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ABSTRACT 

With the technological advances in the agricultural sector 

and drone technology, as well as a surge in the popularity of 

Neural Networks and Convolutional Neural Networks there 

exists an interest to investigate whether the image 

segmentation performance of Convolutional Neural 

Networks can be improved for tree data. This interest is 

explored further in this paper, by posing the question; 

whether using engineered features as inputs to neural 

networks can improve its segmentation performance for tree 

data. To test this, the following research questions were 

asked. The first question being whether the use of engineered 

features has a positive influence on the accuracy of a neural 

network when segmenting tree data. The second question 

being whether the segmentation accuracy of certain 

engineered features is influenced by the number of layers 

added to it. 

To answer these questions a feature extraction layer, that 

pre-processes all the images and extracts the various 

features, was developed. A presentation layer was developed 

for testing purposes and an FCN was implemented. Eight 

different feature extractors transform methods were tested. 

These transforms fell into either the per-pixel transform or 

small-width feature extractor categories. To evaluate the 

results of the testing, the mean IOU and average precision 

metrics of the various transforms were compared. 

After analysing the data from the tests, the following became 

apparent. Some of the feature extractors do positively 

influence the accuracy of the FCN. Adding multiple layers 

to the feature extractors was also found to improve the 

accuracy of the FCNs predictions. The per-pixel transforms 

were most competent at improving the segmentation 

performance of the FCN. Additionally, it was found that 

mask generation needs to be rigorous, otherwise, the use of 

feature extractors will not aid the FCN any more than normal 

RGB images will. 
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1 Introduction 

The agricultural sector plays a big role in the way humans 

currently live their lives. The sector has been subject to a lot 

of advancements in the past 60 years. Advances like modern 

irrigation, GMOs, pesticides and fertilisers allowed farmers 

to increase the output of their farms while decreasing the 

labour needed to maintain the farm. In recent years with the 

new advances in drone and Artificial Neural Networks 

(ANNs) technology, farmers can now monitor the health of 

their farm by having it surveyed by drones. These drones use 

two cameras. The first is a high-resolution camera, which 

captures RGB (Red, Green, Blue) and Digital Elevation 

Model (DEM) images. The second camera captures the 

Normalized Difference Vegetation Index (NDVI) and Near 

Infrared (NIR) images. These images can then be analysed 

by a trained ANN. The trained ANN will segment the crops 

from any background and using the different layers of the 

image, it will determine whether the crops are healthy and 

alert the farmers of any abnormalities. 

Although ANNs achieve state of the art segmentation 

accuracy for many applications, ANNs still produce 

segmented objects that have inaccurate boundaries or have 

low-quality resolutions. Furthermore, these architectures are 

data-intensive, requiring huge training samples to learn basic 

image features [7, 11]. 

The research conducted in this paper arose from the issues 
described above. This paper is a partial continuation of 

previous research conducted by the University of Cape 

Town Computer Science Honours students, to determine 

whether Convolutional Neural Networks (CNNs) or 

Random Forest Models (RFMs) are more accurate at 

segmenting tree data [2, 8]. In these respective papers, it was 

found that CNNs outperformed the RFMs. It was also 

identified by Aerobotics, a company that offers several 
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drone-based services for farmland monitoring and 

management, that using engineered features may be able to 

improve the segmentation of ANNs. The question posed in 

this paper is, whether using engineered features as inputs to 

CNNs can improve its segmentation performance for tree 

data. The types of CNNs were limited to U-Nets, Fully 

Convolutional Networks (FCNs) and Atrous Convolutional 

Networks. 

Presented in this paper is the research, results and subsequent 

conclusions drawn from exploring the question posed above, 

by experimenting on an FCN. An FCN is a neural network 

that uses a fully connected layer to improve segmentation 

[7]. In total eight different types of feature extractors were 

implemented. Five of the feature extractors were Per-pixel 

transforms and the rest were Small-width feature extractors. 

The project team hypothesized that the use of engineered 

features as inputs for the various CNNs would improve the 

CNN’s segmentation performance on tree data. It was, 

however, observed that segmentation performances between 

different unsupervised architectures had an almost 

negligible difference in the projects preceding this one [2, 8]. 

Similarly, many research projects dedicate a huge amount of 

resources into developing new CNNs or engineered feature 

models, only to experience a very small increase in either 

efficiency, speed or both. Thus, although it was 

hypothesized that there would be an improvement in the 

segmentation performance for tree data of CNNs, whether 

the improvement will be significant is uncertain. The 

outcome of this project allows any group wishing to conduct 

research in this field to decide whether they wish to; adopt 

this technology into their projects, invest more resources into 

further research on certain aspects of the project or to 

discontinue research in this field in favour of another. It also 

displays the effectiveness or ineffectiveness of feature 

extractors to improve image segmentation of CNNs, 

allowing other researchers to build on this premise and 

develop better feature extractor methods or combinations 

thereof. 

