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ABSTRACT
Datalog is a declarative logic programming language that uses

classical logical reasoning as its basic form of reasoning. Defea-

sible reasoning is a form of non-classical reasoning that is able

to deal with exceptions to general assertions in a formal man-

ner. The KLM approach to defeasible reasoning is an axiomatic

approach based on the concept of plausible inference. Since Dat-

alog uses classical reasoning, it is currently not able to handle

defeasible implications and exceptions. We aim to extend the

expressivity of Datalog by incorporating KLM-style defeasible

reasoning into classical Datalog. We present a systematic ap-

proach to extending the KLM properties and two well-known

forms of rational defeasible entailment, Rational Closure and

Lexicographic Closure, to Datalog.

CCS CONCEPTS
• Theory of computation → Automated reasoning; Logic
and databases; • Computing methodologies → Nonmono-
tonic, default reasoning and belief revision;

KEYWORDS
knowledge representation and reasoning, defeasible reasoning,

KLM approach, Rational Closure, Lexicographic Closure, Datalog

1 INTRODUCTION
The Knowledge Representation and Reasoning approach to Ar-

tificial Intelligence uses logics to represent knowledge and au-

tomated reasoning methods to draw new conclusions from that

knowledge. Classical reasoning systems are monotonic. This

means that all information is certain and adding new informa-

tion does not change the conclusions that you could draw before.

This form of reasoning can be too weak to model certain systems.

To illustrate this, consider an example where these statements

are made:

Example 1.1.
(1) Students do not pay taxes.

(2) First years are students.

(3) Tutors are students.

From this, we can conclude that “tutors do not pay taxes”, which
may in fact be incorrect. However, each of these statements is

perfectly reasonable from a human perspective. What we actu-

ally meant was “typically, students do not pay taxes”. Then, when
we add the extra information that tutors typically pay taxes, we

want the system to retract its conclusion that “tutors do not pay
taxes”. However, a monotonic, classical reasoning system can-

not change previous assumptions, and knowing that “tutors pay
taxes” and “tutors do not pay taxes”, it must then conclude that

no tutors can exist, otherwise we would get a contradiction. In

non-monotonic systems, defeasible statements of the form “typi-
cally, something is the case” are permitted. This allows for a more

“common sense” approach to reasoning than in the approach of

classical reasoning[5].

In this paper, we discuss the KLM approach[12], a well sup-

ported approach to non-monotonic reasoning. In Sections 2 and

6 we discuss the existing algorithmic definition of this approach

for propositional logic. In Section 3 we discuss Datalog, a more

expressive logic. The central focus of this paper is to extend the

KLM approach to the Datalog case. We discuss this extension in

Sections 4, 5 and 7. The work in Sections 1 - 5 was done jointly

with Morris.

2 BACKGROUND
2.1 Propositional Logic
Propositional logic [2] is a simple logic which uses classical reason-

ing. A propositional atom, denoted by p or q, is a statement that

can be assigned a truth value (true or false), which cannot be de-

composed into smaller such statements. We build up a language

L of propositional logic, by recursively combining statements

using Boolean operators, for example: α → β (implies), α ∧ β
(and), α ∨ β (or), and ¬α (not).

We can represent the statements from Example 1.1 in proposi-

tional logic, using atoms s , x , f and t to represent students, taxes,
first years and tutors respectively:

(1) s → ¬x
(2) f → s
(3) t → s

Intuitively, α → β means that if α is true then β is true, α ∧ β
means that both α and β are true, α ∨ β means that at least one

of α or β are true, and ¬α means that α is not true.

Reasoning in propositional logic involves answering questions

such as “Can we logically conclude α from a knowledge base K?”.
This is referred to as entailment, and is denoted by K |= α . For
example; we can logically conclude that “first years do not pay
taxes” from the statements in Example 1.1 and we denote this by

K |= f → ¬x .

