

 0

CS/IT Honours

Final Paper 2019

Title: TREE SEGMENTATION BY COMBINING FCNS WITH

ENGINEERED FEATURES

Author: Charl Ritter

Project Abbreviation: TREESEG

Supervisor(s): Assoc. Prof. Patrick Marais and Assoc. Prof. Deshen Moodley

Category Min Max Chosen

Requirement Analysis and Design 0 20

Theoretical Analysis 0 25

Experiment Design and Execution 0 20

System Development and Implementation 0 15

Results, Findings and Conclusion 10 20

Aim Formulation and Background Work 10 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

 1

TREE SEGMENTATION BY COMBINING FCNS WITH

ENGINEERED FEATURES

Charl Ritter
Department of Computer Science

University of Cape Town

RTTCHA002@myuct.ac.za

ABSTRACT

With the technological advances in the agricultural sector

and drone technology, as well as a surge in the popularity of

Neural Networks and Convolutional Neural Networks there

exists an interest to investigate whether the image

segmentation performance of Convolutional Neural

Networks can be improved for tree data. This interest is

explored further in this paper, by posing the question;

whether using engineered features as inputs to neural

networks can improve its segmentation performance for tree

data. To test this, the following research questions were

asked. The first question being whether the use of engineered

features has a positive influence on the accuracy of a neural

network when segmenting tree data. The second question

being whether the segmentation accuracy of certain

engineered features is influenced by the number of layers

added to it.

To answer these questions a feature extraction layer, that

pre-processes all the images and extracts the various

features, was developed. A presentation layer was developed

for testing purposes and an FCN was implemented. Eight

different feature extractors transform methods were tested.

These transforms fell into either the per-pixel transform or

small-width feature extractor categories. To evaluate the

results of the testing, the mean IOU and average precision

metrics of the various transforms were compared.

After analysing the data from the tests, the following became

apparent. Some of the feature extractors do positively

influence the accuracy of the FCN. Adding multiple layers

to the feature extractors was also found to improve the

accuracy of the FCNs predictions. The per-pixel transforms

were most competent at improving the segmentation

performance of the FCN. Additionally, it was found that

mask generation needs to be rigorous, otherwise, the use of

feature extractors will not aid the FCN any more than normal

RGB images will.

CCS CONCEPTS

• Machine Learning • Image Processing • Computer

Vision

KEYWORDS
Image segmentation, Convolutional Neural Networks, Fully

Convolutional Network, Per-pixel Transforms, Small-Width

Feature Extractor, Large-Width Feature Extractor.

1 Introduction

The agricultural sector plays a big role in the way humans

currently live their lives. The sector has been subject to a lot

of advancements in the past 60 years. Advances like modern

irrigation, GMOs, pesticides and fertilisers allowed farmers

to increase the output of their farms while decreasing the

labour needed to maintain the farm. In recent years with the

new advances in drone and Artificial Neural Networks

(ANNs) technology, farmers can now monitor the health of

their farm by having it surveyed by drones. These drones use

two cameras. The first is a high-resolution camera, which

captures RGB (Red, Green, Blue) and Digital Elevation

Model (DEM) images. The second camera captures the

Normalized Difference Vegetation Index (NDVI) and Near

Infrared (NIR) images. These images can then be analysed

by a trained ANN. The trained ANN will segment the crops

from any background and using the different layers of the

image, it will determine whether the crops are healthy and

alert the farmers of any abnormalities.

Although ANNs achieve state of the art segmentation

accuracy for many applications, ANNs still produce

segmented objects that have inaccurate boundaries or have

low-quality resolutions. Furthermore, these architectures are

data-intensive, requiring huge training samples to learn basic

image features [7, 11].

The research conducted in this paper arose from the issues
described above. This paper is a partial continuation of

previous research conducted by the University of Cape

Town Computer Science Honours students, to determine

whether Convolutional Neural Networks (CNNs) or

Random Forest Models (RFMs) are more accurate at

segmenting tree data [2, 8]. In these respective papers, it was

found that CNNs outperformed the RFMs. It was also

identified by Aerobotics, a company that offers several

 2

drone-based services for farmland monitoring and

management, that using engineered features may be able to

improve the segmentation of ANNs. The question posed in

this paper is, whether using engineered features as inputs to

CNNs can improve its segmentation performance for tree

data. The types of CNNs were limited to U-Nets, Fully

Convolutional Networks (FCNs) and Atrous Convolutional

Networks.

Presented in this paper is the research, results and subsequent

conclusions drawn from exploring the question posed above,

by experimenting on an FCN. An FCN is a neural network

that uses a fully connected layer to improve segmentation

[7]. In total eight different types of feature extractors were

implemented. Five of the feature extractors were Per-pixel

transforms and the rest were Small-width feature extractors.

The project team hypothesized that the use of engineered

features as inputs for the various CNNs would improve the

CNN’s segmentation performance on tree data. It was,

however, observed that segmentation performances between

different unsupervised architectures had an almost

negligible difference in the projects preceding this one [2, 8].

Similarly, many research projects dedicate a huge amount of

resources into developing new CNNs or engineered feature

models, only to experience a very small increase in either

efficiency, speed or both. Thus, although it was

hypothesized that there would be an improvement in the

segmentation performance for tree data of CNNs, whether

the improvement will be significant is uncertain. The

outcome of this project allows any group wishing to conduct

research in this field to decide whether they wish to; adopt

this technology into their projects, invest more resources into

further research on certain aspects of the project or to

discontinue research in this field in favour of another. It also

displays the effectiveness or ineffectiveness of feature

extractors to improve image segmentation of CNNs,

allowing other researchers to build on this premise and

develop better feature extractor methods or combinations

thereof.