The project team devised the following research questions 

for this project: 

1. Do pre-processed engineered features used as inputs to 

neural networks positively influence the accuracy of the 

neural network when segmenting tree crops, over the 

base neural network band? 

2. Is the segmentation accuracy of certain engineered 

features positively influenced by the number of layers 

added to it? 

 

2 Background 

2.1 Artificial Neural Networks 

ANNs are architectures which use various connected layers. 

The various layers consist of input and output layers, as well 

as different hidden layers. The results of each layer are 

passed to the next layer and the operation weights are 

adjusted by the error produced in the classification. ANNs 

are excellent tools for finding patterns. 

A high-level example of how an ANN works would be, if 

the network is intended to recognize an object in an image, 

the first layer may analyse something like the brightness of 

its pixels. The next layer could then identify any edges in the 

image. After this, another layer may recognize textures and 

shapes, and so on. By the time the nth layer is reached, the 

ANN will have created complex feature detectors. It can then 

determine certain image elements which are commonly 

found together. After labelling of the outputs and by using 

backpropagation, the network can perform classification 

tasks on its own. 

2.1.1 Convolutional Neural Networks 

There is a wide variety of ANNs that perform image 

segmentation. The highest performing of these are CNNs. 

CNNs are machine learning models that use layers of 

connected neurons to perform an extremely wide variety of 

tasks, especially image classification [7]. This is done by 

assigning importance to different objects in an image and the 

ability to differentiate one object from another. CNNs make 

strong and mostly correct assumptions about the nature of 

images, which has been proven by Krizhevsky et al. Their 

results showed that a large, deep convolutional neural 

network can achieve record-breaking results on highly 

challenging datasets, using purely supervised learning [6]. 

2.1.2 Fully Convolutional Networks 

An FCN is defined by Guo et al., as an extension of the CNN 

model, where the basic idea is to make the CNN take an input 

of arbitrary-sized images [3]. The main characteristic that 

differentiates an FCN from other CNNs, is that the last fully 

connected layer is substituted by another convolution layer 

with a large receptive field. One of the drawbacks of FCNs 

is that, because of the fixed nature of the size of the receptive 

field, if an object is substantially larger or smaller than the 

size of the receptive field, it could be mislabelled or 

fragmented [9]. Another drawback is that the resolution of 

the feature map is downsampled due to all the convolutions 

and pooling layers that the data goes through. This leads to 

low-resolution predictions, which in turn leads to fuzzy 

object edges [3]. 

2.2 Image Features 
2.2.1 Per-Pixel Transforms 

These are modifications dedicated to transforming single 

pixels. The primary focus of manipulating the pixel values 

of images is changing the format of the colours they to 

represent, as well as isolating the components those formats 

consist of. Some examples of this type of transform, are; 

LAB, HSI, HSL, ICA, and PCA colour space transform [20].  

 

 



   
 

  3 
 

2.2.2 Small-Width Feature Extractors 

These are modifications dedicated to transforming a small 

neighbourhood of pixels. The focus of this transformation 

type being, modifications looking specifically at smaller 

objects in an image or at parts of an image. Some examples 

of this type of transform, are; Edge-detector, Mean-shift and 

Histogram Equalisation transforms [1, 4, 10, 13, 17, 23]. 

2.2.3 Large-Width Feature Extractors 

These are modifications dedicated to transforming a large 

neighbourhood of pixels [22]. The process of segmenting a 

neighbourhood of pixels typically follows one or more pre-

processing steps to isolate key information. However, 

sometimes these strategies can be applied to the source 

image depending on the application. Some examples of this 

type of transform, are; Hough and Templating Matching 

transforms. 

3 Related Work 

There seemed to be no other papers directly dealing with the 

questions asked in this paper, however, there were papers 

related to feature extraction of vegetation imagery that 

guided this project. 

In terms of the feature extraction of vegetation imagery. 

Wang et al., focused primarily on the LAB colour space 

method, which is a small feature extractor. They used this 

method to identify trees in images by looking for colours 

matching the green spectrum. They found that the method 

was very fast but had some shortcomings when the shades of 

green of different plants that were next to each other were 

too similar. This resulted in them being grouped [18]. In a 

follow-up paper, Wang et al. separated individual trees from 

the surrounding landscape in images. For images with 

simple backgrounds, they proposed using Edge Detectors, 

however for images with more complex backgrounds they 

devised their own method, based on Edge-detectors coupled 

with colour space methods, of which they recommended the 

LAB colour space method and mathematical morphology 

based on their results [19]. 

