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ABSTRACT

Datalog is a declarative logic programming language that uses
classical logical reasoning as its basic form of reasoning. Defea-
sible reasoning is a form of non-classical reasoning that is able
to deal with exceptions to general assertions in a formal man-
ner. The KLM approach to defeasible reasoning is an axiomatic
approach based on the concept of plausible inference. Since Dat-
alog uses classical reasoning, it is currently not able to handle
defeasible implications and exceptions. We aim to extend the
expressivity of Datalog by incorporating KLM-style defeasible
reasoning into classical Datalog. We present a systematic ap-
proach to extending the KLM properties and two well-known
forms of rational defeasible entailment, Rational Closure and
Lexicographic Closure, to Datalog.

CCS CONCEPTS

« Theory of computation — Automated reasoning; Logic
and databases; + Computing methodologies — Nonmono-
tonic, default reasoning and belief revision;

KEYWORDS

knowledge representation and reasoning, defeasible reasoning,
KLM approach, Rational Closure, Lexicographic Closure, Datalog

1 INTRODUCTION

The Knowledge Representation and Reasoning approach to Ar-
tificial Intelligence uses logics to represent knowledge and au-
tomated reasoning methods to draw new conclusions from that
knowledge. Classical reasoning systems are monotonic. This
means that all information is certain and adding new informa-
tion does not change the conclusions that you could draw before.
This form of reasoning can be too weak to model certain systems.
To illustrate this, consider an example where these statements
are made:

Example 1.1.

(1) Students do not pay taxes.
(2) First years are students.
(3) Tutors are students.

From this, we can conclude that “tutors do not pay taxes”, which
may in fact be incorrect. However, each of these statements is
perfectly reasonable from a human perspective. What we actu-
ally meant was “typically, students do not pay taxes”. Then, when
we add the extra information that tutors typically pay taxes, we
want the system to retract its conclusion that “tutors do not pay
taxes”. However, a monotonic, classical reasoning system can-
not change previous assumptions, and knowing that “tutors pay
taxes” and “tutors do not pay taxes”, it must then conclude that
no tutors can exist, otherwise we would get a contradiction. In
non-monotonic systems, defeasible statements of the form “typi-
cally, something is the case” are permitted. This allows for a more
“common sense” approach to reasoning than in the approach of
classical reasoning[5].

In this paper, we discuss the KLM approach[12], a well sup-
ported approach to non-monotonic reasoning. In Sections 2 and
6 we discuss the existing algorithmic definition of this approach
for propositional logic. In Section 3 we discuss Datalog, a more
expressive logic. The central focus of this paper is to extend the
KLM approach to the Datalog case. We discuss this extension in
Sections 4, 5 and 7. The work in Sections 1 - 5 was done jointly
with Morris.

2 BACKGROUND
2.1 Propositional Logic

Propositional logic [2] is a simple logic which uses classical reason-
ing. A propositional atom, denoted by p or g, is a statement that
can be assigned a truth value (true or false), which cannot be de-
composed into smaller such statements. We build up a language
L of propositional logic, by recursively combining statements
using Boolean operators, for example: « — f (implies), a A
(and), a V f (or), and —a (not).

We can represent the statements from Example 1.1 in proposi-
tional logic, using atoms s, x, f and ¢ to represent students, taxes,
first years and tutors respectively:

(1) s > —x

@ f—s
B)t—os

Intuitively, « — f means that if « is true then f is true, A
means that both @ and f are true, @ vV  means that at least one
of a or f§ are true, and —a means that « is not true.

Reasoning in propositional logic involves answering questions
such as “Can we logically conclude a from a knowledge base K ?”.
This is referred to as entailment, and is denoted by K |= a. For
example; we can logically conclude that “first years do not pay
taxes” from the statements in Example 1.1 and we denote this by
K= f— —x

2.2 The KLM Approach

There are many different formalizations of non-monotonic rea-
soning for propositional logic. The KLM approach proposed by
Kraus et al [12] is an axiomatic approach based on the concept of
plausible inference. It is currently a well supported approach[4,
15]. In this approach, plausible inference is represented by a de-
feasible implication operator of the form a |~ f, which intuitively
means that « is typically a good enough reason to believe f. In
this case, « and f§ are just classical statements. For example; we
can now represent the statement “typically, students do not pay
taxes” as follows:

s -

We now want to answer questions such as “Can we typically
conclude a |~ B from a defeasible knowledge base K (one includ-
ing defeasible implications)?”. This is referred to as defeasible
entailment, and denoted by K k « |~ .



2.3 The KLM Properties

Unlike classical entailment, defeasible entailment is not unique.
There exist multiple formalizations of defeasible entailment, such
as Rational Closure [14], Relevant Closure [4] and Lexicographic
Closure [13]. The KLM framework provides a list of rationality
properties, which Lehmann and Magidor [14] argued must be
satisfied by defeasible entailment methods. This provides a way of
differentiating between acceptable and non-acceptable methods
of entailment. If a defeasible entailment algorithm satisfies all
the properties it is believed to be an acceptable form of defeasible
entailment and is called LM-rational. The KLM properties for
propositional logic are stated below:

a=f, Kkrkaly

ReH Kk ala (LLE) KEp Ry
(RW) %‘fw (And) K h; ';f |~7(ﬁij hy
o TS e

All of these properties have a fairly intuitive meaning. For ex-
ample; consider the following two defeasible implications which
can be represented using propositional logic:

Typically, tutors are students. ths
Typically, tutors are employees. the

It seems rational to conclude the statement below. This is
exactly what the And property enforces. Kraus et al [12] provide
detailed descriptions of the intended meaning of each property.

Typically, tutors are students and employees. thsne

2.4 Rational Closure

Rational closure is in many ways the most simple and intuitive
way of defining defeasible entailment. There is a semantic defi-
nition, based on underlying structures we call Ranked Interpre-
tations. There is also an equivalent algorithmic definition[10],
which we refer to as the Rational Closure Algorithm. For our pur-
poses, we will use the algorithmic definition as the sole definition
of Rational Closure.

This algorithm is split into two distinct sub-algorithms, pro-
posed by Casini et al [6]. The BaseRank algorithm is used to con-
struct a ranking of the statements in the defeasible knowledge
base K. The RationalClosure algorithm is used to compute
whether a defeasible rule is entailed by the knowledge base, and
uses the BaseRank algorithm in its definition.

The BaseRank algorithm takes a defeasible knowledge base
K as input. It is important to note that we can assume that K is
defeasible because any classical sentence « can be expressed as a
defeasible implication —a |~ L.

Intuitively, the BaseRank algorithm starts by putting all of the
statements from K, converted to their classical forms, into E.
That is, every a |~ f becomes @ — f. Then, to get E;41 from E;,
we keep all the statements such that the left hand side can be
“disproved” by the statements in E;.

When the algorithm stops, what will eventually be left in E; 41
is all classical statements. Thus, the infinite level R, represents
all certain information in the knowledge base.

Algorithm 1: BaseRank

Input: A knowledge base K

Output: An ordered tuple (Ry, . .., Ry—1, R, 1)
11:=0;

N

2 Ey = K;
3 repeat
4 | Eiy1:={a—> feE;|E [ a};
5 | Ri:=Ei\Ei+i;
6 i=i+1

7 until E;_1 = Ej;
8 R := Ej_1;

9 if E;_; = () then
10 L ni=i—-1;

1 else
12 L n:=i
13 return (Ry,...,Ry—1, R, 1)

Let us consider the following example knowledge base K,
made up of information which we know to be true:

Example 2.1.

(1) Tutors are students (¢t — s)

(2) First years are students (f — s)

(3) Tutors typically pay taxes (t |~ x)

(4) Students typically do not pay taxes (s |~ —x)
(5) Students typically drink coffee (s |~ c)

Following the BaseRank algorithm, we find the following rank-
ing of the statements from Example 2.1:

0 sh=x shec
1 thx
0 t—>s fos

Figure 1: Base Ranking of Statements in % in Example 2.1

Intuitively, more general statements will appear higher up in
the ranking. For example, since “Tutors are students”, Students
are a more general concept than Tutors, so the statements with
Students on the left hand side will appear higher up in the ranking.

Algorithm 2: RationalClosure

Input: A knowledge base K and a defeasible implication
al~p
Output: true, if K k « |~ f, and false, otherwise
1 (Ro, ..., Rn-1, Reo, n) := BaseRank(K);
2 1:=0;
i<
3 R:= U;zon Rj;
4 while R UR |= ~a and R # 0 do
5 L R:=R\R;;

6 i=i+1;

7 return Ro UR = a — f5;

The RationalClosure algorithm starts with the ranking pro-
vided by BaseRank. It is also asked whether we can conclude
a |~ p from K. Note again that, while this query must be ex-
pressed in terms of the defeasible implication operator, we can



express any classical sentence as a defeasible implication. Thus,
the algorithm can be used to check classical queries as well.