The project team devised the following research questions

for this project:

1. Do pre-processed engineered features used as inputs to

neural networks positively influence the accuracy of the

neural network when segmenting tree crops, over the

base neural network band?

2. Is the segmentation accuracy of certain engineered

features positively influenced by the number of layers

added to it?

2 Background

2.1 Artificial Neural Networks

ANNs are architectures which use various connected layers.

The various layers consist of input and output layers, as well

as different hidden layers. The results of each layer are

passed to the next layer and the operation weights are

adjusted by the error produced in the classification. ANNs

are excellent tools for finding patterns.

A high-level example of how an ANN works would be, if

the network is intended to recognize an object in an image,

the first layer may analyse something like the brightness of

its pixels. The next layer could then identify any edges in the

image. After this, another layer may recognize textures and

shapes, and so on. By the time the nth layer is reached, the

ANN will have created complex feature detectors. It can then

determine certain image elements which are commonly

found together. After labelling of the outputs and by using

backpropagation, the network can perform classification

tasks on its own.

2.1.1 Convolutional Neural Networks

There is a wide variety of ANNs that perform image

segmentation. The highest performing of these are CNNs.

CNNs are machine learning models that use layers of

connected neurons to perform an extremely wide variety of

tasks, especially image classification [7]. This is done by

assigning importance to different objects in an image and the

ability to differentiate one object from another. CNNs make

strong and mostly correct assumptions about the nature of

images, which has been proven by Krizhevsky et al. Their

results showed that a large, deep convolutional neural

network can achieve record-breaking results on highly

challenging datasets, using purely supervised learning [6].

2.1.2 Fully Convolutional Networks

An FCN is defined by Guo et al., as an extension of the CNN

model, where the basic idea is to make the CNN take an input

of arbitrary-sized images [3]. The main characteristic that

differentiates an FCN from other CNNs, is that the last fully

connected layer is substituted by another convolution layer

with a large receptive field. One of the drawbacks of FCNs

is that, because of the fixed nature of the size of the receptive

field, if an object is substantially larger or smaller than the

size of the receptive field, it could be mislabelled or

fragmented [9]. Another drawback is that the resolution of

the feature map is downsampled due to all the convolutions

and pooling layers that the data goes through. This leads to

low-resolution predictions, which in turn leads to fuzzy

object edges [3].

2.2 Image Features
2.2.1 Per-Pixel Transforms

These are modifications dedicated to transforming single

pixels. The primary focus of manipulating the pixel values

of images is changing the format of the colours they to

represent, as well as isolating the components those formats

consist of. Some examples of this type of transform, are;

LAB, HSI, HSL, ICA, and PCA colour space transform [20].

 3

2.2.2 Small-Width Feature Extractors

These are modifications dedicated to transforming a small

neighbourhood of pixels. The focus of this transformation

type being, modifications looking specifically at smaller

objects in an image or at parts of an image. Some examples

of this type of transform, are; Edge-detector, Mean-shift and

Histogram Equalisation transforms [1, 4, 10, 13, 17, 23].

2.2.3 Large-Width Feature Extractors

These are modifications dedicated to transforming a large

neighbourhood of pixels [22]. The process of segmenting a

neighbourhood of pixels typically follows one or more pre-

processing steps to isolate key information. However,

sometimes these strategies can be applied to the source

image depending on the application. Some examples of this

type of transform, are; Hough and Templating Matching

transforms.

3 Related Work

There seemed to be no other papers directly dealing with the

questions asked in this paper, however, there were papers

related to feature extraction of vegetation imagery that

guided this project.

In terms of the feature extraction of vegetation imagery.

Wang et al., focused primarily on the LAB colour space

method, which is a small feature extractor. They used this

method to identify trees in images by looking for colours

matching the green spectrum. They found that the method

was very fast but had some shortcomings when the shades of

green of different plants that were next to each other were

too similar. This resulted in them being grouped [18]. In a

follow-up paper, Wang et al. separated individual trees from

the surrounding landscape in images. For images with

simple backgrounds, they proposed using Edge Detectors,

however for images with more complex backgrounds they

devised their own method, based on Edge-detectors coupled

with colour space methods, of which they recommended the

LAB colour space method and mathematical morphology

based on their results [19].

Zheng et al., firstly applied two per-pixel feature extractors,

namely HSI colour spaces and RGB colour spaces, to the

images. After this, they applied a small feature extractor,

namely Mean-shift, to the images. This separated the images

into two parts, green and non-green vegetation. They tested

this algorithm on 100 images of different plant types, with

different illuminations and soil types and achieved a median

of mis-segmentation of 4.2% between green and non-green

vegetation. They did note however that although this method

produced an improved result, it suffered from a long runtime

[23]. In the paper by Tao et al., the Mean-shift feature

extractor was also used. They, however, applied the feature

extractor first to the images and then they applied the

Normalized-cuts method. By applying the Mean-shift

method first, it allows the Normalized-cuts method to be

applied to the resulting segments of the Mean-shift, rather

than directly to the image pixels. They found this

combination requires significantly lower computational

complexity and therefore, is feasible for real-time image

processing while yielding superior image segmentation

performance [13]. Finally, Tellaeche et al., used a per pixel

feature extractors and large feature extractors. They first

apply an RGB colour space method to the images, which

results in a binary image. This image shows crops as white

and the soil, stones and residual as black. After the binary

image is obtained, they apply a Hough transform to it, to

detect the furrows of the crops in the image. Tellaeche et al.,

did not comment on the performance of this combination on

its own, but that when used with Support Vector Machines,

they found that it performed well, although results did vary

in overexposed images [16].