Zheng et al., firstly applied two per-pixel feature extractors, 

namely HSI colour spaces and RGB colour spaces, to the 

images. After this, they applied a small feature extractor, 

namely Mean-shift, to the images. This separated the images 

into two parts, green and non-green vegetation. They tested 

this algorithm on 100 images of different plant types, with 

different illuminations and soil types and achieved a median 

of mis-segmentation of 4.2% between green and non-green 

vegetation. They did note however that although this method 

produced an improved result, it suffered from a long runtime 

[23]. In the paper by Tao et al., the Mean-shift feature 

extractor was also used. They, however, applied the feature 

extractor first to the images and then they applied the 

Normalized-cuts method. By applying the Mean-shift 

method first, it allows the Normalized-cuts method to be 

applied to the resulting segments of the Mean-shift, rather 

than directly to the image pixels. They found this 

combination requires significantly lower computational 

complexity and therefore, is feasible for real-time image 

processing while yielding superior image segmentation 

performance [13]. Finally, Tellaeche et al., used a per pixel 

feature extractors and large feature extractors. They first 

apply an RGB colour space method to the images, which 

results in a binary image. This image shows crops as white 

and the soil, stones and residual as black. After the binary 

image is obtained, they apply a Hough transform to it, to 

detect the furrows of the crops in the image. Tellaeche et al., 

did not comment on the performance of this combination on 

its own, but that when used with Support Vector Machines, 

they found that it performed well, although results did vary 

in overexposed images [16]. 

4 Framework Design and Development 

The project framework was split into three distinct stages, 

namely the pre-processing stage for the creation of 

engineered features, the testing stage for testing the impact 

on accuracy that these features have on the respective CNN 

models and thirdly, the implementation of a presentation 

layer to aid in the collection of statistical outputs. It was 

hypothesized that the use of the pre-processed image 

features would lead to an increase in the accuracy of the 

various CNN models tested. 

4.1 Design 

The overall structure of the software that needed to test the 

hypotheses was split into the following layers; a feature 

extraction layer, a CNN layer and a Tensorflow presentation 

layer. The overall structure of the implementation can be 

seen in Figure 1. The raw image data were fed into the 

feature extraction layer, where the various transforms were 

applied to the image data and saved. The image masks and 

plain RGB images were also saved in this layer to use in 

validation and obtaining the ground truth. All the processed 

images were then fed into the CNN layer. This layer was 

broken into the three different types of CNNs, as it was 

tested independently by the members of the project team. 

The model was trained and evaluated on the image data in 

various tests. Finally, the results from the testing were sent 

to the presentation layer, where it was stored and presented. 
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Figure 1: Structure of the planned implementation 

4.2 Development Tools 

This project was developed in Python, as Python has many 

frameworks and libraries useful for the project. The libraries 

that were used for this project were; OpenCV, ImageMagick, 

Matplotlib, NumPy, SciKit-Learn, SciKit-Image, 

pymeanshift, KittiSeg and TensorFlow. NumPy was used to 

create numpy arrays out of the H5 files containing the image 

data. OpenCV,  ImageMagick, Matplotlib, SciKit-Learn, 

SciKit-Image and pymeanshift were used to perform the 

transformations on the dataset. KittiSeg was used as the FCN 

implementation. TensorFlow was used to monitor the 

training and evaluation of models.  

4.3 Implementation 
4.3.1 Driver Class and Feature Extractors 

The first stage required the creation of a driver class for the 

image feature extraction. This was done by the combined 

efforts of the group. Implementing each of the actual 

transformations within this driver was done individually, 

resulting in the driver class having eight different feature 

extractors. 

For the Per-pixel transforms, the project team implemented 

LAB, HIS, HSL, ICA and PCA colour space transforms. For 

the actual implementations of these five, the LAB and HSI 

colour space transforms used the ImageMagick library,  the 

HSL colour space transform used the matplotlib library,  the 

ICA colour space transform used the OpenCV library and 

the PCA colour space transform used a method from a 

GitHub repository. 

For the small-width feature extractors, the project team 

implemented Edge-detector, Mean-shift and Histogram 

Equalisation transforms. For the actual implementations of 

these three, the Edge-detector and Histogram Equalisation 

transforms was implemented by using the OpenCV library, 

and for the Mean-shift transform a GitHub repository 

implementation was used fjean’s pymeanshift [5]. This 

GitHub repository was decided on, as OpenCV had no 

Mean-Shift method. The repository allowed for the easy 

tweaking of parameters and upon visual inspection produced 

the most competent Mean-shifts from the different 

repository's that were explored. 

Finally, for the large-width feature extractors, the project 

team originally planned to implement Hough transforms and 

Template matching, however, after analysis of the datasets, 

the large-width feature extractors were abandoned, as it 

would not be helpful for the type of data provided. 

4.3.2 Convolutional Neural Networks Implementation 

As input for the next stage, the feature extractors were 

applied to raw images. These images could then be fed into 

the various CNN models. To establish a base-accuracy to 

compare to, the CNN models were also trained on raw image 

data. The second stage revolved around testing these 

transformations with three different CNN models, which 

was performed individually. Each team member explored 

one of the three CNN models.  