In each iteration, the algorithm checks if we can conclude —a
from our current set of information. If we can, then there is no
point in even trying to consider if & |~ f is the case, since « is
never true. Thus, we throw away the top level of the ranking (the
least typical statements) and proceed to the next iteration.

In Example 2.1, consider K being presented with the query
t |~ x, which represents asking “Do tutors typically pay taxes?”.
The algorithm finds that -t is a logical consequence of all of the
statements. That is, we can conclude that there are no tutors.
Thus, we throw away the top level, as shown in Figure 2, and
check again if there are any tutors with the remaining statements.

0 ) sl
1 thx

o0 t—s fos

Figure 2: Top level of K in Example 2.1 is thrown away

Eventually, when we reach a point at which we can no longer
conclude —a, we can then check whether @« — f holds in the clas-
sical case, and return that as our result. So the RationalClosure
algorithm just reduces to a sequence of classical entailment

checks.

3 DATALOG
3.1 Standard Datalog

Datalog is a more expressive logic than propositional logic. It
allows us to represent statements about specific individuals as
well as generic concepts, which can be associated with many
individuals. For example; in Datalog we can say that “For all X,
X is a tutor” or “Tyler is a tutor” but in propositional logic we
can only talk about tutors in general.

Consider the following example, which includes some state-
ments that can be represented using Datalog:

Example 3.1.

(1) For all X, if X is a first year, then X is a student.

(2) If Tyler is a tutor, then Tyler is a student.

(3) For all X, if X is a tutor and post-graduate, then X is a
teaching assistant.

In this section we briefly discuss the syntax and semantics
of Datalog. Complete formalizations of Logic programming and
Datalog are provided by Baral et al [1] and Ceri et al [8] respec-
tively.

The language of Datalog is made up of facts and rules. Facts
provide information about the world and rules allow us to deduce
facts from other facts. Rules are expressed as Horn clauses with
the general form!:

LAAN--Nlyp—>

Each literal [; (of arity k;) has the form p;(t1,. . ., tx,), where
pi is a predicate symbol and t4, . . ., ty, are terms. A term is either
a constant or a variable. The left-hand side of the clause is referred
to as the body and the right-hand side as the head.

A fact is expressed as a Horn clause with no body:

lo

1Datalog Horn clauses usually have the form ly < I; A - - - A I,,,. However, we
choose to use a syntax that mirrors that of propositional logic for the ease of the
reader. The semantics defined in this paper are equivalent to the semantics defined
for clauses of the original form by Ceri et al [8]

We can represent the statements from Example 3.1, using vari-
able X, constant Tyler and predicates f, s, t, p and a which rep-
resent first years, students, tutors, post-graduates and teaching
assistants respectively:

(1) fX) = s(X)
(2) t(Tyler) — s(Tyler)
(3) t(X) A p(X) — a(X)

We say that a clause, such as t(Tyler) — s(Tyler), is ground
since it does not contain any variables.

Intuitively, a rule says that “If everything in the body holds true,
then the head holds true too” and a fact says that “The head is
always true”. We formally assign meaning to statements using
Herbrand interpretations. A Herbrand interpretation is a subset T
of all ground facts that can be formed using the predicates and
constants expressed in a Datalog program. For example; Tyler
is the only constant above so the set of all possible ground facts
that we can form is:

BP = {f(Tyler), s(Tyler), t(Tyler), p(Tyler), a(Tyler)}.
So a possible Herbrand interpretation is:
t = {s(Tyler), t(Tyler), p(Tyler)} C B.

To assign truth values to ground facts we check whether they
are in the set 7. That is, a ground fact is true for an interpretation
7 if and only if it is in 7. For example; t(Tyler) €  so t(Tyler) is
true under 7 and a(Tyler) ¢ r so a(Tyler) is false under 7.

We say that a rule is true under 7 if and only if whenever we
can replace variables in the rule by constants and all the literals
in the body are in 7, then the head is also in 7. Intuitively this
means that whenever we can make the “requirements” of the rule
true then the “conclusion” of the rule is also true. More formally,
this means that the rules are universally quantified. For example;
t(Tyler) € r and p(Tyler) € t so the requirements are all true but
a(Tyler) ¢ T so the conclusion is not true. Thus, the statement
tH(X) A p(X) — a(X) must be false for 7.

If every clause (fact or rule) in a knowledge base is true in
7 then we call 7 a Herbrand model. We say that a ground fact
a is entailed by K, denoted K |= «, if and only if « is in each
Herbrand model of K. Intuitively, this means that whenever our
current statements are all true, the new fact is also true.

3.2 Disjunctive Datalog

Datalog can be seen as more expressive than propositional logic
in the sense that it allows us to represent statements about indi-
viduals. However, it restricts the type of statements that we can
make about these individuals. For instance, the statements below
cannot be represented using standard Datalog:

Example 3.2.

(1) For all X, if X is a student, then X is an undergraduate or
a postgraduate.
(2) X is never a student and an employee.

It is often useful to be able to represent statements that involve
the disjunction “or”, since these type of statements allow us
to model incomplete knowledge. It is also useful to represent
statements about falsehood so that you can say what is certainly
false as well as what is certainly true.

We now propose an extended version of Datalog, Datalog".
We introduce the literal L. Intuitively, we mean that the literal L
is never true.



We also extend the syntax of rules to allow for disjunction Vv
(or) in the head of rules. That is, rules now have the following
form, where each b; and h; is a literal:

by A~ Abm > hiV---Vhy

Now we can represent the statement from Example 3.2, using
predicates s, u, p and e to represent students, undergraduates,
postgraduates and employees respectively:

(1) s(X) = u(X) v p(X)

2) sX)AeX) > L

We now need to define the semantics for our extended logic.
We consider L to be a ground literal. For any Herbrand inter-
pretation 7, we define that L is never in 7. We say that a rule
biA--Abpm — hy V-V hy is true for Herbrand interpretation
7 if and only if, whenever we can replace variables in the rule by
constants and all the literals in the body are in 7, then at least
one of the literals in the head is in 7. Intuitively, this now means
that whenever we can make the “requirements” of the rule true
then the at least one of the “conclusions” is true.

For example; 7 defined below is a Herbrand interpretation
for the statements in Example 3.1. Now, s(Tyler) € 7 so the
requirement is true and p(Tyler) € 7 so one of the conclusions
is true. Thus, since Tyler is the only constant we can replace X
with, s(X) — u(X) V p(X) is true for 7.

t = {s(Tyler), t(Tyler), p(Tyler)}.

3.3 Defeasible Disjunctive Datalog

Since Disjunctive Datalog uses classical reasoning, it cannot be
used to represent defeasible statements such as the one below:

Example 3.3.
(1) Typically, for all X, if X is a tutor, then X pays tax.

As discussed above, it is often useful to be able to represent
such statements. The KLM approach [12] for propositional logic
introduces defeasible implications of the form a |~ f whose se-
mantics are given by ranked interpretations [14]. We want to allow
for similar defeasible statements to be represented by Disjunctive
Datalog. So, we introduce defeasible rules of the form:

biAN---Abpmh1V---Vhy

We intend for the logical connective |~ to be the defeasible
form of the logical connective — inrules. The rule by A« - -Abp, |~
hiV ---V hy is intended to intuitively mean that “typically, if
all of by, ..., b, are true, then at least one of hy, ..., hy is true”.
For example; the statement in Example 3.3 can be represented in
Defeasible Disjunctive Datalog as shown below. In this paper we
will not consider a semantic definition of defeasible rules. We will
instead define defeasible rules by adapting rational defeasible
entailment algorithms for Disjunctive Datalog.

(1) 1X)  x(X)

Notice that in the RationalClosure algorithm, defined in
Section 2.4, the entailment of complex formulas such as « —
is required on line 7. It stands to reason that such definitions of
entailment will also be required when adapting these algorithms
for Datalog. However, the semantics of Datalog only defines
entailment of ground facts. So, we want to extend the semantics
of Datalog to allow for classical entailment of non-ground facts
and rules too.

Since Datalog can be seen as a subset of first-order logic, we
extend the definition of classical entailment under Herbrand se-
mantics for Datalog to match the definition of entailment under

Herbrand semantics for first-order logic[11]. We define entail-
ment of a Horn clause (rule or fact) as follows: a knowledge base
K entails Horn clause a, denoted by K |= «, if and only if each
Herbrand model of K is also a model of @. Intuitively, this means
that whenever our current statements are always true, the clause
is also always true.