2.2 The KLM Approach
There are many different formalizations of non-monotonic rea-

soning for propositional logic. The KLM approach proposed by

Kraus et al [12] is an axiomatic approach based on the concept of

plausible inference. It is currently a well supported approach[4,

15]. In this approach, plausible inference is represented by a de-

feasible implication operator of the form α |∼ β , which intuitively
means that α is typically a good enough reason to believe β . In
this case, α and β are just classical statements. For example; we

can now represent the statement “typically, students do not pay
taxes” as follows:

s |∼ ¬x

We now want to answer questions such as “Can we typically
conclude α |∼ β from a defeasible knowledge base K (one includ-
ing defeasible implications)?”. This is referred to as defeasible

entailment, and denoted by K |≈ α |∼ β .



2.3 The KLM Properties
Unlike classical entailment, defeasible entailment is not unique.

There exist multiple formalizations of defeasible entailment, such

as Rational Closure [14], Relevant Closure [4] and Lexicographic
Closure [13]. The KLM framework provides a list of rationality
properties, which Lehmann and Magidor [14] argued must be

satisfied by defeasible entailmentmethods. This provides a way of

differentiating between acceptable and non-acceptable methods

of entailment. If a defeasible entailment algorithm satisfies all

the properties it is believed to be an acceptable form of defeasible

entailment and is called LM-rational. The KLM properties for

propositional logic are stated below:

(Ref) K |≈ α |∼ α (LLE)
α ≡ β, K |≈ α |∼ γ
K |≈ β |∼ γ

(RW)
K |≈ α |∼ β, β |= γ
K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

(Or)
K |≈ α |∼ γ , K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ

(CM)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ , K ∤≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ

All of these properties have a fairly intuitive meaning. For ex-

ample; consider the following two defeasible implications which

can be represented using propositional logic:

Typically, tutors are students. t |∼ s

Typically, tutors are employees. t |∼ e

It seems rational to conclude the statement below. This is

exactly what the And property enforces. Kraus et al [12] provide

detailed descriptions of the intended meaning of each property.

Typically, tutors are students and employees. t |∼ s ∧ e

2.4 Rational Closure
Rational closure is in many ways the most simple and intuitive

way of defining defeasible entailment. There is a semantic defi-

nition, based on underlying structures we call Ranked Interpre-
tations. There is also an equivalent algorithmic definition[10],

which we refer to as the Rational Closure Algorithm. For our pur-

poses, we will use the algorithmic definition as the sole definition

of Rational Closure.

This algorithm is split into two distinct sub-algorithms, pro-

posed by Casini et al [6]. The BaseRank algorithm is used to con-

struct a ranking of the statements in the defeasible knowledge

base K . The RationalClosure algorithm is used to compute

whether a defeasible rule is entailed by the knowledge base, and

uses the BaseRank algorithm in its definition.

The BaseRank algorithm takes a defeasible knowledge base

K as input. It is important to note that we can assume that K is

defeasible because any classical sentence α can be expressed as a

defeasible implication ¬α |∼ ⊥.
Intuitively, the BaseRank algorithm starts by putting all of the

statements from K , converted to their classical forms, into E0.
That is, every α |∼ β becomes α → β . Then, to get Ei+1 from Ei ,
we keep all the statements such that the left hand side can be

“disproved” by the statements in Ei .
When the algorithm stops, what will eventually be left in Ei+1

is all classical statements. Thus, the infinite level R∞, represents
all certain information in the knowledge base.