For the implementation of the FCN and its training and 

evaluation environment, a GitHub repository 

implementation was used MarvinTeichmann’s KittiSeg [14, 

15]. Contained in this repository, is MarvinTeichmann’s 

implementation of an FCN, that was based off the paper by 

Long, et al [7], and the KittiSeg pipeline, which made the 

training and evaluation of models much easier. This 

repository was chosen as; 

• the FCN was based off a well-cited paper. 

• the pipeline made it easy to tweak the FCN parameters, 

as well as train and evaluate using the Aerobotics 

datasets. 

• the FCN made use of a VGG16 numpy file that 

contained pre-trained weights, which reduced the 

training time needed to produce a competent model. 

• the Kittiseg project was created originally to segment 

images of roads into two classes, road and not road. 

This project deals with segmenting tree data into two 

classes, tree and not tree. Thus, minimal tweaking was 

needed for the FCN.  

There were minimal changes made to the code to make it 

usable for this project. A config file was written in order to 

use the Aerobotics dataset and to tweak the parameters of the 

FCN, a method was removed that would check for and then 

download the original CityScape dataset, a dataset of road 

images that the KittiSeg project used, and the calculation of 

the mean Intersection Over Union (IOU) metric, as well as 

the appending of said metric to a log file and tensorboard,  

was added. 
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4.3.3 Presentation Layer 

The third stage was to implement a presentation layer to 

collate and clearly show various statistical outputs measured 

from training. The TensorFlow library was used to achieve 

this. It was used as it is a leading framework in the machine 

learning industry and has vast support and documentation 

which allowed the easy implementation of the planned 

design. 

5 Experiment Design and Execution 

5.1 Hardware 

All the tests were run on the same machine. This machine 

had an Intel Core i7 3770 CPU, 16GB DDR3 RAM and an 

NVIDIA GeForce GTX 1060 6GB GPU, which was running 

Ubuntu 18.04. 

5.2 Training Data 

The training data used consisted of datasets provided by 

Aerobotics. These files were in the H5 file format, which 

consists of multidimensional arrays of data. These files were 

created from the multispectral images taken from drones 

owned by Aerobotics. 

These files contained different layers. As mentioned before, 

each image contained an RGB layer, a DEM layer, which is 

a 3D representation of a terrain's surface created from a 

terrain's elevation data [21], an NDVI layer, which measures 

the difference between the light that is a reflected and 

absorbed by vegetation [12], an NIR layer, which picks up 

all the infrared light in the range of 700nm-1400nm on the 

electromagnetic spectrum and a mask layer, which is the 

ideal  a layer used in training to compare.  

Two data sets of differing sizes were considered to perform 

tests on. A small dataset, which consisted of 636 images and 

a large dataset which consisted of 1942 images. As time was 

limited and a large dataset takes more time to train with, it 

was necessary to establish whether a large dataset would 

improve the segmentation performance of the FCN versus 

an FCN trained using a small dataset. Eight tests were run, 

four on each dataset, to determine which performed best. 

The results from these tests showed that the FCN trained on 

the small dataset performed slightly better than the FCN 

trained on the large dataset and thus the small dataset was 

used in all subsequent tests. 

The images in the small dataset were split 90/10, where 90% 

was used to train the model and 10% was used to evaluate 

the model. To make up the 10% of the dataset used for 

validation, the first 10% of every 100 images were extracted 

and added to the validation dataset, to ensure the validation 

dataset represents the whole dataset and not just a niche 

section of it. Among all the tests conducted, the training and 

evaluation images were kept the same and in the same order 

to ensure consistency. Some examples of the test data are 

provided in Figure 2. 

Figure 2: Examples of the test data 

5.3 Overview of Experiment 

To ensure the experiment was rigorous, the reproducibility 

of the experiment was of utmost importance. The first step 

of the experiment was to train and evaluate the FCN model 

on unprocessed RGB images to observe the base accuracy of 

the model. After this, the FCN was trained and evaluated on 

the pre-processed engineered features to validate the 

improvement in segmentation accuracy. Great care was 

taken to ensure the raw and transformed images were in the 

same order and came from the same base image. Once this 

was completed, the FCN model was trained and evaluated 

again on the ground truth RGB images and on all the feature 

extractors, with the only difference being that the images 

also had the DEM layer added. This test would then be able 

to determine whether adding layers, specifically the DEM 

layer, would improve the segmentation accuracy of the 

feature extractors. For this experiment, all tests ran for 

exactly 5000 epochs.  

To decide how many epochs each test should run for, the 

FCN was trained on the RGB single-layer images while the 

rate of increase in the mean IOU was determined every 2500 

epochs. For the first 2500 epochs, the mean IOU increased 

by 6.18%. For the second 2500 epochs, the mean IOU 

increased by only 0.09%. After making this observation, it 

was concluded that the rate of increase in the mean IOU, 

using the FCN trained on the RGB single-layer images, did 

not materially increase after 5000 epochs. It was therefore 

decided to end all tests after 5000 epochs. 