4 ADAPTED KLM PROPERTIES

Let knowledge base K be a finite set of defeasible rules. The main
question of this paper is to algorithmically analyse defeasible
entailment K | a |~ . That is, how do we answer the question:
“Can we typically conclude a |~ f from a defeasible knowledge
base K?7”. We want to extend the algorithms for answering this
question in the propositional case to the Datalog case. We also
want to ensure that our adapted algorithms remain “reasonable”.
To do so, we adopt Lehmann and Magidor’s approach [14] of
analysing the rationality of defeasible entailment algorithms
using the KLM properties. In this section we will adapt the KLM
properties for Datalog.

4.1 Basic KLM Properties for Datalog

Initially, we attempt to state basic versions of the KLM properties
for Datalog. We state the properties in terms of single literals in
the head and body of Datalog rules without the use of A and vV
connectives. That is, the defeasible rules which we consider take
the following restricted form:

bl~h
Let I, m, n be Datalog literals of any arity. The properties below

are a simple extension of the KLM properties for propositional
logic:

Kklhm, Kkrlln

(Refl) K | L1 (CM) = o=

We notice that the intuitive “meaning” of entailment m |= n
in propositional logic is different to that for Datalog. This is
due to the introduction of variables into the logic of Datalog.
To understand why, we first need to realise that a Datalog rule
m(X) — n(X) is equivalent to a first-order logic statement of the
form:

VX, m(X) - n(X)

For propositional logic, m |= n intuitively means “Whenever
m is true, then n is true”. However, m(X) = n(X) in Datalog is
equivalent to the following first-order logic entailment:

VX, m(X) = VX, n(X)

This intuitively means “Whenever m(X) is true for every X,
then n(X) is true for every X”. The problem is that this actually
does not say that the X’s are the same for m and n. So we could
have some constant, say Tyler, that replaces X for m but not for
n. We want to link the X’s so that what we are actually saying
is “For every X, whenever m(X) is true, then n(X) is true”. In other
words, we want to say that VX, m(X) — n(X) is always true.
We say that VX, m(X) — n(X) is a tautology and denote this by
= VX, m(X) — n(X). That is, in Datalog we write = m — n.
This intuitive description of |= m — n is described formally by
Proposition 4.1 below. The proof of Proposition 4.1 is trivial.

PROPOSITION 4.1. Let © be a Herbrand interpretation and 6 any
substitution which replaces variables by constants. Then, |=m — n
iff mO € t implies that nf € 7.



We can now state the RW property in terms of the tautology
|= m — n so that it has the same meaning as the RW property
for propositional logic stated in terms of the entailment m |= n.

Kkrlhm Em—on
Kkrlhn

RW)

Furthermore, we notice that the intuitive “meaning” of equiva-
lence | = m in propositional logic is different to that for Datalog.
For propositional logic, | = m intuitively means “m is true if and
only ifl is true”. That is, “Whenever [ is true, then m is true” and
“Whenever m is true, then | is true”. However, [(X) = m(X) in
Datalog is equivalent to the following first-order logic statement:

VX, I(X) = VX, m(X)

This intuitively means “I(X) is true for every X if and only if
m(X) is true for every X”. We again find that this does not actually
say that the X’s are the same for m and [. This does not correspond
to our intuitive understanding of the word “equivalence”. We
want to link the X’s so that what we are actually saying is “For
every X, I(X) is true if and only if m(X) is true”. In other words,
we want to say that VX, m(X) = I(X) is always true. That is, in
Datalog we want to say that m = n is a statement which is always
true.

The problem is that the syntax of Datalog does not include the
equivalence relation = so we cannot make the statement m = n
in Datalog. However, we can rewrite m = nas | I — m and
|= m — [. Intuitively, this is because “For every X, I(X) is true if
and only if m(X) is true” means the same thing as “For every X:

(1) ifI(X) is true, then m(X) is true, and,

(2) if m(X) is true, then I(X) is true”

This intuitive description of why we can rewrite m = n as
|= 1 — mand | m — [ is described formally by Proposition 4.2
below. A generalized version of Proposition 4.2, Lemma B.3, is
proved in Appendix B.

PROPOSITION 4.2. Let 7 be a Herbrand interpretation and 6 any
substitution which replaces variables by constants. Then, |= | — m
andl=Em — Liffld € T andm € 7, 01,10 ¢ T and mb ¢ .

We can now state the LLE property in terms of the tautologies
=1 — mand |F m — [ so that it has the same meaning as
the LLE property for propositional logic stated in terms of the
equivalence [ = m.

ElomEm->L Kklln

(LLE) K m - n

4.2 Basic KLM Properties which we cannot
State in Datalog

The And, Or and RM properties, at first glance, also seem to be
simple extensions of the KLM properties for propositional logic.
However, we notice that the current syntax of Datalog is too
restrictive to state these properties. Recall that the current syntax
of Disjunctive Datalog only allows for rules of the form:
biA-- ANbpm —>hiV---Vhy

Consider the naive extension of the And property below. The
rule [ |~ m A n has a A connective in its head. However, the
current version of Datalog only allows for V connectives in the
head of a rule.

Kkrlhbm Kkrlpn
KkrlhrmAn

(And)

Now, consider the naive extensions of the Or and RM proper-
ties. In the Or property, the rule I V m |~ n has a V connective
in its body, but the current version of Datalog only allows for
A connectives in the body of a rule. Furthermore, the current
Datalog syntax does not allow for negation —. Hence, the rule
I |~ =m in the RM property cannot be stated.

Kklhn Krkmphn
Kkrlvm|n

Kklhn Kilpk-m
KkrlAmpn

(Or) (RM)

Thus, the extension of the And, Or and RM properties as stated
above cannot be used for the current version of Datalog, since
they all violate its syntax.

4.3 Molecules as Combinations of Literals

We introduce the idea of molecules as a shorthand for a combi-
nation of literals. This shorthand will be used to define more
general KLM properties.

We define a disjunctive molecule, denoted ", to be a combina-
tion of literals using V connectives in the form:

Lhvlhv---Vvli,
We define a conjunctive molecule, denoted a”, to be a combi-
nation of literals using A connectives in the form:
LhAnlpAN--- Al
We say that a molecule, denoted « is either a disjunctive mole-
cule or a conjunctive molecule. We remark that since molecules
are just a shorthand, they have no impact on the semantics of
Datalog.

4.4 Generalized KLM Properties for Datalog

The basic KLM properties stated in Section 4.1 are stated only in
terms of single literals in the head and body of rules. However,
in general, Datalog rules may have multiple literals in both the
head and body of rules. Thus, since the basic version of the KLM
properties limits the structure of rules, it does not fully assess
the acceptability of defeasible entailment for Datalog. In this
section we analyse generalized versions of the KLM properties for
Datalog. We find that, due to the restrictive nature of Datalog’s
syntax, none of the properties can be expressed in a general
manner without violating Datalog’s syntax.

Firstly, it is clear that the And, Or and RM properties cannot be
expressed in general form, since they already cannot be expressed
in basic form using the current version of Datalog.

The general versions of the Ref, LLE, RW and CM properties,
at first glance, all seem to be simple extensions of the properties
defined in Section 4.1. However, it turns out that the current
syntax of Datalog is too restrictive to state these properties.

Reh Kk a ~a

Notice that molecule a occurs in both the head and body of
the rule @ |~ « in the naive general extension of the Refproperty
above. So if « is disjunctive then there will be a V connective in
the body of the rule, and, if « is conjunctive then there will be
a A connective in the head of the rule. Thus, a |~ « violates the
structure of Datalog rules.

A similar discussion can be had about the molecule f, which
occurs in both the head and body of different rules in the naive
general extensions of the RW and CM properties below.
Kka"p Kka' by

Kka "B EB—y

(RW) (CM)

Kk ah ~yY KkrarAfyY



In the naive general extension of the LLE property below, the
molecules a” and " both occur in the head of rules. Thus, the
A connective occurs in the head of rules, violating the current
syntax of Datalog.

Fa* - pNER - a’ Kra" by
Kk prbryY

(LLE)

Hence, the extension of the Ref; LLE, RW and CM properties in
general form cannot be used for the current version of Datalog
since they all violate its syntax.

4.5 Motivation for Extended Datalog

We have found that all of the KLM properties cannot be expressed
in a general manner and some of them cannot be expressed even
in a basic manner. This is due to the restrictive nature of Datalog’s
syntax.