Algorithm 1: BaseRank
Input: A knowledge base K

Output: An ordered tuple (R0, . . . ,Rn−1, R∞,n)
1 i := 0;

2 E0 :=
−→
K ;

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei |= ¬α };

5 Ri := Ei \ Ei+1;

6 i := i + 1;

7 until Ei−1 = Ei ;

8 R∞ := Ei−1;

9 if Ei−1 = ∅ then
10 n := i − 1;

11 else
12 n := i;

13 return (R0, . . . ,Rn−1, R∞,n)

Let us consider the following example knowledge base K ,

made up of information which we know to be true:

Example 2.1.
(1) Tutors are students (t → s)
(2) First years are students (f → s)
(3) Tutors typically pay taxes (t |∼ x )
(4) Students typically do not pay taxes (s |∼ ¬x )
(5) Students typically drink coffee (s |∼ c)

Following the BaseRank algorithm, we find the following rank-

ing of the statements from Example 2.1:

0 s |∼ ¬x s |∼ c

1 t |∼ x

∞ t → s f → s

Figure 1: Base Ranking of Statements in K in Example 2.1

Intuitively, more general statements will appear higher up in

the ranking. For example, since “Tutors are students”, Students
are a more general concept than Tutors, so the statements with

Students on the left hand side will appear higher up in the ranking.

Algorithm 2: RationalClosure
Input: A knowledge base K and a defeasible implication

α |∼ β
Output: true, if K |≈ α |∼ β , and false, otherwise

1 (R0, . . . ,Rn−1, R∞,n) := BaseRank(K);

2 i := 0;

3 R :=
⋃j<n
i=0 Rj ;

4 while R∞ ∪ R |= ¬α and R , ∅ do
5 R := R \ Ri ;
6 i := i + 1;

7 return R∞ ∪ R |= α → β ;

The RationalClosure algorithm starts with the ranking pro-

vided by BaseRank. It is also asked whether we can conclude

α |∼ β from K . Note again that, while this query must be ex-

pressed in terms of the defeasible implication operator, we can
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express any classical sentence as a defeasible implication. Thus,

the algorithm can be used to check classical queries as well.

In each iteration, the algorithm checks if we can conclude ¬α
from our current set of information. If we can, then there is no

point in even trying to consider if α |∼ β is the case, since α is

never true. Thus, we throw away the top level of the ranking (the

least typical statements) and proceed to the next iteration.

In Example 2.1, consider K being presented with the query

t |∼ x , which represents asking “Do tutors typically pay taxes?”.

The algorithm finds that ¬t is a logical consequence of all of the
statements. That is, we can conclude that there are no tutors.

Thus, we throw away the top level, as shown in Figure 2, and

check again if there are any tutors with the remaining statements.

0 s |∼ ¬x s |∼ c

1 t |∼ x

∞ t → s f → s

Figure 2: Top level of K in Example 2.1 is thrown away

Eventually, when we reach a point at which we can no longer

conclude ¬α , we can then check whether α → β holds in the clas-

sical case, and return that as our result. So the RationalClosure
algorithm just reduces to a sequence of classical entailment

checks.

3 DATALOG
3.1 Standard Datalog
Datalog is a more expressive logic than propositional logic. It

allows us to represent statements about specific individuals as

well as generic concepts, which can be associated with many

individuals. For example; in Datalog we can say that “For all X ,
X is a tutor” or “Tyler is a tutor” but in propositional logic we

can only talk about tutors in general.

Consider the following example, which includes some state-

ments that can be represented using Datalog:

Example 3.1.
(1) For all X, if X is a first year, then X is a student.

(2) If Tyler is a tutor, then Tyler is a student.

(3) For all X, if X is a tutor and post-graduate, then X is a

teaching assistant.

In this section we briefly discuss the syntax and semantics

of Datalog. Complete formalizations of Logic programming and

Datalog are provided by Baral et al [1] and Ceri et al [8] respec-

tively.

The language of Datalog is made up of facts and rules. Facts
provide information about the world and rules allow us to deduce

facts from other facts. Rules are expressed as Horn clauses with
the general form

1
:

l1 ∧ l2 ∧ · · · ∧ lm → l0

Each literal li (of arity ki ) has the form pi (t1, . . . , tki ), where
pi is a predicate symbol and t1, . . . , tki are terms. A term is either

a constant or a variable. The left-hand side of the clause is referred
to as the body and the right-hand side as the head.