4 Framework Design and Development

The project framework was split into three distinct stages,

namely the pre-processing stage for the creation of

engineered features, the testing stage for testing the impact

on accuracy that these features have on the respective CNN

models and thirdly, the implementation of a presentation

layer to aid in the collection of statistical outputs. It was

hypothesized that the use of the pre-processed image

features would lead to an increase in the accuracy of the

various CNN models tested.

4.1 Design

The overall structure of the software that needed to test the

hypotheses was split into the following layers; a feature

extraction layer, a CNN layer and a Tensorflow presentation

layer. The overall structure of the implementation can be

seen in Figure 1. The raw image data were fed into the

feature extraction layer, where the various transforms were

applied to the image data and saved. The image masks and

plain RGB images were also saved in this layer to use in

validation and obtaining the ground truth. All the processed

images were then fed into the CNN layer. This layer was

broken into the three different types of CNNs, as it was

tested independently by the members of the project team.

The model was trained and evaluated on the image data in

various tests. Finally, the results from the testing were sent

to the presentation layer, where it was stored and presented.

 4

Figure 1: Structure of the planned implementation

4.2 Development Tools

This project was developed in Python, as Python has many

frameworks and libraries useful for the project. The libraries

that were used for this project were; OpenCV, ImageMagick,

Matplotlib, NumPy, SciKit-Learn, SciKit-Image,

pymeanshift, KittiSeg and TensorFlow. NumPy was used to

create numpy arrays out of the H5 files containing the image

data. OpenCV, ImageMagick, Matplotlib, SciKit-Learn,

SciKit-Image and pymeanshift were used to perform the

transformations on the dataset. KittiSeg was used as the FCN

implementation. TensorFlow was used to monitor the

training and evaluation of models.

4.3 Implementation
4.3.1 Driver Class and Feature Extractors

The first stage required the creation of a driver class for the

image feature extraction. This was done by the combined

efforts of the group. Implementing each of the actual

transformations within this driver was done individually,

resulting in the driver class having eight different feature

extractors.

For the Per-pixel transforms, the project team implemented

LAB, HIS, HSL, ICA and PCA colour space transforms. For

the actual implementations of these five, the LAB and HSI

colour space transforms used the ImageMagick library, the

HSL colour space transform used the matplotlib library, the

ICA colour space transform used the OpenCV library and

the PCA colour space transform used a method from a

GitHub repository.

For the small-width feature extractors, the project team

implemented Edge-detector, Mean-shift and Histogram

Equalisation transforms. For the actual implementations of

these three, the Edge-detector and Histogram Equalisation

transforms was implemented by using the OpenCV library,

and for the Mean-shift transform a GitHub repository

implementation was used fjean’s pymeanshift [5]. This

GitHub repository was decided on, as OpenCV had no

Mean-Shift method. The repository allowed for the easy

tweaking of parameters and upon visual inspection produced

the most competent Mean-shifts from the different

repository's that were explored.

Finally, for the large-width feature extractors, the project

team originally planned to implement Hough transforms and

Template matching, however, after analysis of the datasets,

the large-width feature extractors were abandoned, as it

would not be helpful for the type of data provided.

4.3.2 Convolutional Neural Networks Implementation

As input for the next stage, the feature extractors were

applied to raw images. These images could then be fed into

the various CNN models. To establish a base-accuracy to

compare to, the CNN models were also trained on raw image

data. The second stage revolved around testing these

transformations with three different CNN models, which

was performed individually. Each team member explored

one of the three CNN models.

For the implementation of the FCN and its training and

evaluation environment, a GitHub repository

implementation was used MarvinTeichmann’s KittiSeg [14,

15]. Contained in this repository, is MarvinTeichmann’s

implementation of an FCN, that was based off the paper by

Long, et al [7], and the KittiSeg pipeline, which made the

training and evaluation of models much easier. This

repository was chosen as;

• the FCN was based off a well-cited paper.

• the pipeline made it easy to tweak the FCN parameters,

as well as train and evaluate using the Aerobotics

datasets.

• the FCN made use of a VGG16 numpy file that

contained pre-trained weights, which reduced the

training time needed to produce a competent model.

• the Kittiseg project was created originally to segment

images of roads into two classes, road and not road.

This project deals with segmenting tree data into two

classes, tree and not tree. Thus, minimal tweaking was

needed for the FCN.

There were minimal changes made to the code to make it

usable for this project. A config file was written in order to

use the Aerobotics dataset and to tweak the parameters of the

FCN, a method was removed that would check for and then

download the original CityScape dataset, a dataset of road

images that the KittiSeg project used, and the calculation of

the mean Intersection Over Union (IOU) metric, as well as

the appending of said metric to a log file and tensorboard,

was added.

 5

4.3.3 Presentation Layer

The third stage was to implement a presentation layer to

collate and clearly show various statistical outputs measured

from training. The TensorFlow library was used to achieve

this. It was used as it is a leading framework in the machine

learning industry and has vast support and documentation

which allowed the easy implementation of the planned

design.

5 Experiment Design and Execution

5.1 Hardware

All the tests were run on the same machine. This machine

had an Intel Core i7 3770 CPU, 16GB DDR3 RAM and an

NVIDIA GeForce GTX 1060 6GB GPU, which was running

Ubuntu 18.04.

5.2 Training Data

The training data used consisted of datasets provided by

Aerobotics. These files were in the H5 file format, which

consists of multidimensional arrays of data. These files were

created from the multispectral images taken from drones

owned by Aerobotics.