However, we need to ensure that LM-rational forms of defea-
sible entailment satisfy all the KLM properties. We argue that
this is necessary even though the reasoning described by some
of these properties will never be computed by defeasible entail-
ment algorithms for Datalog. We illustrate why by means of an
example. Consider the following two defeasible rules which can
be represented using Datalog:

For all X, if X is a tutor, then X is typically a student. t(X) |~ s(X)
For all X, if X is a tutor, then X is typically an employee. t(X) |~ e(X)

It seems rational to conclude the statement below. However,
we cannot represent this statement using the current version of
Datalog.

For all X, if X is a tutor, then X is typically a  t(X) |~ s(X) A e(X)
student and an employee.

Thus, to ensure that a form of defeasible entailment is rational,
we need to ensure that it will make this conclusion, even though
we cannot actually represent the conclusion using Datalog.

We argue that the restrictive nature of Datalog’s syntax is only
in place to limit the computational complexity of reasoning about
Datalog rules. In fact, by looking at the Herbrand semantics for
first-order logic [11], we notice that the Herbrand interpreta-
tion semantics allow us to express much more in both the head
and body of Datalog rules. We propose that a Datalog extension
be used to fully express generalized versions of all of the KLM
properties. This way we can analyse the rationality of defeasi-
ble entailment using the extended syntax. However, when we
actually compute defeasible entailment, we will only ever use
the non-extended version of Datalog.

4.6 Datalog+

Our proposed extension to Datalog, Datalog+, introduces the
idea of compounds. We again make use of the approaches of
first-order logic [11] to define the syntax and semantics of this
extended logic.

We recursively define a compound in Datalog+, denoted by
A, B.If lis a literal and A and B are compounds, then the following
are all compounds:

o/

o -A
e ANB
e AVB

We define a fact in Datalog+ to be a compound A. We define
rules and defeasible rules in Datalog+ to have the following forms
respectively:

A—B ANB

Let 7 be a Herbrand interpretation and consider some replace-
ment 6 of variables by constants. We say that compound A is in
7 under the replacement, denoted A € r, if and only if one of
the following conditions holds, where B, T are compounds and [
is a literal:

e A =[and after the replacement [ isin 7 (1§ € 1)

e A = —B and after the replacement B is not in 7 (B ¢ 1)

e A = B AT and after the replacement both B and I are in 7
(Bl € T and T0 € 7)

e A = B VT and after the replacement at least one of Bor I'
arein7 (B8 e torT'0 € 1)

We say that fact A is true under Herbrand interpretation 7 if
and only if Ais in 7 under every possible replacement of variables
by constants. We say that rule A — B is true under Herbrand
interpretation 7 if and only if, whenever A is in 7 under some
replacement of variables by constants, B is also in 7 under the
same replacement. If a Horn clause (rule or fact) « is true under
7 we say that 7 is a model of a.

We define entailment of a Horn clause (rule or fact) as we did
before. That is, a knowledge base K entails Datalog+ Horn clause
a, denoted by K |= a, if and only if each Herbrand model of K
is also a model of a.

Notice that any Horn clause expressed in Datalog can be ex-
pressed in Datalog+ so Datalog+ is simply an extension of Data-
log.

4.7 The KLM Properties Expressed in
Datalog+

We state the KLM properties (in Datalog+) for Datalog below,
where molecules a, f, y are used as a shorthand.

Fa—-pBES—-a Kraly
Kkply

ReDh Kk a |~ a (RW)

(LLE)

Krabp FB—oy
Kkraly
Kraby, KBy
KkraVvphy
Kraly, Kal-p
KkranBhy

Krkalkp Krkaly
KrkalkBAry
KrkakB Kraly
KranBhy

(And) (Or)

(c™)

(RM)

5 RATIONAL CLOSURE FOR DATALOG

In this section we propose a simple adaptation to the BaseRank
and RationalClosure algorithms so that they can be used for
Datalog. We make use of molecules «, f, y, as described in Section
4.3, as a shorthand, when describing the algorithms.

5.1 Base Rank Algorithm

The idea of the exceptionally of a statement is central to the
BaseRank algorithm. A statement is exceptional with respect to
a set of statements if it can be “disproved” by those statements.
In the propositional case, we express the notion of falsehood
using the negation connective -, which intuitively means “not”.
Disjunctive Datalog does not allow us to use of the negation
connective —, but it does allow us to use L. We will use L to
define a notion of falsehood for Datalog.



Notice that, intuitively, ~a means that & is never true. That is,
if a is true, then —a is false. Recall L is always false. So, whenever
« is true, the rule @« — L is false. Thus, we can rewrite —« as
a — L. This is formally stated in Proposition 5.1 below, the proof
of which is found in Appendix C.

PROPOSITION 5.1. Let © be a Herbrand interpretation. Then, T is
a model of ~a under Datalog+ semantics iff t is a model of @ — L
under Datalog" semantics.

In the propositional case, we assume that all of the statements
in our knowledge base are defeasible. We can do this because we
can rewrite a classical statement a as the defeasible statement
—a |~ L. However, we cannot rewrite classical Datalog clauses
in this manner, since we cannot use —. In fact, there is no way to
rewrite classical clauses as defeasible rules for the Datalog case.
Instead, we form a ranking of only the defeasible statements.
Then, since the classical statements are all definite, we add them
to the the most typical level, the infinite level.

We can now adapt the BaseRank algorithm, Algorithm 1, for
the Datalog case. The adapted version ranks the statements in
a knowledge base K := D U C, where D is the set of defeasible
rules and C the set of classical clauses. It sets out to rank the
defeasible rules by setting Ey := D on line 2. It now assesses
the exceptionally of molecule a by using the entailment check
E; UC |= @ — L on line 4. Finally, when all the defeasible rules
are ranked, it adds the classical clauses to the infinite level by
setting R := E;—1UC on line 8. For clarity, the adapted BaseRank
algorithm for the Datalog case is fully expressed in Algorithm 5
in Appendix A.

5.2 Rational Closure Algorithm

In the RationalClosure algorithm, Algorithm 2, we loop through
the statements, level by level, checking for a level where we can-
not “disprove” molecule « with the statements remaining. Thus,
we again need a notion of falsehood. As with the BaseRank algo-
rithm, we choose to adapt the RationalClosure algorithm by
using the entailment check R UR |= @ — L on line 4 instead
of the original R U R |= —a check.

Under the assumption that we can compute classical entail-
ment for Datalog", this adapted version the RationalClosure
algorithm can now be used to check whether a rule ¢ |~
is defeasibly entailed by the knowledge base K. For clarity, the
adapted RationalClosure algorithm for the Datalog case is fully
expressed in Algorithm 6 in Appendix A.

5.3 LM-Rationality

PROPOSITION 5.2. The adapted RationalClosure algorithm
is LM-rational. That is, it satisfies each KLM property.

Full proofs for the satisfaction of each KLM property by the
RationalClosure procedure are provided in Appendix B. We
provide a high-level overview for the proof of the And property;
to illustrate the principles used in the proof. To start, let us take
a look at what the And property is actually stating.

Krahp Kralky

W) T a By

This says; if we operate on a fixed knowledge base K such
that

(1) when given query a |~ f3, the algorithm returns true, and,

(2) when given query a |~ y, the algorithm returns true.

Then, when passed the query « |~ f A y, the algorithm will also
return true.

To see what this actually entails, we need to take a closer look
at the algorithm, and consider 2 cases. Note first that all 3 queries
have the same symbol a on the left hand side of the defeasible
implication. So the ranking returned by the BaseRank algorithm
will be the same for all of them.

The first case is one where during the K | a |~ f checking,
Roo UR |= =« the entire time. Then, since the ranking is the same,
it is also the case in the K |k a |~ f A y checking, R UR |= —a
the entire time. So the algorithm reaches the following line:

return Ry UREa — fAYy;

But at this point, still R UR |= —a, so a — S Ay is vacuously
true and R U R |= @ — S A y will return true. The reason for
this is best seen by example. Suppose it was known that there are
no apples (), which corresponds to the statement —a. We then
claim that all apples () are bananas (f) and grapes (y), which
corresponds to the statement « — S A y. Since there are no
apples, this statement is technically true. Thus, the algorithm
will return true in the first case.

The second case is where R U R [£ —a for the first time at
some point i. Again, since the ranking is the same for all queries,
this will be the exact same point i in all 3 of the queries.

0| RoUR |E =

RmUR|=ﬂa
i Row UR [E ~a

Figure 3: At some point i, Rx UR |5 -

Then since K k a |~ B, K k a |~ y, we know that at point
i,RoUR|Fa — fand R UR |= @ — y. If we let o represent
tutors, ff represent students and y represent employees, then we
know:

a — f (tutors are students) a — y (tutors are employees)

Then we can conclude that @ — B A y, which corresponds to
tutors being both students and employees. Thus Roo UR |= o —
B Ay is true at point i, so the algorithm returns true.