A fact is expressed as a Horn clause with no body:

l0
1
Datalog Horn clauses usually have the form l0 ← l1 ∧ · · · ∧ lm . However, we

choose to use a syntax that mirrors that of propositional logic for the ease of the

reader. The semantics defined in this paper are equivalent to the semantics defined

for clauses of the original form by Ceri et al [8]

We can represent the statements from Example 3.1, using vari-

able X, constant Tyler and predicates f , s , t , p and a which rep-

resent first years, students, tutors, post-graduates and teaching

assistants respectively:

(1) f (X ) → s(X )
(2) t(Tyler) → s(Tyler)
(3) t(X ) ∧ p(X ) → a(X )

We say that a clause, such as t(Tyler) → s(Tyler), is ground
since it does not contain any variables.

Intuitively, a rule says that “If everything in the body holds true,
then the head holds true too” and a fact says that “The head is
always true”. We formally assign meaning to statements using

Herbrand interpretations. A Herbrand interpretation is a subset τ
of all ground facts that can be formed using the predicates and

constants expressed in a Datalog program. For example; Tyler

is the only constant above so the set of all possible ground facts

that we can form is:

BP = { f (Tyler ), s(Tyler ), t(Tyler ),p(Tyler ),a(Tyler )}.

So a possible Herbrand interpretation is:

τ = {s(Tyler ), t(Tyler ),p(Tyler )} ⊆ BP .

To assign truth values to ground facts we check whether they

are in the set τ . That is, a ground fact is true for an interpretation

τ if and only if it is in τ . For example; t(Tyler ) ∈ τ so t(Tyler ) is
true under τ and a(Tyler ) < τ so a(Tyler ) is false under τ .

We say that a rule is true under τ if and only if whenever we

can replace variables in the rule by constants and all the literals

in the body are in τ , then the head is also in τ . Intuitively this

means that whenever we can make the “requirements” of the rule

true then the “conclusion” of the rule is also true. More formally,

this means that the rules are universally quantified. For example;

t(Tyler ) ∈ τ andp(Tyler ) ∈ τ so the requirements are all true but

a(Tyler ) < τ so the conclusion is not true. Thus, the statement

t(X ) ∧ p(X ) → a(X ) must be false for τ .
If every clause (fact or rule) in a knowledge base is true in

τ then we call τ a Herbrand model. We say that a ground fact

α is entailed by K , denoted K |= α , if and only if α is in each

Herbrand model of K . Intuitively, this means that whenever our

current statements are all true, the new fact is also true.

3.2 Disjunctive Datalog
Datalog can be seen as more expressive than propositional logic

in the sense that it allows us to represent statements about indi-

viduals. However, it restricts the type of statements that we can

make about these individuals. For instance, the statements below

cannot be represented using standard Datalog:

Example 3.2.

(1) For all X, if X is a student, then X is an undergraduate or

a postgraduate.

(2) X is never a student and an employee.

It is often useful to be able to represent statements that involve

the disjunction “or”, since these type of statements allow us

to model incomplete knowledge. It is also useful to represent

statements about falsehood so that you can say what is certainly

false as well as what is certainly true.

We now propose an extended version of Datalog, Datalog
∨
.

We introduce the literal ⊥. Intuitively, we mean that the literal ⊥

is never true.
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We also extend the syntax of rules to allow for disjunction ∨

(or) in the head of rules. That is, rules now have the following

form, where each bi and hj is a literal:

b1 ∧ · · · ∧ bm → h1 ∨ · · · ∨ hn

Now we can represent the statement from Example 3.2, using

predicates s , u, p and e to represent students, undergraduates,

postgraduates and employees respectively:

(1) s(X ) → u(X ) ∨ p(X )
(2) s(X ) ∧ e(X ) → ⊥

We now need to define the semantics for our extended logic.