These files contained different layers. As mentioned before,

each image contained an RGB layer, a DEM layer, which is

a 3D representation of a terrain's surface created from a

terrain's elevation data [21], an NDVI layer, which measures

the difference between the light that is a reflected and

absorbed by vegetation [12], an NIR layer, which picks up

all the infrared light in the range of 700nm-1400nm on the

electromagnetic spectrum and a mask layer, which is the

ideal a layer used in training to compare.

Two data sets of differing sizes were considered to perform

tests on. A small dataset, which consisted of 636 images and

a large dataset which consisted of 1942 images. As time was

limited and a large dataset takes more time to train with, it

was necessary to establish whether a large dataset would

improve the segmentation performance of the FCN versus

an FCN trained using a small dataset. Eight tests were run,

four on each dataset, to determine which performed best.

The results from these tests showed that the FCN trained on

the small dataset performed slightly better than the FCN

trained on the large dataset and thus the small dataset was

used in all subsequent tests.

The images in the small dataset were split 90/10, where 90%

was used to train the model and 10% was used to evaluate

the model. To make up the 10% of the dataset used for

validation, the first 10% of every 100 images were extracted

and added to the validation dataset, to ensure the validation

dataset represents the whole dataset and not just a niche

section of it. Among all the tests conducted, the training and

evaluation images were kept the same and in the same order

to ensure consistency. Some examples of the test data are

provided in Figure 2.

Figure 2: Examples of the test data

5.3 Overview of Experiment

To ensure the experiment was rigorous, the reproducibility

of the experiment was of utmost importance. The first step

of the experiment was to train and evaluate the FCN model

on unprocessed RGB images to observe the base accuracy of

the model. After this, the FCN was trained and evaluated on

the pre-processed engineered features to validate the

improvement in segmentation accuracy. Great care was

taken to ensure the raw and transformed images were in the

same order and came from the same base image. Once this

was completed, the FCN model was trained and evaluated

again on the ground truth RGB images and on all the feature

extractors, with the only difference being that the images

also had the DEM layer added. This test would then be able

to determine whether adding layers, specifically the DEM

layer, would improve the segmentation accuracy of the

feature extractors. For this experiment, all tests ran for

exactly 5000 epochs.

To decide how many epochs each test should run for, the

FCN was trained on the RGB single-layer images while the

rate of increase in the mean IOU was determined every 2500

epochs. For the first 2500 epochs, the mean IOU increased

by 6.18%. For the second 2500 epochs, the mean IOU

increased by only 0.09%. After making this observation, it

was concluded that the rate of increase in the mean IOU,

using the FCN trained on the RGB single-layer images, did

not materially increase after 5000 epochs. It was therefore

decided to end all tests after 5000 epochs.

Validation of the prediction against the original image was

performed every 100 epochs. To make visual comparison

possible, the prediction was overlaid over the original image.

In the prediction, the colour orange denotes trees while the

colour blue denotes everything that is not trees. A series of

predictions is shown in Figures 3, 5 and 6.

 6

During training the TensorFlow framework provided real-

time metrics, allowing the evaluation of the segmentation

accuracy. Segmentation accuracy validation is represented

as a percentage change measuring the predicted

segmentation map to the correct one.

5.4 Evaluation

The base segmentation performance of the FCN model was

determined by training and evaluating it on the raw RGB

images and comparing this segmentation performance to the

segmentation performance of the models trained and

evaluated on feature extractors. This experiment was further

split into two parts. Firstly, the segmentation performance of

the FCN when given only transforms made of single layers

were tested. Secondly, the segmentation performance of the

FCN when given transforms made of multiple layers was

tested. To answer the other research questions, the

segmentation performance on a single layer was compared

to the segmentation performance on multiple layers.

The two metrics used to asses segmentation performance

was mean IOU and the average precision of the models. IOU

looks at the ground-truth bounding boxes and the predicted

bounding boxes from the model. It then takes the area of

overlap between the two boxes, over the area of the union of

the boxes. This then gives a metric between zero and one

hundred on how closely these two boxes match, zero being

not at all and one hundred being perfect. Thus, the IOU

shows how closely the model predicted the bounding box of

the object versus the actual bounding box of the object, for a

prediction. Mean IOU is then just the average IOU taken

over the course of the model’s evaluation and training.

Precision, on the other hand, expresses the percentage of the

relevant predictions. This metric is also evaluated between

zero and one hundred, zero meaning that the model made

many false-positive readings, while one hundred means that

there were no false positives. Thus, average precision is just

the precision averaged over the course of the model’s

evaluation and training. The accuracy was also computed,

although as this project deals with an imbalanced

classification problem, it is not a good measure for assessing

the model’s performance. It was therefore not considered in

the evaluation of the FCN. Mean IOU and average precision

are defined by the following formulas. Where given;

Precision = P, True Positives = TP,

False Positive = FP, False Negative = FN,

Total Precision = TOTP, Total IOU = TIOU,

n = Current Epoch,

One can define;

𝑃(𝑛) =
TP(n)

TP(n) + FP(n)

𝐼𝑂𝑈(𝑛) =
TP(n)

TP(n) + FP(n) + FN(n)

𝑇𝑂𝑇𝑃(𝑛) = 𝑃(𝑛) + 𝑇𝑂𝑇𝑃(𝑛 − 1)

𝑇𝐼𝑂𝑈(𝑛) = 𝐼𝑂𝑈(𝑛) + 𝑇𝐼𝑂𝑈(𝑛 − 1)

And thus;

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑛) =
𝑇𝑂𝑇𝑃(n)

n

𝑀𝑒𝑎𝑛 𝐼𝑂𝑈(𝑛) =
TIOU(n)

n

6 Results and Discussion

6.1 Single Layer Transforms

The research related to the first research question is

discussed both in this section and the following section. The

first question was whether the use of pre-processed

engineered features as inputs to neural networks has a

positive influence on the accuracy of the said neural

network, when segmenting tree crops, over the base (raw

image band) neural network band.