6 LEXICOGRAPHIC CLOSURE

The Rational Closure approach is simple and intuitive. However,
it seems unnecessary to throw away an entire level of statements
when we can “disprove” «. While it is true that a statement within
the level is likely causing the conflict, there are other statements
in the level that have no effect on the conflict occurring. To
address this, the Lexicographic Closure algorithm takes a finer
grained approach to removing statements when a conflict is
found.

6.1 An Intuitive Description

Unlike in the Rational Closure algorithm, if we can “disprove” a
using the remaining ranked statements, we do not remove all
statements with the worst rank. We try to only remove one of
the n statements of worst rank. However, the statements all have
equal rank so we cannot simply choose any one of them. We
need to remove the statement which is causing the conflict. We
do this by first considering the ranking under all possible ways
of removing one statement from the worst rank: all subsets of



worst-ranked statements of cardinality n — 1. We again try to
“disprove” a, each time using one of these subsets as our new
worst-ranked level of statements.

Recall, in Example 2.1, when K is presented with the query
“Do tutors pay taxes?” (¢ |~ x), we can conclude that there are no
tutors (—t). Following the Lexicographic Closure procedure, as
shown in Figure 4, we now try to remove the single statement
s |~ —x that “Students do not pay taxes” from the top level of
statements. Then, we check whether there are still no tutors. We
find that this is, in fact, the case. So we repeat the process, this
time removing the single statement s |~ ¢ that “Students drink

coffee”.

0 st—x s c

1 thx

00 t—s fos

Figure 4: Single statement in the top level of KX in Example 2.1
is thrown away

If we can “disprove” a for all of the subsets of size n—1, we then
try to remove only two of the worst-ranked n statements. We now
consider all subsets of worst-ranked statements of cardinality
n — 2 and try to “disprove” a. We continue in this manner until
we find that we cannot “disprove” a.

If we find that for all subsets of statements of cardinality 1 we
can still “disprove” a, then all the statements in the worst rank
are causing the conflict. We throw away the whole worst-ranked
level and repeat the previous process with the remaining ranked
statements.

For instance, in Example 2.1, when we remove the statement
“Students drink coffee”, there are still no tutors. Thus, we throw
away the whole top level, as shown in Figure 2.

As in the Rational Closure algorithm, we stop this process
when we find that we cannot “disprove” « or when we reach the
infinite rank. We conclude by checking whether we can logically
conclude ¢ — f from the remaining statements at this point.

6.2 Rephrasing the Intuitive Description

The translation of the intuitive description of Lexicographic Clo-
sure into an algorithm results in an algorithm which does not
satisfy the And property. This is undesirable since we want the
algorithm to be LM-rational.

Suppose we are at some level i and point j € [1, n; — 1], where
j is the number of worst ranked statements we want to remove
from the n; worst-ranked statements. In the intuitive description,
we want to check whether we can “disprove” « using one of the
subsets of statements, Si, Sa, . . ., Sy, of cardinality n; — j as our
new worst-rank level of statements. That is, we want to check
whether we can “disprove” « using S; or S; or,..., or S, as our
new worst-rank level of statements.

We are using “or” on a meta level, a level where we are making
logical statements about logical statements. The use of this meta
statement weakens our entailment checking in a manner that
violates the And property.

In the propositional case, we address this issue by rephras-
ing the algorithm without meta level statements. We do so by
rewriting the intuitive description using V connectives in a single
statement instead of “or”s between multiple statements. This re-
sults in an algorithm which is LM-rational. We will systematically
describe this rephrasing in the rest of this section.

We begin by considering the following subset of statements:

Si ={x1,x2,....xm}

Suppose we want to check whether we can logically conclude
p — qfromS; (Si = p — q). So, we want to check that whenever
“x1 is true, and, x3 is true, and, . . ., and, xy, is true”, then it is also
the case that “p — q is true”. This is intuitively the same as saying
that whenever “x; and x2 and . . . and xp, are true”, then it is also
the case that “p — q is true”. That is, we want to check whether
we can logically conclude p — ¢ from the single statement:

Sii=NxesX =xX1 Ax2 A ... Axp
Consider the set of n subsets of ranking R;, each of size m:
S={51,52,...,5.}

Suppose we want to check whether S; |=p — g, o1, S2 Fp —
q, 01, ..., 01, Sy |E p — q. This is the same as checking whether
siEp—gqonsa|=p—gq,or1 ... 015, |=p— q Thatis, we
want to check that “whenever s1 is true then p — q is true” or
“whenever sy is true then p — q is true” or ... or “whenever s, is
true then p — q is true’.

Notice that if the check for “wheneversy orsy or. .. orsy is true
then p — q is true” holds then the above check must also hold. So
this is a stronger form of entailment check. Furthermore, this is
the same as checking that “whenever sy Vsa V...V sy is true then
p — q is true”. So we can restate the previous list of entailment
checks in terms of a single stronger form of entailment check:

siVsaV...Vsp Ep—q

Using this intuition, we can replace the list of entailment
checks, using S1 or Sy or,..., or S, as the worst-ranked level of
statements, with a single entailment check using s; Vsa V... Vsp
as a single statement on the worst rank level.

6.3 Algorithm for Propositional Logic

We can now define a Lexicographic Closure algorithm in terms
of the sub-algorithms SubsetRank and LexicographicClosure.
This form of Lexicographic Closure for the propositional case
has been shown to be LM-rational[13].

The SubsetRank algorithm, Algorithm 3, constructs a new
ranking of statements by using the base ranks Ry, . .., Ry—1, Reo
computed by the BaseRank algorithm. It adds new rank levels
Dj n;~1, Din;—2,... Di,1 in between each existing rank level R;
and Rj41.

Algorithm 3: SubsetRank

Input: A knowledge base K

Output: An ordered tuple (Ry, . .., R, R, k + 1)
1 (Bo, . ..,Bm-1, Bso, m) := BaseRank(K);

2 i:=0;k:=0;

3 repeat

4 for j := |B;| to 1 do

5 S;,j := Subsets(R;, j);

6 Dij = Vxes;; Nxex %
7 Ry =Dy j;

8 k=k+1;

9 i=i+1;

10 until i := m;
11 Roo := Boo;
12 return (Ry, ..., Rr, R, k + 1)




The function Subsets(X, k) finds all possible subsets of size
k < n of a set X of size n.

Following the SubsetRank algorithm, we find the following
ranking of the statements from Example 2.1:

Ry sh-x shec

Do, 1 (s =x)V(shc)
R, thx

Reo t—>s fos

Figure 5: Subset Ranking of Statements in % in Example 2.1

The LexicographicClosure algorithm, Algorithm 4, uses the
ranking produced by the SubsetRank algorithm to compute Lex-
icographic Closure in a manner equivalent to that used by the
RationalClosure algorithm.

Algorithm 4: LexicographicClosure

Input: A knowledge base K and a defeasible rule « |~ f
Output: true, if K k « |~ f, and false, otherwise

1 (Ro, ..., Rg, R, k + 1) := SubsetRank(%K);

2 1:=0;

3 R:= Ujlféc Rj;

4 while Ro UR |= o and R # 0 do

5 R:=R\R;;
L i=i+1

7 return Ro URE a — f5;

Intuitively, each set of statements D;, j»in between base rank
levels R; and R;+1, is a weaker form of the set of statements R;
on level i. In fact, the set of models of R; must be a subset of the
set of models of D; j ([R;] € [D,j]). This means that we can
only logically conclude « — f from R; U D ; if we can logically
conclude @ — f from R;. So, adding these extra levels has no
effect on the entailment checks on line 4 and line 7 of Algorithm
4, when we are on a base rank level R;.

However, if we can “disprove” & when we are on a base rank
level R;, then Algorithm 4 will remove level R;. The algorithm
will now check whether we can “disprove” « using subset ranking
Dj n;-1 as the worst level. If we can, it will then remove subset
ranking D; n,—1 and check whether we can “disprove” « using
subset ranking D; n, -2 as the worst level. It will proceed in this
manner until we find that either we cannot “disprove” « or we
have reached level R;41.

Notice that, as described in the previous section, checking
entailment with subset ranking D; j as the worst level is the
same as the list of entailment checks, using each of the subsets
of R; of size j as the worst-rank level. Thus, the algorithmic
definition of Lexicographic Closure is equivalent to the intuitive
definition.

7 LEXICOGRAPHIC CLOSURE FOR
DATALOG
In this section we extend the Lexicographic Closure algorithm

for the propositional case to the Datalog case. We conclude the
section by showing that our extended algorithm is LM-rational.