Validation of the prediction against the original image was 

performed every 100 epochs. To make visual comparison 

possible, the prediction was overlaid over the original image. 

In the prediction,  the colour orange denotes trees while the 

colour blue denotes everything that is not trees. A series of 

predictions is shown in Figures 3, 5 and 6.  
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During training the TensorFlow framework provided real-

time metrics, allowing the evaluation of the segmentation 

accuracy. Segmentation accuracy validation is represented 

as a percentage change measuring the predicted 

segmentation map to the correct one. 

5.4 Evaluation 

The base segmentation performance of the FCN model was 

determined by training and evaluating it on the raw RGB 

images and comparing this segmentation performance to the 

segmentation performance of the models trained and 

evaluated on feature extractors. This experiment was further 

split into two parts. Firstly, the segmentation performance of 

the FCN when given only transforms made of single layers 

were tested. Secondly, the segmentation performance of the 

FCN when given transforms made of multiple layers was 

tested. To answer the other research questions, the 

segmentation performance on a single layer was compared 

to the segmentation performance on multiple layers. 

The two metrics used to asses segmentation performance 

was mean IOU and the average precision of the models. IOU 

looks at the ground-truth bounding boxes and the predicted 

bounding boxes from the model. It then takes the area of 

overlap between the two boxes, over the area of the union of 

the boxes. This then gives a metric between zero and one 

hundred on how closely these two boxes match, zero being 

not at all and one hundred being perfect. Thus, the IOU 

shows how closely the model predicted the bounding box of 

the object versus the actual bounding box of the object, for a 

prediction. Mean IOU is then just the average IOU taken 

over the course of the model’s evaluation and training. 

Precision, on the other hand, expresses the percentage of the 

relevant predictions. This metric is also evaluated between 

zero and one hundred, zero meaning that the model made 

many false-positive readings, while one hundred means that 

there were no false positives. Thus, average precision is just 

the precision averaged over the course of the model’s 

evaluation and training. The accuracy was also computed, 

although as this project deals with an imbalanced 

classification problem, it is not a good measure for assessing 

the model’s performance. It was therefore not considered in 

the evaluation of the FCN. Mean IOU and average precision 

are defined by the following formulas. Where given; 

Precision = P,  True Positives = TP, 

False Positive = FP, False Negative = FN, 

Total Precision = TOTP, Total IOU = TIOU, 

n = Current Epoch, 

One can define; 

𝑃(𝑛) =
TP(n)

TP(n) + FP(n)
 

𝐼𝑂𝑈(𝑛) =
TP(n)

TP(n) + FP(n) + FN(n)
 

𝑇𝑂𝑇𝑃(𝑛) = 𝑃(𝑛) + 𝑇𝑂𝑇𝑃(𝑛 − 1) 

𝑇𝐼𝑂𝑈(𝑛) = 𝐼𝑂𝑈(𝑛) + 𝑇𝐼𝑂𝑈(𝑛 − 1) 

And thus; 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑛) =
𝑇𝑂𝑇𝑃(n)

n
 

𝑀𝑒𝑎𝑛 𝐼𝑂𝑈(𝑛) =
TIOU(n)

n
 

6 Results and Discussion 

6.1 Single Layer Transforms 

The research related to the first research question is 

discussed both in this section and the following section. The 

first question was whether the use of pre-processed 

engineered features as inputs to neural networks has a 

positive influence on the accuracy of the said neural 

network, when segmenting tree crops, over the base (raw 

image band) neural network band. 

As per the experimental design, the base truth was first 

established by training and evaluating the FCN on the single-

layer RGB images. After training it for 5000 epochs, it 

yielded an average precision of 92.11% and a mean IOU of 

78.32%. As can be seen in Figure 3, the FCN made an 

inaccurate first prediction, but after 5000 epochs the 

prediction was quite accurate.  

Figure 3: Image depicting the RGB input image (1), the 

mask of the image (2), the first prediction made (3) and 

the last prediction made (4) 
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After the base truth was established, the feature extracted 

inputs were trained and evaluated on the FCN. All the 

outputs from these tests can be seen in Table 1. The mean 

IOUs from these tests were mostly less than the ground 

truth’s, hovering around the mid 77%s and low 78%s. On 

average the mean IOU of the eight transforms was 75.54%, 

which is 2.78% less than the ground truth. Two notable 

outliers were the Edge Detector and HSI colour space 

transforms. These two performed exceptionally poor, with 

the Edge Detector having a mean IOU of 68.52% and HSI a 

mean IOU of 67.6%. Only one transform performed better 

than the ground truth test, which was the PCA colour space 

transform. It had a mean IOU of 79.16%, which is an 

increase of 0.84%. 