As per the experimental design, the base truth was first

established by training and evaluating the FCN on the single-

layer RGB images. After training it for 5000 epochs, it

yielded an average precision of 92.11% and a mean IOU of

78.32%. As can be seen in Figure 3, the FCN made an

inaccurate first prediction, but after 5000 epochs the

prediction was quite accurate.

Figure 3: Image depicting the RGB input image (1), the

mask of the image (2), the first prediction made (3) and

the last prediction made (4)

 7

After the base truth was established, the feature extracted

inputs were trained and evaluated on the FCN. All the

outputs from these tests can be seen in Table 1. The mean

IOUs from these tests were mostly less than the ground

truth’s, hovering around the mid 77%s and low 78%s. On

average the mean IOU of the eight transforms was 75.54%,

which is 2.78% less than the ground truth. Two notable

outliers were the Edge Detector and HSI colour space

transforms. These two performed exceptionally poor, with

the Edge Detector having a mean IOU of 68.52% and HSI a

mean IOU of 67.6%. Only one transform performed better

than the ground truth test, which was the PCA colour space

transform. It had a mean IOU of 79.16%, which is an

increase of 0.84%.

The lack of improvement shown by the FCN when trained

on the feature extracted inputs could be due to various

factors. The first factor could be that on this level of detail,

the use of the normal RGB images as inputs teaches the FCN

enough tree elements to be able to competently segment tree

from non-tree. Another factor could be that none of the

feature extractors used was optimised for extracting features

from tree data. A final factor to consider was that the masks

of the images provided were not as accurate as one would

desire it to be. This resulted in the FCN teaching itself tree

elements that produced predictions that were more

competent than the mask. On comparison of the prediction

with the mask, the prediction would be assigned an incorrect

low IOU and precision score. This hampers the learning

process of the FCN as it discourages the FCN from learning

elements that would produce predictions that are more

competent than the mask.

Although the first two causes may be true, the tests

performed in this experiment does not prove either. This was

not, however, the case for the final factor. It was observed

that the average precisions of all transforms were much

higher than the mean IOUs. As can be seen in the formulas

of the two metrics, the only difference between these two

metrics is that the IOU also adds the false negatives (FNs)

produced by the FCN to the denominator. With the mean

IOU being consistently lower than the average precision, it

implies that a consistently high FN count is generated. With

the high occurrence of FNs, it can be deduced that the masks

are not sufficiently precise, meaning it includes a large area

of non-tree inside of the area it claims to be tree. This

conclusion was supported visually by inspecting the input

image versus the mask in Figure 3. The separation of some

trees was only denoted by a dotted line and there were

instances where clear spaces can be seen between trees on

the RGB image, but the mask shows these trees as being

connected. This can be seen in Figure 3 in the second row

from the top between the first two trees from left in images

(1) and (2).

After inspection of all the single-layer mean IOU

TensorFlow charts, it was seen that although the mean IOU

measured in most of the transform’s plateaued after 5000

epochs, the LAB and PCA colour space transforms had not

plateaued yet. These two transforms showed increases of

1.81% and 1.63%, respectively in the second 2500 epochs.

It was therefore decided to run the two transforms again for

7500 epochs to see whether the rate of change in the mean

IOU stabilised between 5000 and 7500 epochs.

The mean IOU for the test ran for 7500 epochs using the

PCA transform barely increased from the one that ran for

5000 epochs. The 7500 epochs test only yielded a 0.08%

increase in mean IOU, reaching 79.24%. The LAB colour

space transforms mean IOU, however, showed a larger

increase, ending 1.05% higher after 7500 epochs, reaching

79.94%. By extrapolating the rate of increase in mean IOU

for the RGB test measured over the last 2500 epochs it

follows that the FCN trained on RGB images could increase

at most by a further 0.09% if ran for a further 2500 epochs,

up to 7500 epochs, reaching 78.26%. Thus, the LAB and

PCA colour space transforms would, at minimum,

outperform the base RGB test by 1.68% and 0.98%

respectively. These increases were noteworthy because these

were the only transforms that did not plateau after 5000

epochs and that improved on the RGB’s performance in the

single-layer category. This indicates that PCA and LAB

transforms are more appropriate for tree data. It would have

been preferable to retest all the transforms to ensure that the

accuracy and IOU have in fact stabilised, but due to limited

time, only the transforms that showed the showed the highest

rates of increase were retested. The charts of the two

transforms that ran for 7500 epochs can be seen in Figure 4.

Figure 4: The Mean IOU charts produced by

TensorFlow after 7500 epochs for the single-layer LAB

and PCA colour space transforms

Another observation made, was that barring the two

transforms that performed exceptionally poor and the

Histogram Equalisation, all transforms slightly

outperformed the ground truth’s average precision. The best

again being the PCA colour space transform, outperforming

the ground truth’s average precision by 0.8%. It was also

seen that when disregarding the two outliers, the mean

average precision of all the transforms was 0.13% higher

 8

than the ground truth’s average precision. This means that

on average when an FCN is given a single layer transform as

input, the model makes fewer FP predictions when using

feature extracted inputs, compared to when using only RGB

images.