7.1 Rephrasing the Intuitive Description for
Datalog

Unfortunately, the rephrasing of the intuitive definition for the
propositional case cannot directly be used for the Datalog case.
This is due to the fact that some of the statements in each subset
Si may be rules. Clearly combining multiple rules using A and
V connectives will violate the current syntax of Datalog, which
only allows for clauses of the following form:

biA-ANbpm —>hV---Vhy
For example; consider the set of statements on some level i:
{a(X) = b(X), c(X) — d(X)}

The statement representing S; 1 is shown below. Clearly this
violates the current syntax of Datalog.

(a(X) = b(X)) V (c(X) — d(X))

Notice that if a(X) — b(X) is true for some replacement of X
by constants, then either a(X) is not true or b(X) is true. So we
can rewrite a(X) — b(X) as =a(X) V b(X). Recall that the clause
—a(X) V b(X) is the same as the following universally quantified
first-order logic clause:

VX, =a(X) Vv b(X)

It can be shown that the first-order statement formed by com-

bining universally quantified statements with A and V connec-

tives can be transformed into a universally quantified Conjunc-
tive Normal Form (CNF):

VX,D1 ADy A ...A Dy, where,
D;:==a;1X)V...V=a; ,(X)VDi1(X)V ...V Vb (X)

For example; the statement VX, (a(X) — b(X)) V (¢(X) —
d(X)) can be written as VX, (ma(X) V b(X)) V (=¢(X) V d(X))
which can be rewritten as VX, (—a(X) V =¢(X) V b(X) V d(X)).

We notice that statements of the form —a; 1(X)V...V-a;,r, (X)
can be written as =(a;, 1(X) A ... Aaj r,(X)). So we find that each
D; in Conjunctive Normal Form can be rewritten in the following
form:

Dj = =(ai,1X)A ... ANai (X)) V (bi1(X) V...V Vb5, (X))

Now, using our previous intuition for rewriting rules, we can
rewrite each D; as follows:

D; := ai,l(X) VAN ai,ri(X)) — bi’1(X) V...V Vbi,s,—(X)

That is, each D; can be written as a rule of the following form:

D;j:=a" — Y

Thus, we can now replace each set S; j = {S1,52,...,5;} in

the SubsetRank algorithm, with a single statement of the form:
(ap = BY) A () —>ﬁ;/)/\.../\(al’c\ —>/3]\<’)

This statement still violates the syntax of Datalog. However,
as discussed previously, checking whether (a — f)) A (2} —
ﬂ;’)/\. . -/\(“Q — ﬁZ) |= @ — fis the same as checking whether
{0{{\ —>ﬁ¥,aé\ —>ﬁ;/,...,al/c\ —>ﬁl\</} =a— p.

So, we can now replace each set S; j = {S1,S2,...,5;} in the
SubsetRank algorithm, with the set of statements of the form:

Sij=A{ap = B o) = By,....ap — B}

7.2 Algorithm for Datalog

We can now formally define the adjustments to the SubsetRank
algorithm which are required for the Datalog case. On line 7 of
Algorithm 3 for the propositional case, the algorithm sets ranking
Ry to D; ;. For the Datalog case, the algorithm should now set
Ry to RNF(D;, j), the Rule Normal Form of D; ;.



Given the “extended” Datalog statement T, the Rule Normal
Form function RNF(T') does the following:

(1) Computes the Conjunctive Normal Form CNF(T).

(2) Converts CNF(T') into a conjunction of clauses of the form
(0{1A —)ﬁlv)/\(océ\ —>ﬁ;’)/\.../\(a]/<\ _>ﬂl\c/)

(3) Converts the conjunction of clauses into a set of clauses
{af = B e — By,....ap = B}

(4) Returns the set of clauses.

We need to adapt our definition of the notion of exceptionally
in the LexicographicClosure algorithm, Algorithm 4. As with
the RationalClosure algorithm for Datalog, we choose to adapt
the LexicographicClosure algorithm by using the entailment
check Rw UR |= @ — L on line 4 instead of the original Rw UR |=
- check.

Under the assumption that we can compute classical entail-
ment for Datalog", we can define Lexicographic Closure for Data-
log, using the adapted SubsetRank and LexicographicClosure
algorithms. For clarity, the adapted algorithms for the Datalog
case are fully expressed in Appendix C.

7.3 LM-Rationality of the Algorithm

The LexicographicClosure algorithm is exactly the same as the
RationalClosure algorithm, barring the use of the SubsetRank
ranking instead of the BaseRank ranking. Furthermore, by ex-
aminging the proofs for LM-rationality of the RationalClosure
algorithm in Appendix B, we find that none of the proofs are
dependant on the type of ranking produced by the BaseRank algo-
rithm. Thus, the LM-rationality of the LexicographicClosure
algorithm follows directly from the proof of LM-rationality of
the RationalClosure algorithm. This is discussed further in
Appendix D.

PROPOSITION 7.1. The adapted LexicographicClosure algo-
rithm is LM-rational. That is, it satisfies each KLM property.

8 RELATED WORK

Kraus, Lehmann and Magidor (KLM) [12] introduced preferen-
tial reasoning, KLM-style defeasible implications and the KLM
properties. Lehmann and Magidor [13] presented the concept of
Rational Closure for propositional logic, provided an algorithm to
compute it, and, showed that it is LM-rational. Britz et al[3] pro-
vided an extension of the KLM properties for description logics
and presented an extension of Rational Closure for description
logics.

Lehmann [13] introduced Lexicographic Closure for proposi-
tional logic, showed that it was strictly less conservative than
Rational Closure, and proved that it is also LM-rational. Casini
et al[6] presented a systematic approach for enriching propo-
sitional logic with a defeasible implication connective, and de-
scribed algorithms for Rational Closure and Lexicographic Clo-
sure within this framework. Casini et al[7] presented an algo-
rithm for Lexicographic Closure for description logics.

9 CONCLUSIONS

The central focus of this paper is to determine what defeasible
entailment means for Datalog enriched with a defeasible rule
connective. We define this systematically by extending the KLM
approach[12] for propositional logic to the Datalog case. Due
to the differences between the Herbrand semantics of Datalog
and the semantics of propositional logic, the KLM properties
cannot be directly extended to the Datalog case. However, the

properties can be rephrased to have the same intended meaning in
a slightly less restricted version of Datalog. The Rational Closure
algorithm is easily extended to the Datalog case and remains
LM-rational. The less conservative form of defeasible entailment,
Lexicographic Closure, remains LM-rational when extended to
the Datalog case. However, it requires some adjustments for the
Datalog case, due to the restrictive nature of Datalog’s syntax.

10 FUTURE WORK

There are at least three lines of research to which the work in this
paper can lead. First is an implementation and optimization of
the defeasible entailment algorithms for Disjunctive Datalog. The
logic of Datalog" can be seen as a subset of the logic of DLV[9],
a disjunctive logic programming system. Hence, the defeasible
entailment algorithms can be used by the DLV system for re-
stricted cases where negation-as-failure and weak constraints
are not used.

Secondly, we only define defeasible entailment for Datalog
algorithmically. However, the semantic definition in terms of
minimal models should be explored for both Rational Closure
and Lexicographic Closure for Datalog.

Finally, Casini et al[6] showed that LM-rationality is necessary
but not sufficient. The additional properties for Basic Defeasible
Entailment proposed by Casini et al[6] can be extended to Data-
log. Furthermore, other properties that are specific to defeasible
entailment for Datalog should be explored.
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APPENDICES

A RATIONAL CLOSURE ALGORITHMS FOR
DATALOG

Algorithm 5: BaseRank
Input: A defeasible knowledge base D and classical
knowledge base C
Output: An ordered tuple (Ry, . .
11:=0;
2 Ey:= ]_5;
repeat
Eiyii={a > B€E |EsUCFa— 1};
5 R; := Ei \ Ei1;
6 i=i+1;
until E;_1 = E;;
8 Roo :=Ei-1 UC;
if E;_1 = 0 then
10 L n:=i—-1;
11 else
12 L n:=1i

13 return (R, ..

. ,Rn—l,Roo, n)

oW

=

©

. ,Rn—l, Reo, n)

Algorithm 6: RationalClosure

Input: A defeasible knowledge base D, a classical
knowledge base C and a defeasible rule & |~ f
Output: true, if K |k « |~ f, and false, otherwise

1 (Ro,...,Rn-1, Reo, n) := BaseRank(D, C);
2 1:=0;

3 R:= U{;;l Rj;

4 while R UR|=a — L and R# 0 do
5 R:=R\R;;

6 L i=i+1;

7 return Ro UR = a — f5;

B LM-RATIONALITY OF RATIONAL
CLOSURE

Let K := D U C be a Datalog knowledge base, where D is a set
of defeasible rules and C is a set of classical clauses. Let a, §, y
be molecules. We provide proofs below for the satisfaction of
each KLM property by the RationalClosure procedure. That
is, we prove that RationalClosure is LM-rational. We start by
showing that while checking K | « |~ f, if it is always the case
that Rw U R |= —a, then the algorithm returns true.