The lack of improvement shown by the FCN when trained 

on the feature extracted inputs could be due to various 

factors. The first factor could be that on this level of detail, 

the use of the normal RGB images as inputs teaches the FCN 

enough tree elements to be able to competently segment tree 

from non-tree. Another factor could be that none of the 

feature extractors used was optimised for extracting features 

from tree data. A final factor to consider was that the masks 

of the images provided were not as accurate as one would 

desire it to be. This resulted in the FCN teaching itself tree 

elements that produced predictions that were more 

competent than the mask.  On comparison of the prediction 

with the mask, the prediction would be assigned an incorrect 

low IOU and precision score. This hampers the learning 

process of the FCN as it discourages the FCN from learning 

elements that would produce predictions that are more 

competent than the mask.   

Although the first two causes may be true, the tests 

performed in this experiment does not prove either. This was 

not, however, the case for the final factor. It was observed 

that the average precisions of all transforms were much 

higher than the mean IOUs. As can be seen in the formulas 

of the two metrics, the only difference between these two 

metrics is that the IOU also adds the false negatives (FNs) 

produced by the FCN to the denominator. With the mean 

IOU being consistently lower than the average precision, it 

implies that a consistently high FN count is generated. With 

the high occurrence of FNs, it can be deduced that the masks 

are not sufficiently precise, meaning it includes a large area 

of non-tree inside of the area it claims to be tree. This 

conclusion was supported visually by inspecting the input 

image versus the mask in Figure 3. The separation of some 

trees was only denoted by a dotted line and there were 

instances where clear spaces can be seen between trees on 

the RGB image, but the mask shows these trees as being 

connected. This can be seen in Figure 3 in the second row 

from the top between the first two trees from left in images 

(1) and (2). 

After inspection of all the single-layer mean IOU 

TensorFlow charts, it was seen that although the mean IOU 

measured in most of the transform’s  plateaued after  5000 

epochs, the LAB and PCA colour space transforms had not 

plateaued yet. These two transforms showed increases of 

1.81% and 1.63%, respectively in the second 2500 epochs. 

It was therefore decided to run the two transforms again for 

7500 epochs to see whether the rate of change in the mean 

IOU stabilised between 5000 and  7500 epochs.  

The mean IOU for the test ran for 7500 epochs using the 

PCA transform barely increased from the one that ran for 

5000 epochs.  The 7500 epochs test only yielded a 0.08% 

increase in mean IOU, reaching 79.24%. The LAB colour 

space transforms mean IOU, however, showed a larger 

increase, ending 1.05% higher after 7500 epochs, reaching 

79.94%. By extrapolating the rate of increase in mean IOU 

for the RGB test measured over the last 2500 epochs it 

follows that the FCN trained on RGB images could increase 

at most by a further 0.09% if ran for a further 2500 epochs, 

up to 7500 epochs, reaching 78.26%.  Thus, the LAB and 

PCA colour space transforms would, at minimum, 

outperform the base RGB test by 1.68% and 0.98% 

respectively. These increases were noteworthy because these 

were the only transforms that did not plateau after 5000 

epochs and that improved on the RGB’s performance in the 

single-layer category. This indicates that PCA and LAB 

transforms are more appropriate for tree data. It would have 

been preferable to retest all the transforms to ensure that the 

accuracy and IOU have in fact stabilised, but due to limited 

time, only the transforms that showed the showed the highest 

rates of increase were retested. The charts of the two 

transforms that ran for 7500 epochs can be seen in Figure 4.  

 

Figure 4: The Mean IOU charts produced by 

TensorFlow after 7500 epochs for the single-layer LAB 

and PCA colour space transforms 

Another observation made, was that barring the two 

transforms that performed exceptionally poor and the 

Histogram Equalisation, all transforms slightly 

outperformed the ground truth’s average precision. The best 

again being the PCA colour space transform, outperforming 

the ground truth’s average precision by 0.8%. It was also 

seen that when disregarding the two outliers, the mean 

average precision of all the transforms was 0.13% higher 
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than the ground truth’s average precision. This means that 

on average when an FCN is given a single layer transform as 

input, the model makes fewer FP predictions when using 

feature extracted inputs, compared to when using only RGB 

images. 

Transforms Mean 

IOU 

Accuracy Average Precision 

RGB (Ground truth) 78.32% 92.00% 92.11% 

Mean-Shift 78.06% 92.00% 92.22% 

Edge Detector 68.52% 88.00% 87.66% 

Histogram Equalisation 77.97% 93.00% 92.06% 

LAB 77.69% 92.00% 92.37% 

HSI 67.60% 85.00% 86.61% 

HSL 77.58% 91.00% 92.27% 

PCA 79.16% 91.00% 92.91% 

ICA 77.47% 92.00% 92.23% 

Table 1: Metric outputs from tests conducted using  

single-layer transforms 

Figure 5 depicts the single-layer image that was evaluated 

on, as well as the model’s first and last predictions, for both 

the worst-performing transform and the best performing 

transform. For the HSI transform, the FCN produced a poor 

first prediction, while the PCA transform, produced a decent 

prediction already. 