Transforms Mean

IOU

Accuracy Average Precision

RGB (Ground truth) 78.32% 92.00% 92.11%

Mean-Shift 78.06% 92.00% 92.22%

Edge Detector 68.52% 88.00% 87.66%

Histogram Equalisation 77.97% 93.00% 92.06%

LAB 77.69% 92.00% 92.37%

HSI 67.60% 85.00% 86.61%

HSL 77.58% 91.00% 92.27%

PCA 79.16% 91.00% 92.91%

ICA 77.47% 92.00% 92.23%

Table 1: Metric outputs from tests conducted using

single-layer transforms

Figure 5 depicts the single-layer image that was evaluated

on, as well as the model’s first and last predictions, for both

the worst-performing transform and the best performing

transform. For the HSI transform, the FCN produced a poor

first prediction, while the PCA transform, produced a decent

prediction already.

Figure 5: Image depicting the HSI’s input image (a1),

first prediction made by the FCN (a2) and last prediction

made by the FCN (a3), and the PCA’s input image (b1),

first prediction made by the FCN (b2) and last prediction

made by the FCN (b3)

6.2 Multiple Layer Transforms

For these tests, the same process was followed as was the

case for the single-layer transforms. The multiple-layer

transforms yielded a ground truth of an average precision of

92.94% and a mean IOU of 79.7%. As can be seen in Figure

6, with the added DEM layer, the FCN made an overly tight

first prediction, however, its last prediction was very close

to the provided mask.

Figure 6: Image depicting the multiple layer RGB input

image (1), the mask of the image (2), the first prediction

made (3) and the last prediction (4)

For these tests, all outputs can be seen in Table 2. The mean

IOUs again did not fluctuate much from the ground truth. On

average the mean IOU of the eight transforms was 78.32%,

which is 1.38% less than the ground truth. The worst

performing transforms in this round of testing was the HSI

and HSL transforms. When disregarding these two outliers,

the average mean IOU of the six transforms was only 0.04%

less than the ground truth. There were three transforms that

performed better than the ground truth and these were the

Mean-Shift, Histogram Equalisation and ICA transforms.

The highest of the three, ICA, had a mean IOU that was

1.75% higher than that of the ground truth. Although the

transforms in this section performed much better than the

transforms in the previous section. Generally, there was still

a lack of improvement over the ground truth. The reasons for

this lack of improvement could be due to the same factors as

was discussed in the single-layer transforms section.

After inspection of all the multiple-layer mean IOU

TensorFlow charts, it was seen that four of the mean IOU

values had not plateaued after 5000 epochs. Of these four,

only the two that showed the highest rates of increase during

the last 2500 epochs were retested, also up to 7500 epochs.

The two retested inputs were RGB, which had a 2.47%

increase in mean IOU during the second 2500 epochs, and

PCA, which had a 2.17% increase in mean IOU during the

second 2500 epochs.

The PCA’s mean IOU at 7500 epochs did not increase much

from that measured in the previous test that ran only up to

5000 epochs. It only increased by 0.27%, reaching 79.62%.

In the case of the RGB test, the mean IOU also did not

increase much, ending 0.19% higher at 7500 epochs,

reaching 79.89%. The charts of the two transforms that ran

 9

for 7500 epochs are shown in Figure 7. From this, it was

deduced that extending the tests to 7500 epochs does not

make a significant difference in either mean IOU or average

accuracy for multiple-layer transforms.

Figure 7: The Mean IOU charts produced by

TensorFlow after 7500 epochs for the multiple-layer

RGB images and PCA colour space transform

For average precision, the two worst tests in this metric were

still HSI and HSL, and three transforms outperformed the

ground truth, which was Mean-Shift, Histogram

Equalisation and ICA. When disregarding the two outliers

again, the mean average precision of the transforms was

0.17% less than the ground truth’s average precision. This

leads to the deduction, that on average when an FCN is given

a multiple-layer transform as input, the model makes slightly

more false-positive predictions when using feature extracted

inputs.

Transforms Mean

IOU

Accuracy Average Precision

RGB (Ground truth) 79.70% 92.00% 92.94%

Mean-Shift 80.30% 92.00% 93.06%

Edge Detector 79.16% 93.00% 92.45%

Histogram Equalisation 79.87% 91.00% 92.84%

LAB 77.69% 92.00% 92.37%

HSI 74.60% 91.00% 91.11%

HSL 74.15% 91.00% 91.06%

PCA 79.35% 92.00% 92.59%

ICA 81.45% 93.00% 93.29%

Table 2: Metric outputs from tests conducted using

multiple-layer transforms

6.3 Single – vs Multiple Layer

The research related to the second research question is

discussed in this section. The question being is whether the

segmentation accuracy of certain engineered features was

positively influenced by the number of layers added to it.

When comparing the results from Table 1 and 2, the single-

layer transforms had an average mean IOU of 75.51%, while

the multiple-layer transforms had an average mean IOU of

78.32%, which is an improvement of 2.81%. The average

precision of the multiple-layer inputs also outperformed the

single-layer input by 1.31%.

The difference can also be seen when comparing Figure 3

and Figure 6. The initial prediction in Figure 3 is quite loose

and over predicts the trees, while the initial prediction in

Figure 6 is overly tight and underpredicted the trees. The

final prediction of both are very competent, however, when

examined a bit closer, Figure 6’s final prediction picked up

some of the gaps between the trees, while Figure 3’s final

prediction was not as well adapted to picking up these gaps.

Thus, it can be deduced that when adding additional layers,

the new tree elements the FCN learns from the new layer is

more valuable than what it learns from the feature extracted

inputs alone, as the ground truth and transforms performed

very similarly.

7 Conclusions

In conclusion, the use of certain engineered features did

increase the accuracy of the FCN when segmenting tree

crops, over the base (raw image band) neural network band,

although very slightly. Generally, the impacts were not

always positive, however, of the per-pixels transforms the

LAB, PCA and ICA colour space transforms performed the

best on the data and of the small-width feature extractors it

was the Mean Shift and Histogram Equalization transforms

that performed the best on the data.