We consider ⊥ to be a ground literal. For any Herbrand inter-

pretation τ , we define that ⊥ is never in τ . We say that a rule

b1 ∧ · · · ∧bm → h1 ∨ · · · ∨hn is true for Herbrand interpretation

τ if and only if, whenever we can replace variables in the rule by

constants and all the literals in the body are in τ , then at least

one of the literals in the head is in τ . Intuitively, this now means

that whenever we can make the “requirements” of the rule true

then the at least one of the “conclusions” is true.

For example; τ defined below is a Herbrand interpretation

for the statements in Example 3.1. Now, s(Tyler ) ∈ τ so the

requirement is true and p(Tyler ) ∈ τ so one of the conclusions

is true. Thus, since Tyler is the only constant we can replace X
with, s(X ) → u(X ) ∨ p(X ) is true for τ .

τ = {s(Tyler ), t(Tyler ),p(Tyler )}.

3.3 Defeasible Disjunctive Datalog
Since Disjunctive Datalog uses classical reasoning, it cannot be

used to represent defeasible statements such as the one below:

Example 3.3.

(1) Typically, for all X, if X is a tutor, then X pays tax.

As discussed above, it is often useful to be able to represent

such statements. The KLM approach [12] for propositional logic

introduces defeasible implications of the form α |∼ β whose se-

mantics are given by ranked interpretations [14].Wewant to allow

for similar defeasible statements to be represented by Disjunctive

Datalog. So, we introduce defeasible rules of the form:

b1 ∧ · · · ∧ bm |∼ h1 ∨ · · · ∨ hn

We intend for the logical connective |∼ to be the defeasible

form of the logical connective→ in rules. The ruleb1∧· · ·∧bm |∼
h1 ∨ · · · ∨ hn is intended to intuitively mean that “typically, if

all of b1, . . . ,bm are true, then at least one of h1, . . . ,hn is true”.

For example; the statement in Example 3.3 can be represented in

Defeasible Disjunctive Datalog as shown below. In this paper we

will not consider a semantic definition of defeasible rules. We will

instead define defeasible rules by adapting rational defeasible

entailment algorithms for Disjunctive Datalog.

(1) t(X ) |∼ x(X )

Notice that in the RationalClosure algorithm, defined in

Section 2.4, the entailment of complex formulas such as α → β
is required on line 7. It stands to reason that such definitions of

entailment will also be required when adapting these algorithms

for Datalog. However, the semantics of Datalog only defines

entailment of ground facts. So, we want to extend the semantics

of Datalog to allow for classical entailment of non-ground facts

and rules too.

Since Datalog can be seen as a subset of first-order logic, we

extend the definition of classical entailment under Herbrand se-

mantics for Datalog to match the definition of entailment under

Herbrand semantics for first-order logic[11]. We define entail-

ment of a Horn clause (rule or fact) as follows: a knowledge base

K entails Horn clause α , denoted by K |= α , if and only if each

Herbrand model ofK is also a model of α . Intuitively, this means

that whenever our current statements are always true, the clause

is also always true.

4 ADAPTED KLM PROPERTIES
Let knowledge baseK be a finite set of defeasible rules. The main

question of this paper is to algorithmically analyse defeasible
entailment K |≈ α |∼ β . That is, how do we answer the question:

“Can we typically conclude α |∼ β from a defeasible knowledge
base K?”. We want to extend the algorithms for answering this

question in the propositional case to the Datalog case. We also

want to ensure that our adapted algorithms remain “reasonable”.

To do so, we adopt Lehmann and Magidor’s approach [14] of

analysing the rationality of defeasible entailment algorithms

using the KLM properties. In this section we will adapt the KLM

properties for Datalog.