LeEmMA B.1. Let K be a knowledge base and a, f molecules
such that when checking K & a |~ p, it is always the case that
R UR |= —a. Then, the RationalClosure algorithm returns
true.

Proof of Lemma B.1: Since, in the checking, it is always the
case that R UR |= —a, the while loop on line 4 will keep looping,
until R = 0. Then the algorithm will jump to line 7, and return
RoUREEa— p.

But, since Ry U R |= —a, we know that a6 ¢ r for every
substitution 6 and model 7 (of R UR). Thus, & — f is true under
every substitution 6 and model 7. Hence, the query R UR |=
a — fmust return true. So the algorithm itself returns true. O

B.1 Ref

We want to show that K k o |~ a. We will make use of Lemma
B.2 to do so.

LEMMA B.2. The defeasible rule « — o is a tautology.

Proof of Lemma B.2: Let 7 be any Herbrand interpretation
and 0 a substitution which replaces variables by constants. If
af € 7 then a6 € 7. So 7 is a model of « — a. Hence, « — « is
a tautology. ]

Let 7 be a Herbrand interpretation of K and 6 a substitution
which replaces variables by constants. We now consider 2 cases
below:

Case 1: At some point (when i € [0,n])inthe K k o  a
checking, R U R £ -« for the first time. Then, since a — «a
is a tautology, any model of R U R must satisfy &« — « so
Rsw UR |5 @ — a. Thus, the algorithm returns true.

Case 2: It is always the case in the K k @ |~ a checking
that R U R |= —a. Then, the algorithm returns true, by Lemma
B.1. O

B.2 LLE

Suppose |=a — f, = f — aand K k a |~ y. We want to show
that K & B |~ y. We will make use of Lemma B.3, a generalized
version of Proposition 4.2, to do so.

LEMMA B.3. Let v be a Herbrand interpretation and 0 a substi-
tution which replaces variables by constants. Then, |= a — f and
Ep— aiffad et and fb € v, or,al ¢ v and pO ¢ 7.

Proof of Lemma B.3: Let 7 be some Herbrand interpretation
and 6 some substitution which replaces variables by constants.
Suppose that af € 7. Since = @ — f we must have that 7
satisfies « — f and so 0 € 7. Now suppose that af ¢ 7. We
know that 7 satisfies § — « since |= f — a. So we must have
B0 ¢ r. Similar arguments hold for when f € rand p0 ¢ z. O

Claim: At each level, Roo UR |= =f iff R UR |= —ar.

Proof of Claim: Suppose that, at some point i € [0, n], R U
R |= —a. Let 7 be a model of R U R and 6 some substitution
which replaces variables by constants. So 7 is a model of =« and,
hence, a0 ¢ 7. Thus, by Lemma B.3, 0 ¢ t so 7 is a model of
—-f. Hence, R U R |= = f. Similarly, we can show that if at some
point i € [0,n], R UR |= =f, then Rs UR |= —a.

Now suppose that, at some point i € [0,n], R UR £ —a.
Then, there is some model 7 of Ry, U R such that 7 is not a model
of —a. So there must be some substitution 0 such that a0 € 7.
Hence, by Lemma B.3, 0 € 7 so t is not a model of —f. Thus,
Rs U R £ —f. Similarly, we can show that if at some point
i € [0,n], R UR |£ =, then Rs UR £ —a. O

We now consider 2 cases below:

Case 1: At some point (when i € [0,n])inthe K k a |~ ¢
checking, R U R | —a for the first time. Then, at point i, since
Kk aly,RoUR|= a — y. As shown above, at the same point
i, R U R [£ = for the first time. The algorithm now checks that
RwUR |= f — y.Let r be amodel of R U R and 6 a substitution
which replaces variables by constants. Suppose 0 € 7 then, by
Lemma B.3, a0 € 7 too. And, since R UR |= @ — y, we must
have y6 € 7.So R UR |= f — y and the algorithm returns true.

Case 2: 1t is always the case in the K k a |~ y checking that
RwUR |= =a. Then, in the K | f |~ y checking, as shown above,
it is also always the case that R U R |= =f. So the algorithm
returns true, by Lemma B.1. O



B.3 RW

Suppose | f — yand K k a |~ . We want to show that
K k a |~ y. Consider the 2 cases below:

Case 1: At some point (i € [0,n]) in the K & a |~ § checking,
R U R [£ —a for the first time. Then, at that point i, since
K |k a |~ p, we have that Rw UR |= @ — f. When checking
K k a |~ y, the algorithm reaches that same point i, where
Roo UR [ —a for the first time and then checks whether R UR |=
a—y.

Let 7 be a model of Ry, U R and 0 a substitution which replaces
variables by constants. Suppose af € 7 then, since R UR |=
a — f, we have that 0 € 7. Since f — vy is a tautology, we must
also have that y € 7. So R U R |= @ — y and the algorithm
returns true.

Case 2: It is always the case in the K k « |~ § checking that
R UR |= —a. Then, in the K | a |~ y checking, it is also always
the case that R U R |= —a. So the algorithm returns true, by
Lemma B.1. O

B4 And

Suppose K k a |~ fpand K  a |~ y. We want to show that
K k a |~ B Ay.Consider the 2 cases below:

Case 1: At some point (i € [0,n]) in the K & a |~ § checking,
Roo U R | —a for the first time. Then, at the same point i in the
K k a |~ y checking, R U R [£ —a for the first time. Now,
since K k a |~ fand K k a |~ y, at point i we have that
RwUR|Ea — fand Rw UR |E @ — y. So, at point i in the
K k a |~ p Ay checking, R UR £ -« for the first time and the
algorithm checks whether R UR|=a — S Ay.

Let 7 be a model of Ry, U R and 0 a substitution which replaces
variables by constants. Suppose afl € 7 then, since R UR |=
a — fand Ro UR |= @ — y, we must have 0 € 7 and y0 € r.
So (f Ay)8 € 7. Thus, R UR |= a — B Ay and the algorithm
returns true.

Case 2: 1t is always the case in the K & a |~ f checking that
that R U R |= —a. Then, in the K k « |~ § A y checking, it is
also always the case that R U R |= —a. So the algorithm returns
true, by Lemma B.1. O

B.5 Or

Suppose K & a |~ y and K & S |~ y. We want to show that
K k aV B |~ y.Consider the 2 cases below:

Case 1: It is always the case (for all i € [0,n]) that in the
K |k a |~ y checking, Ro UR |= —ma and, inthe K k& f |~ y
checking, R U R |= —f. Let 7 be a model of R, U R at some
point (i € [0,n]) and 0 a substitution which replaces variables
by constants. Then, at point i, we must have that a6 ¢ 7 and
pO ¢ v so(aV )0 ¢ r. Thus, Ro UR |= —(a V p) at point i.
Hence, in the K | @ V § |~ y checking, it is always the case that
Rs UR |= =(a V ) so the algorithm returns true, by Lemma B.1.

Case 2: There is some point (i € [0, n]) at which, without loss of
generality, Roo UR [ —a for the first time and at each point before
point i (for each 0 < j < i), Ro UR |= —=f. That is, Ro U R [ -«
for the first time either at the same level or a higher level than
the level at which Ro U R [ = for the first time. Since we know
that K & « |~ y, at point i we must have thatR = o — y.

At point i, since R UR | —a, there is some model 7 of Roo UR
which is not a model of —a. Thus, there is some substitution 0
such that af € 7. Thus, (e V )0 € 7 so (=(a V ))0 ¢ 7. Hence,
at point i in the K |k a V § |~ y checking, Rs U R [ —(a V f).

Furthermore, at any point j < i, we have that R, U R |= -«
and Re UR |= = f. Thus, as shown above in Case 1, we must have
that R UR |= =(a V f) at point j. So point i is the first point at
which R UR [E =(a V f).

We again let 7 be a model of R U R at point i and 6 a substi-
tution which replaces variables by constants. Now we consider 2
sub-cases below:

i At point i, Ro U R |= =f. Then 6 ¢ r. Suppose that
af ¢ . Then, (@ V f)§ ¢ 7 soa V f — y is true under
7 for substitution 6. Now suppose that af € 7. Then,
(evp) erand sinceRla —y,y0er.So,aVp—y
is true under 7 for substitution . Hence, R |Fa VvV f — ¢
and the algorithm returns true.