The high average precision and low mean IOU pointed to the

fact that the predictions produced a high number of false-

negative predictions. This was caused by the image masks

that were not a good enough representation of the actual

trees. The relatively poor quality of the masks was a

detriment to the project, as the FCN cannot be expected to

perform well when the masks training it are not accurate

representations of the real-life data. It will be beneficial to

ensure that a rigorous mask extractor is created.

From the tests performed with more epochs, it could be seen

that the FCNs trained on the single-layer images did not all

plateau after the 5000 epochs. This leads to the conclusion

that for single-layer inputs, the FCN needs to be trained

longer on feature extractors and that the feature extractors

will over time overtake the RGB’s segmentation

performance. For multiple-layer inputs, only insignificant

improvements were observed after 5000 epochs.

When comparing the single and multiple layer inputs with

each other, it was observed that using inputs that utilise

multiple layers does improve the segmentation performance

of the FCN, over just using single layer transforms. Thus, it

can be concluded that the segmentation accuracy of certain

 10

engineered features is indeed influenced by the number of

layers added to it.

8 Limitations

There were limitations experienced throughout the course of

the project. The first and biggest limitation is the time

allocated to the project. This project was allocated a six-

week time span, which greatly limited the scope of

experimentation and the ability to solve other issues faced

throughout the course of the project. This, regrettably, lead

to the team having to decrease the scope of this project, as

well as the amount of testing conducted.

The next limitation that was faced was the implementation

of the Edge Detector. The OpenCV and two different GitHub

repositories were considered, but all three implementations

noticed too much detail, causing the image to be a mess of

edges (trees, leaves and ground). It seemed as if these

implementations were not appropriately blurring the image.

All three’s parameters were tweaked to try and improve the

blurring, to no avail. In the end, no more time could be spent

attempting to fix the Edge Detector. The project team,

therefore, settled on the OpenCV implementation of the

Edge Detector, because it could differentiate between tree

and ground despite it still being a mess of edges, leading to

the mess of edges to be contained within the area that was

tree data.

The last limitation experienced was that the FCN was built

to read images in the JPG or PNG formats. The team's initial

plan was to read in numpy arrays, to be able to pack together

as many layers and combinations as the project team desired.

However, in this FCN’s case, it was not a possibility. An

attempt was made to change the way that images were read,

to allow the FCN to rather use numpy arrays. Initially, it

seemed to be an easy task, as the image files were

transformed into numpy arrays. It was however found that

that the code was hardcoded to work specifically with

numpy arrays created from a four-channel image. If the

numpy array does not have that exact number of channels,

the FCN would crash when reading the data. The project

team believed this issue could be solved, however, the

project team did not have the time to analyse and rewrite the

part of the KittiSeg project code that read and prepared the

input files, as well as overlaid the predictions onto the input

image.

9 Ethical, Professional and Legal Issues

There were no ethical issues experienced during this project

as the project team did not; do research on humans or

animals, use personal data, or generally interact with people

outside of the project team. There also was no dispute over

the ownership of the intellectual property, as the engineered

features were not novel ones provided by Aerobotics and the

intellectual property of the platform the project team

designed to test the hypothesis on belong to the team and the

supervisors.

Software licensed under GPL-3.0 was extended

(MarvinTeichmann’ KittiSeg [14] & fjean’s pymeanshift

[5]). This means the sections handling mean-shift

transformations, as well as the FCN implementation were

released under the same licence.

10 Future Work

As stated earlier, there were a few limitations to this project

that could be solved in future projects. With these limitations

solved, future projects could explore using more feature

extractors. Future projects could also go into deeper detail

on how much the different types of layers improve the

segmentation performance of the FCN by their addition or

subtraction.

Another next step for this project is to experiment with

combinations of feature extractors and how these

combinations impact the segmentation of tree data by FCNs.

Thereby testing to see if transform combinations might be

able to improve segmentation performance and possibly

finding a gold standard of transforms that can be applied to

images containing tree data, that greatly improve the

segmentation performance of CNNs.

ACKNOWLEDGEMENTS

I would like to thank my project partners, Michael Scott and

Fergus Strangways-Dixon, for their support and diligence

throughout the course of this project, as well as Michael

Malahe, from Aerobotics, who provided us with the datasets

needed to train and evaluate the CNN models on. I would

also like to thank Associate Professor Patrick Marais and

Associate Professor Deshen Moodley for their advice and

guidance throughout the course of this project.

REFERENCES

[1] Abdou, I. and Pratt, W., 1979. Quantitative design and evaluation of

enhancement/thresholding edge detectors. Proceedings of the IEEE,

67(5), pp.753-763. DOI:https://ieeexplore-ieee-

org.ezproxy.uct.ac.za/stamp/stamp.jsp?tp=&arnumber=1455594

[2] Finnis, J. 2018. Random Forest Classification of Tree Crops on

Farming Land., pp.1-13.

DOI:http://projects.cs.uct.ac.za/honsproj/cgibin/view/2018/finnis_mot

sumi.zip/deliverables/Final%20Paper%2 0(Final).pdf

[3] Guo, Y., Liu, Y., Georgiou, T. and Lew, M. 2017. A review of

semantic segmentation using deep neural networks. International

Journal of Multimedia Information Retrieval, 7(2), pp.87-93.

DOI:https://link.springer.com/content/pdf/10.1007%2Fs13735- 017-

0141-z.pdf

[4] Heath, M., Sarkar, S., Sanocki, T. and Bowyer, K., 1998. Comparison

of Edge Detectors. Computer Vision and Image Understanding, 69(1),

pp.38-54.