Figure 5: Image depicting the HSI’s input image (a1), 

first prediction made by the FCN (a2) and last prediction 

made by the FCN (a3), and the PCA’s input image (b1), 

first prediction made by the FCN (b2) and last prediction 

made by the FCN (b3) 

6.2 Multiple Layer Transforms 

For these tests, the same process was followed as was the 

case for the single-layer transforms. The multiple-layer 

transforms yielded a ground truth of an average precision of 

92.94% and a mean IOU of 79.7%. As can be seen in Figure 

6, with the added DEM layer, the FCN made an overly tight 

first prediction, however, its last prediction was very close 

to the provided mask. 

Figure 6: Image depicting the multiple layer RGB input 

image (1), the mask of the image (2), the first prediction 

made (3) and the last prediction (4) 

For these tests, all outputs can be seen in Table 2. The mean 

IOUs again did not fluctuate much from the ground truth. On 

average the mean IOU of the eight transforms was 78.32%, 

which is 1.38% less than the ground truth. The worst 

performing transforms in this round of testing was the HSI 

and HSL transforms. When disregarding these two outliers, 

the average mean IOU of the six transforms was only 0.04% 

less than the ground truth. There were three transforms that 

performed better than the ground truth and these were the 

Mean-Shift, Histogram Equalisation and ICA transforms. 

The highest of the three, ICA, had a mean IOU that was 

1.75% higher than that of the ground truth. Although the 

transforms in this section performed much better than the 

transforms in the previous section. Generally, there was still 

a lack of improvement over the ground truth. The reasons for 

this lack of improvement could be due to the same factors as 

was discussed in the single-layer transforms section.  

After inspection of all the multiple-layer mean IOU 

TensorFlow charts, it was seen that four of the mean IOU 

values had not plateaued after 5000 epochs.  Of these four, 

only the two that showed the highest rates of increase during 

the last 2500 epochs were retested, also up to 7500 epochs. 

The two retested inputs were RGB, which had a 2.47% 

increase in mean IOU during the second 2500 epochs, and 

PCA, which had a 2.17% increase in mean IOU during the 

second 2500 epochs. 

The PCA’s mean IOU at 7500 epochs did not increase much 

from that measured in the previous test that ran only up to 

5000 epochs. It only increased by 0.27%, reaching 79.62%.    

In the case of the RGB test, the mean IOU also did not 

increase much, ending 0.19% higher at 7500 epochs, 

reaching 79.89%. The charts of the two transforms that ran 
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for 7500 epochs are shown in Figure 7. From this, it was 

deduced that extending the tests to 7500 epochs does not 

make a significant difference in either mean IOU or average 

accuracy for multiple-layer transforms.   

 

Figure 7: The Mean IOU charts produced by 

TensorFlow after 7500 epochs for the multiple-layer 

RGB images and PCA colour space transform 

For average precision, the two worst tests in this metric were 

still HSI and HSL, and three transforms outperformed the 

ground truth, which was Mean-Shift, Histogram 

Equalisation and ICA. When disregarding the two outliers 

again, the mean average precision of the transforms was 

0.17% less than the ground truth’s average precision. This 

leads to the deduction, that on average when an FCN is given 

a multiple-layer transform as input, the model makes slightly 

more false-positive predictions when using feature extracted 

inputs. 

Transforms Mean 

IOU 

Accuracy Average Precision 

RGB (Ground truth) 79.70% 92.00% 92.94% 

Mean-Shift 80.30% 92.00% 93.06% 

Edge Detector 79.16% 93.00% 92.45% 

Histogram Equalisation 79.87% 91.00% 92.84% 

LAB 77.69% 92.00% 92.37% 

HSI 74.60% 91.00% 91.11% 

HSL 74.15% 91.00% 91.06% 

PCA 79.35% 92.00% 92.59% 

ICA 81.45% 93.00% 93.29% 

Table 2: Metric outputs from tests conducted using  

multiple-layer transforms 

6.3 Single – vs Multiple Layer 

The research related to the second research question is 

discussed in this section. The question being is whether the 

segmentation accuracy of certain engineered features was 

positively influenced by the number of layers added to it. 

When comparing the results from Table 1 and 2, the single-

layer transforms had an average mean IOU of 75.51%, while 

the multiple-layer transforms had an average mean IOU of 

78.32%, which is an improvement of 2.81%. The average 

precision of the multiple-layer inputs also outperformed the 

single-layer input by 1.31%.  

The difference can also be seen when comparing Figure 3 

and Figure 6. The initial prediction in Figure 3 is quite loose 

and over predicts the trees, while the initial prediction in 

Figure 6 is overly tight and underpredicted the trees. The 

final prediction of both are very competent, however, when 

examined a bit closer, Figure 6’s final prediction picked up 

some of the gaps between the trees, while Figure 3’s final 

prediction was not as well adapted to picking up these gaps. 