At point i, R U R [£ =f (and this is not the case for any
Jj < i, otherwise it would violate our assumption for case
2). So, since K | f |~ y, we have that Ro UR = f — .
Suppose that a6 ¢ 7 and 6 ¢ 7. Then, (a V )0 ¢ 7 so
aV B — vy is true under 7 for substitution 6. Now suppose
that, without loss of generality (since bothR = a — y
andR |= f — y), @B € 7. Then, (o V §)8 € 7 and, since
RlI=a — y,y0 € 1.So, @ V f — y is true under r for
substitution 6. Hence, R |= @ V § — y and the algorithm
returns true. ]

-
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B.6 CM

Suppose K  a |~ fand K k& a |~ y. We want to show that
K k a A B |~ y. We will make use of Lemma B.4 to do so.

LEMMA B.4. Suppose K k a |~ fand K & a |~ y for some
knowledge base K. Then, the following holds:

i If R UR |= —a at some point i in the RationalClosure
algorithm, then Rss U R |= —(a A ) at that point i.

ii If Ro UR £ —a for the first time at some point i in the
RationalClosure algorithm, then R U R [ —(a A ),
also for the first time, at that point i.

Proof of Lemma B.4:

i Suppose that RwUR |= —a at some point i. Let 7 be a model
of R U R at point i and € a substitution which replaces
variables by constants. Then a6 ¢ 7 so (a A )0 ¢ r and,
hence, (=(a A B))0 € 7. Hence, Ro UR|=~(a A ). O

ii Suppose that, at point i, R U R [£ - for the first time.
Then, since K k a |~ B, we have that R, UR = o —
B. And, since Ry U R |£ —a, there is some model 7 of
Roo U R which is not a model of —a. Thus, there is some
substitution € such that a6 € 7. Since R UR |= @ — f5,
we must have that 0 € 7 too. So (a A )8 € t and, thus,
(=(a A B))0 ¢ r. Hence, at point i, Rw U R [£ =(a A p).
Now;, it remains to show that point i is the first point at
which Rew U R [ =(a A f). Assume, to the contrary, that
at some point j < i, R U R [£ =(a A f). But, then at this
point, we know R UR |= =, s0 Rs UR |= —(a A f),
which is a contradiction. Thus, point i is the first point at
which R U R [ —(a A f). O

Now we consider 2 cases below:

Case 1: At some point (i € [0,n]) in the K & a |~ f checking,
Roo U R | =« for the first time. Then, at the same point i, in the
K |k a |~ y checking, Rw U R £ =« for the first time. Thus, at
this point i we have that Ro UR|E ¢ = fand R UR = a — y.
And, by Lemma B.4, at point i in the K k a A f |~ y checking,
Rs UR |E =(a A ) for the first time.

—
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Let 7 be a model of R U R at point i and 6 a substitution
which replaces variables by constants. Suppose that af ¢ 7.
Then, (¢ A )0 ¢ 7 so a A f — y is true under 7 for substitution
0. Suppose now that af € 7 so, since Ro UR |F « — f and
Rw UR |E a — y, we have that 0 € 7 and y0 € r. Thus,
(e ANp)d € rand y0 € 7 so a A B — y is true under 7 for
substitution 6. Hence, Ro UR |= @ A f — y so the algorithm
returns true.

Case 2: 1t is always the case in the K |k a |~ f checking that
Rw UR |= —a. Then, by Lemma B4, inthe K k a A S |~ ¢
checking, it is always the case that R U R |= —=(a A ) and so
the algorithm returns true, by Lemma B.1. O

B.7 RM

Suppose that K k a |~ y and K & a |~ =f. We want to show
that K k a A B |~ y. Consider the 2 cases below:

Case 1: At some point (i € [0,n])inthe K K a A S |~ ¢
checking, R U R [£ =(a A ). We claim that we must have that
both R U R | —a and Re U R | —f. Suppose, to the contrary,
R UR |= —a. Let 7 be a model of Ry U R at point i and 6 a
substitution which replaces variables by constants. Then a6 ¢ ©
so(aAB)0 ¢ t.Thus, RoUR |= =(aAp), a contradiction. Similarly,
if R UR |= =f then Rx UR |= =(a A ), a contradiction.

Claim: Point i is the first point at which R U R [ —a.

Proof of Claim: Assume to the contrary that there exists
some j < i such that R U R £ —a, where j is minimal. Based on
the assumptions of Case 1, we know that R U R |= =(a A f) at
point j. And, since K t « |~ —f, we know that Rx UR [£ @ — —f
at point j. Let 7 be a model of Ry U R and 6 a substitution that
replaces variables with constants. Now, either a6 € 7 or af ¢ .
We consider 2 sub-cases below:

i If a0 ¢ 7. Then, @ — —f must be true under 7 for 6.

ii If a6 € 7. Then, we must have that 0 ¢ 7. Otherwise, we
would have (a A )0 € r, and, hence, R U R [£ =(ax A f),
a contradiction. Thus, =0 € 7 and so @ — = must be
true under 7 for 6.

Either way, @ — —f is true under 7 for 6, so R UR |= a — —f,
a contradiction. Thus, no such j < i exists. O

So, since R U R [£ —a at point i (and not before) and K k
a |~ y, we know that R U R |= @ — y at this point. Suppose
that at least one of a6 ¢ 7 or 0 ¢ 7 holds. Then, (e A f)0 ¢
so a A f — y is true under 7 for substitution §. Now suppose
that both a6 € r and 0 € 7. Then, (¢ A f)0 € 7 and, since
R UR = a — y, we know that y8 € 7 too. Soa A f — y is true
under 7 for substitution 0. Hence, Ro UR |= @ A f — y and the
algorithm returns true.

Case 2: 1t is always the case in the K & a A § |~ y checking
that R U R |= =(a A f). Then, the algorithm returns true, by
Lemma B.1. O

C LEXICOGRAPHIC CLOSURE
ALGORITHMS FOR DATALOG

Proof of Proposition 5.1: Let 7 be a Herbrand interpretation
and 6 a substitution which replaces variables with constants. We
want to show that 7 is a model of —a under Datalog+ semantics
iff 7 is a model of @ — L under Datalog" semantics.

Suppose 7 is a model of ~a under Datalog+ semantics. Then,
a0 ¢ t under Datalog+ semantics. Clearly, we also have that
af ¢ v under Datalogv semantics. So, @ — L is true under 7 for
6. Hence, 7 is a model of @ — 1 under Datalog” semantics.

Suppose 7 is a model of @ — L under Datalog" semantics.
We claim that 6 ¢ t under Datalog” semantics. Suppose, to
the contrary, that a6 € 7. Notice that it is always the case that
16 ¢ 7. Thus, @ — L is not true under 7 for 6, contradicting the
assumption that 7 is a model of @ — L. Thus, our claim holds
- @8 ¢ 7 under Datalog" semantics. Clearly, we also have that
a6 ¢ r under Datalog+ semantics. Thus, =« is true under 7 for 6.
Hence, 7 is a model of -« under Datalog+ semantics. |

Algorithm 7: SubsetRank

Input: A knowledge base K
Output: An ordered tuple (Ry, . .

., Ri, R, k + 1)

1 (Bo, - .-, Bm-1, Beo, m) := BaseRank(K);
2 i:=0; k= 0;

3 repeat

4 for j := |B;| to 1 do

s Si,j := Subsets(R;, j);

6 Dj j = \/XGSi,_f Axex X

, Ry := RNF(Djj);

s k=k+1;

9 =i+

10 until i := m;
11 Roo := Boo;

12 return (R, ..., Rg, R, k + 1)

Algorithm 8: LexicographicClosure

Input: A knowledge base K and a defeasible rule a |~ f
Output: true, if K k « |~ f, and false, otherwise

1 (Ro, ..., Rg, Roo, k + 1) := SubsetRank(K);
2 1:=0;
— sk p.
3 R:= U5, R
4+ while R UR[=a — L and R # 0 do

R:= R\ R;;
i=i+1

|

7 return R UR = a — f;

D LM-RATIONALITY OF LEXICOGRAPHIC
CLOSURE

In this section we provide proofs for the satisfaction of each
KLM property by the LexicographicClosure procedure. That
is, we prove Proposition 7.1, that LexicographicClosure is LM-
rational.

Notice that the proofs for the satisfaction of each KLM prop-
erty by the RationalClosure procedure, in Appendix B, are
independent of the ranking produced by the BaseRank proce-
dure. Furthermore, notice that the only difference between the
LexicographicClosure procedure and the RationalClosure
procedure is the use of the SubsetRank procedure to rank state-
ments instead of the BaseRank procedure.

Thus, the proofs for the satisfaction of each KLM property in
Appendix B can be used to prove for the satisfaction of each KLM
property by the LexicographicClosure procedure.
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