DOI:https://www.sciencedirect.com/science/article/pii/S10773142979

05877

[5] Jean, F., 2019. fjean/pymeanshift. GitHub.

DOI:https://github.com/fjean/pymeanshift

[6] Krizhevsky, A., Sutskever, I. and Hinton, G., 2017. ImageNet

classification with deep convolutional neural networks.

Communications of the ACM, 60(6), pp.84 -90.

DOI:https://papers.nips.cc/paper/4824 -imagenet -classification - with

-deep -convolutional -neural -networks.pdf

[7] Long, J., Shelhammer, E. and Darrell, T. 2015. Fully convolutional

networks for semantic segmentation. The IEEE Conference on

 11

Computer Vision and Pattern Recognition (CPVR) (2015), 3431-

3440. DOI:https://doi.org/10.1109/cvpr.2015.7298965

[8] Motsumi, N. 2016.: III -CNN: Image -to -Image Inception CNN for

Pixel -Wise Segmentation to extract tree and tree boundaries. , pp.1 -

12. DOI:http://projects.cs.uct.ac.za/honsproj/cgi -

bin/view/2018/finnis_motsumi.zip/deliverables/mstnto015Final.pdf

[9] Noh, H., Hong, S. and Han, B. 2015. Learning Deconvolution

Network for Semantic Segmentation. 2015 IEEE International

Conference on Computer Vision (ICCV)(2015).

DOI:http://dx.doi.org/10.1109/iccv.2015.178

[10] Paris, S. and Durand, F., 2007. A Topological Approach to

Hierarchical Segmentation using Mean Shift. 2007 IEEE Conference

on Computer Vision and Pattern Recognition(2007).

DOI:http://dx.doi.org/10.1109/cvpr.2007.383228

[11] Ronneberger, O., Fischer, P. and Brox, T. 2015. U-Net Convolutional

Networks for Biomedical Image Segmentation. Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015

9351 (2015), 234–241. DOI:http://dx.doi.org/10.1007/978-3-319-

24574- 4_28

[12] Ryan, S., Cross, P., Winnie, J., Hay, C., Bowers, J. and Getz, W.,

2012. The utility of normalized difference vegetation index for

predicting African buffalo forage quality. The Journal of Wildlife

Management, 76(7), pp.1499-1508. DOI: https://www-jstor-

org.ezproxy.uct.ac.za/stable/pdf/23251450.pdf?refreqid=excelsior%3

Afab80063884b7e94b98b276bbbf1bb4d

[13] Tao, W., Jin, H. and Zhang, Y. 2007. Color Image Segmentation

Based on Mean Shift and Normalized Cuts. IEEE Transactions on

Systems, Man and Cybernetics, Part B (Cybernetics), 37(5), pp.1382-

1389.

DOI:https://ieeexploreieeeorg.ezproxy.uct.ac.za/stamp/stamp.jsp?tp=

&arnumber=4305291

[14] Teichmann, M., 2019. MarvinTeichmann/KittiSeg. GitHub.

DOI:https://github.com/MarvinTeichmann/KittiSeg

[15] Teichmann, M., Weber, M., Zöllner, M., Cipolla, R. and Urtasun, R.

2018. MultiNet: Real-time Joint Semantic Reasoning for Autonomous

Driving. IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 1013-

1020.

DOI:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=85005

04&isnumber=8500355

[16] Tellaeche, A., Pajares, G., Burgos-Artizzu, X. and Ribeiro, A. 2011.

A computer vision approach for weeds identification through Support

Vector Machines. Applied Soft Computing 11, 1 (2011), 908–915.

DOI: http://dx.doi.org/10.1016/j.asoc.2010.01.011

[17] Wang, J., Thiesson, B., Xu, Y. and Cohen, M., 2004. Image and

Video Segmentation by Anisotropic Kernel Mean Shift. Lecture Notes

in Computer Science Computer Vision- ECCV 2004(2004), 238–249.

DOI:http://dx.doi.org/10.1007/978-3-540-24671-8_19

[18] Wang, X., Huang, X. and Fu, H. 2010. A Colour Texture

Segmentation Method to Extract Tree Image in Complex Scene. 2010

International Conference on Machine Vision and Human machine

Interface (2010). DOI:http://dx.doi.org/10.1109/mvhi.2010.138

[19] Wang, X., Huang, X. and Fu, H. 2009. The Study of Colour Tree

Image Segmentation. 2009 Second International Workshop on

Computer Science and Engineering (2009), 303 307.

DOI:http://dx.doi.org/10.1109/wcse.2009.818

[20] Xiaosong Wang, Xinyuan Huang, and Hui Fu. 2010. A Colour-

Texture Segmentation Method to Extract Tree Image in Complex

Scene. 2010 International Conference on Machine Vision and Human-

machine Interface (2010).

DOI:http://dx.doi.org/10.1109/mvhi.2010.138

[21] Yaman, A., Yilmaz, H. and Bilgilioglu, S., 2019. Comparison of Point

Accuracies on Digital Elevation Model Obtained from Digital Air

Photographs with Different Specifications. International Journal of

Environment and Geoinformatics, 6(1), pp.131-134.

DOI:https://dergipark.org.tr/download/article-file/695121

[22] Zhang, Y. 2006. An Overview of Image and Video Segmentation in

the Last 40 Years. Advances in Image and Video Segmentation

(2006), 1–16. DOI:http://dx.doi.org/10.4018/978-1-59140-753-

9.ch001

[23] Zheng, L., Zhang, J. and Wang, Q. 2009. Mean-shift-based color

segmentation of images containing green vegetation. Computers and

Electronics in Agriculture, 65(1), pp.93-98.

DOI:https://www.sciencedirect.com/science/article/pii/S01681699080

0182 8