Thus, it can be deduced that when adding additional layers, 

the new tree elements the FCN learns from the new layer is 

more valuable than what it learns from the feature extracted 

inputs alone, as the ground truth and transforms performed 

very similarly. 

7 Conclusions 

In conclusion, the use of certain engineered features did 

increase the accuracy of the FCN when segmenting tree 

crops, over the base (raw image band) neural network band, 

although very slightly. Generally, the impacts were not 

always positive, however, of the per-pixels transforms the 

LAB, PCA and ICA colour space transforms performed the 

best on the data and of the small-width feature extractors it 

was the Mean Shift and Histogram Equalization transforms 

that performed the best on the data. 

The high average precision and low mean IOU pointed to the 

fact that the predictions produced a high number of false-

negative predictions. This was caused by the image masks 

that were not a good enough representation of the actual 

trees. The relatively poor quality of the masks was a 

detriment to the project, as the FCN cannot be expected to 

perform well when the masks training it are not accurate 

representations of the real-life data. It will be beneficial to 

ensure that a rigorous mask extractor is created.  

From the tests performed with more epochs, it could be seen 

that the FCNs trained on the single-layer images did not all 

plateau after the 5000 epochs. This leads to the conclusion 

that for single-layer inputs, the FCN needs to be trained 

longer on feature extractors and that the feature extractors 

will over time overtake the RGB’s segmentation 

performance. For multiple-layer inputs, only insignificant 

improvements were observed after 5000 epochs.   

When comparing the single and multiple layer inputs with 

each other, it was observed that using inputs that utilise 

multiple layers does improve the segmentation performance 

of the FCN, over just using single layer transforms. Thus, it 

can be concluded that the segmentation accuracy of certain 
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engineered features is indeed influenced by the number of 

layers added to it. 

8 Limitations 

There were limitations experienced throughout the course of 

the project. The first and biggest limitation is the time 

allocated to the project. This project was allocated a six-

week time span, which greatly limited the scope of 

experimentation and the ability to solve other issues faced 

throughout the course of the project. This, regrettably, lead 

to the team having to decrease the scope of this project, as 

well as the amount of testing conducted. 

The next limitation that was faced was the implementation 

of the Edge Detector. The OpenCV and two different GitHub 

repositories were considered, but all three implementations 

noticed too much detail, causing the image to be a mess of 

edges (trees, leaves and ground). It seemed as if these 

implementations were not appropriately blurring the image. 

All three’s parameters were tweaked to try and improve the 

blurring, to no avail. In the end, no more time could be spent 

attempting to fix the Edge Detector. The project team, 

therefore, settled on the OpenCV implementation of the 

Edge Detector, because it could differentiate between tree 

and ground despite it still being a mess of edges, leading to 

the mess of edges to be contained within the area that was 

tree data. 

The last limitation experienced was that the FCN was built 

to read images in the JPG or PNG formats. The team's initial 

plan was to read in numpy arrays, to be able to pack together 

as many layers and combinations as the project team desired. 

However, in this FCN’s case, it was not a possibility. An 

attempt was made to change the way that images were read, 

to allow the FCN to rather use numpy arrays. Initially, it 

seemed to be an easy task, as the image files were 

transformed into numpy arrays. It was however found that 

that the code was hardcoded to work specifically with 

numpy arrays created from a four-channel image. If the 

numpy array does not have that exact number of channels, 

the FCN would crash when reading the data. The project 

team believed this issue could be solved, however, the 

project team did not have the time to analyse and rewrite the 

part of the KittiSeg project code that read and prepared the 

input files, as well as overlaid the predictions onto the input 

image. 

9 Ethical, Professional and Legal Issues 

There were no ethical issues experienced during this project 

as the project team did not; do research on humans or 

animals, use personal data, or generally interact with people 

outside of the project team. There also was no dispute over 

the ownership of the intellectual property, as the engineered 

features were not novel ones provided by Aerobotics and the 

intellectual property of the platform the project team 

designed to test the hypothesis on belong to the team and the 

supervisors. 

Software licensed under GPL-3.0 was extended 

(MarvinTeichmann’ KittiSeg [14] & fjean’s pymeanshift 

[5]). This means the sections handling mean-shift 

transformations, as well as the FCN implementation were 

released under the same licence. 

10 Future Work 

As stated earlier, there were a few limitations to this project 

that could be solved in future projects. With these limitations 

solved, future projects could explore using more feature 

extractors. Future projects could also go into deeper detail 

on how much the different types of layers improve the 

segmentation performance of the FCN by their addition or 

subtraction. 

Another next step for this project is to experiment with 

combinations of feature extractors and how these 

combinations impact the segmentation of tree data by FCNs. 

Thereby testing to see if transform combinations might be 

able to improve segmentation performance and possibly 

finding a gold standard of transforms that can be applied to 

images containing tree data, that greatly improve the 

segmentation performance of CNNs.  
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