4.1 Basic KLM Properties for Datalog
Initially, we attempt to state basic versions of the KLM properties

for Datalog. We state the properties in terms of single literals in

the head and body of Datalog rules without the use of ∧ and ∨

connectives. That is, the defeasible rules which we consider take

the following restricted form:

b |∼ h

Let l ,m,n be Datalog literals of any arity. The properties below

are a simple extension of the KLM properties for propositional

logic:

(Ref) K |≈ l |∼ l (CM)
K |≈ l |∼m, K |≈ l |∼ n
K |≈ l ∧m |∼ n

We notice that the intuitive “meaning” of entailmentm |= n
in propositional logic is different to that for Datalog. This is

due to the introduction of variables into the logic of Datalog.

To understand why, we first need to realise that a Datalog rule

m(X ) → n(X ) is equivalent to a first-order logic statement of the

form:

∀X ,m(X ) → n(X )

For propositional logic,m |= n intuitively means “Whenever
m is true, then n is true”. However,m(X ) |= n(X ) in Datalog is

equivalent to the following first-order logic entailment:

∀X ,m(X ) |= ∀X ,n(X )
This intuitively means “Whenever m(X ) is true for every X ,

then n(X ) is true for every X ”. The problem is that this actually

does not say that the X ’s are the same form and n. So we could

have some constant, say Tyler, that replaces X form but not for

n. We want to link the X ’s so that what we are actually saying

is “For every X , wheneverm(X ) is true, then n(X ) is true”. In other

words, we want to say that ∀X ,m(X ) → n(X ) is always true.
We say that ∀X ,m(X ) → n(X ) is a tautology and denote this by

|= ∀X ,m(X ) → n(X ). That is, in Datalog we write |= m → n.
This intuitive description of |=m → n is described formally by

Proposition 4.1 below. The proof of Proposition 4.1 is trivial.

Proposition 4.1. Let τ be a Herbrand interpretation and θ any
substitution which replaces variables by constants. Then, |=m → n
iffmθ ∈ τ implies that nθ ∈ τ .

4



We can now state the RW property in terms of the tautology

|= m → n so that it has the same meaning as the RW property

for propositional logic stated in terms of the entailmentm |= n.

(RW)
K |≈ l |∼m, |=m → n

K |≈ l |∼ n

Furthermore, we notice that the intuitive “meaning” of equiva-

lence l ≡m in propositional logic is different to that for Datalog.

For propositional logic, l ≡m intuitively means “m is true if and
only if l is true”. That is, “Whenever l is true, thenm is true” and
“Whenever m is true, then l is true”. However, l(X ) ≡ m(X ) in
Datalog is equivalent to the following first-order logic statement:

∀X , l(X ) ≡ ∀X ,m(X )
This intuitively means “l(X ) is true for every X if and only if

m(X ) is true for everyX ”. We again find that this does not actually

say that theX ’s are the same form and l . This does not correspond
to our intuitive understanding of the word “equivalence”. We

want to link the X ’s so that what we are actually saying is “For
every X , l(X ) is true if and only ifm(X ) is true”. In other words,

we want to say that ∀X ,m(X ) ≡ l(X ) is always true. That is, in
Datalog we want to say thatm ≡ n is a statement which is always

true.

The problem is that the syntax of Datalog does not include the

equivalence relation ≡ so we cannot make the statementm ≡ n
in Datalog. However, we can rewrite m ≡ n as |= l → m and

|=m → l . Intuitively, this is because “For every X , l(X ) is true if
and only ifm(X ) is true” means the same thing as “For every X :

(1) if l(X ) is true, thenm(X ) is true, and,
(2) ifm(X ) is true, then l(X ) is true”
This intuitive description of why we can rewrite m ≡ n as

|= l →m and |=m → l is described formally by Proposition 4.2

below. A generalized version of Proposition 4.2, Lemma B.3, is

proved in Appendix B.

Proposition 4.2. Let τ be a Herbrand interpretation and θ any
substitution which replaces variables by constants. Then, |= l →m
and |=m → l iff lθ ∈ τ andmθ ∈ τ , or, lθ < τ andmθ < τ .

