Kc and Wolfgang Lutz. 2017. The human core of the shared

socioeconomic pathways: Population scenarios by age, sex and level of

education for all countries to 2100. Global Environmental Change 42

(2017), 181–192.

DOI:http://dx.doi.org/10.1016/j.gloenvcha.2014.06.004

[24] Chuang Zhao et al. 2017. Temperature increase reduces global yields of

major crops in four independent estimates. Proceedings of the National

Academy of Sciences 114, 35 (2017), 9326–9331.

DOI:http://dx.doi.org/10.1073/pnas.1701762114

[25] OpenCV-Python Tutorials — OpenCV 3.0.0-dev documentation.

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html

[26] Documentation of scikit-learn 0.21.3. https://scikit-

learn.org/stable/documentation.html

[27] Introduction to remote sensing.

http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson3-

1/bands.html

[28] Tensorflow. 2019. tensorflow/models. (March 2019).

https://github.com/tensorflow/models/tree/master/research/deeplab/core

[29] Michael-Ross-Scott. 2019. michael-ross-scott/Treeseg. (August 2019).

https://github.com/michael-ross-scott/Treeseg

[30] Fjean. 2015. fjean/pymeanshift. (August 2015).

https://github.com/fjean/pymeanshiftPillow

[31] Numpy and Scipy Documentation. https://docs.scipy.org/doc/

[32] Michael Scott. 2019. michael-ross-scott/DeeplabV3. (August 2019).

https://github.com/michael-ross-scott/DeeplabV3

[33] Welcome to imageio's documentation!.

https://imageio.readthedocs.io/en/stable/

https://arxiv.org/abs/1706.05587
https://arxiv.org/pdf/1703.09039.pdf
https://developer.nvidia.com/discover/convolutional-neural-networkDeepLab
https://developer.nvidia.com/discover/convolutional-neural-networkDeepLab
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html
https://scikit-learn.org/stable/documentation.html
https://scikit-learn.org/stable/documentation.html
http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson3-1/bands.html
http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson3-1/bands.html
https://github.com/tensorflow/models/tree/master/research/deeplab/core
https://github.com/michael-ross-scott/Treeseg
https://docs.scipy.org/doc/
https://github.com/michael-ross-scott/DeeplabV3