We can now state the LLE property in terms of the tautologies

|= l → m and |= m → l so that it has the same meaning as

the LLE property for propositional logic stated in terms of the

equivalence l ≡m.

(LLE)
|= l →m, |=m → l, K |≈ l |∼ n

K |≈m |∼ n

4.2 Basic KLM Properties which we cannot
State in Datalog

The And, Or and RM properties, at first glance, also seem to be

simple extensions of the KLM properties for propositional logic.

However, we notice that the current syntax of Datalog is too

restrictive to state these properties. Recall that the current syntax

of Disjunctive Datalog only allows for rules of the form:

b1 ∧ · · · ∧ bm → h1 ∨ · · · ∨ hn

Consider the naive extension of the And property below. The

rule l |∼ m ∧ n has a ∧ connective in its head. However, the

current version of Datalog only allows for ∨ connectives in the

head of a rule.

(And)
K |≈ l |∼m, K |≈ l |∼ n
K |≈ l |∼m ∧ n

Now, consider the naive extensions of the Or and RM proper-

ties. In the Or property, the rule l ∨m |∼ n has a ∨ connective

in its body, but the current version of Datalog only allows for

∧ connectives in the body of a rule. Furthermore, the current

Datalog syntax does not allow for negation ¬. Hence, the rule

l |∼ ¬m in the RM property cannot be stated.

(Or)
K |≈ l |∼ n, K |≈m |∼ n
K |≈ l ∨m |∼ n

(RM)
K |≈ l |∼ n, K ∤≈ l |∼ ¬m

K |≈ l ∧m |∼ n

Thus, the extension of the And, Or and RM properties as stated

above cannot be used for the current version of Datalog, since

they all violate its syntax.

4.3 Molecules as Combinations of Literals
We introduce the idea of molecules as a shorthand for a combi-

nation of literals. This shorthand will be used to define more

general KLM properties.

We define a disjunctive molecule, denoted α∨, to be a combina-

tion of literals using ∨ connectives in the form:

l1 ∨ l2 ∨ · · · ∨ ln

We define a conjunctive molecule, denoted α∧, to be a combi-

nation of literals using ∧ connectives in the form:

l1 ∧ l2 ∧ · · · ∧ ln

We say that a molecule, denoted α is either a disjunctive mole-

cule or a conjunctive molecule. We remark that since molecules

are just a shorthand, they have no impact on the semantics of

Datalog.

4.4 Generalized KLM Properties for Datalog
The basic KLM properties stated in Section 4.1 are stated only in

terms of single literals in the head and body of rules. However,

in general, Datalog rules may have multiple literals in both the

head and body of rules. Thus, since the basic version of the KLM

properties limits the structure of rules, it does not fully assess

the acceptability of defeasible entailment for Datalog. In this

section we analyse generalized versions of the KLM properties for

Datalog. We find that, due to the restrictive nature of Datalog’s

syntax, none of the properties can be expressed in a general

manner without violating Datalog’s syntax.

Firstly, it is clear that the And, Or and RM properties cannot be

expressed in general form, since they already cannot be expressed

in basic form using the current version of Datalog.

The general versions of the Ref, LLE, RW and CM properties,

at first glance, all seem to be simple extensions of the properties

defined in Section 4.1. However, it turns out that the current

syntax of Datalog is too restrictive to state these properties.

(Ref) K |≈ α |∼ α

Notice that molecule α occurs in both the head and body of

the rule α |∼ α in the naive general extension of the Ref property
above. So if α is disjunctive then there will be a ∨ connective in

the body of the rule, and, if α is conjunctive then there will be

a ∧ connective in the head of the rule. Thus, α |∼ α violates the

structure of Datalog rules.

A similar discussion can be had about the molecule β , which
occurs in both the head and body of different rules in the naive

general extensions of the RW and CM properties below.

(RW)
K |≈ α∧ |∼ β, |= β → γ ∨

K |≈ α∧ |∼ γ ∨
(CM)

K |≈ α∧ |∼ β, K |≈ α∧ |∼ γ ∨

K |≈ α∧ ∧ β |∼ γ ∨
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In the naive general extension of the LLE property below, the

molecules α∧ and β∧ both occur in the head of rules. Thus, the

∧ connective occurs in the head of rules, violating the current

syntax of Datalog.

(LLE)
|= α∧ → β∧, |= β∧ → α∧, K |≈ α∧ |∼ γ ∨

K |≈ β∧ |∼ γ ∨

Hence, the extension of the Ref, LLE, RW and CM properties in

general form cannot be used for the current version of Datalog

since they all violate its syntax.

4.5 Motivation for Extended Datalog
We have found that all of the KLM properties cannot be expressed

in a general manner and some of them cannot be expressed even

in a basic manner. This is due to the restrictive nature of Datalog’s

syntax.

However, we need to ensure that LM-rational forms of defea-

sible entailment satisfy all the KLM properties. We argue that

this is necessary even though the reasoning described by some

of these properties will never be computed by defeasible entail-

ment algorithms for Datalog. We illustrate why by means of an

example. Consider the following two defeasible rules which can

be represented using Datalog:

For all X, if X is a tutor, then X is typically a student. t (X ) |∼ s(X )

For all X, if X is a tutor, then X is typically an employee. t (X ) |∼ e(X )

It seems rational to conclude the statement below. However,

we cannot represent this statement using the current version of

Datalog.

For all X, if X is a tutor, then X is typically a
student and an employee.

t (X ) |∼ s(X ) ∧ e(X )

Thus, to ensure that a form of defeasible entailment is rational,

we need to ensure that it will make this conclusion, even though

we cannot actually represent the conclusion using Datalog.

We argue that the restrictive nature of Datalog’s syntax is only

in place to limit the computational complexity of reasoning about

Datalog rules. In fact, by looking at the Herbrand semantics for

first-order logic [11], we notice that the Herbrand interpreta-

tion semantics allow us to express much more in both the head

and body of Datalog rules. We propose that a Datalog extension

be used to fully express generalized versions of all of the KLM

properties. This way we can analyse the rationality of defeasi-

ble entailment using the extended syntax. However, when we

actually compute defeasible entailment, we will only ever use

the non-extended version of Datalog.

4.6 Datalog+
Our proposed extension to Datalog, Datalog+, introduces the

idea of compounds. We again make use of the approaches of

first-order logic [11] to define the syntax and semantics of this

extended logic.

We recursively define a compound in Datalog+, denoted by

A,B. If l is a literal andA and B are compounds, then the following

are all compounds:

• l
• ¬A
• A ∧ B
• A ∨ B

We define a fact in Datalog+ to be a compound A. We define

rules and defeasible rules in Datalog+ to have the following forms

respectively:

A→ B A |∼ B

Let τ be a Herbrand interpretation and consider some replace-

ment θ of variables by constants. We say that compound A is in

τ under the replacement, denoted Aθ ∈ τ , if and only if one of

the following conditions holds, where B, Γ are compounds and l
is a literal:

• A = l and after the replacement l is in τ (lθ ∈ τ )
• A = ¬B and after the replacement B is not in τ (Bθ < τ )
• A = B ∧ Γ and after the replacement both B and Γ are in τ
(Bθ ∈ τ and Γθ ∈ τ )
• A = B ∨ Γ and after the replacement at least one of B or Γ
are in τ (Bθ ∈ τ or Γθ ∈ τ )

We say that fact A is true under Herbrand interpretation τ if

and only ifA is in τ under every possible replacement of variables

by constants. We say that rule A → B is true under Herbrand

interpretation τ if and only if, whenever A is in τ under some

replacement of variables by constants, B is also in τ under the

same replacement. If a Horn clause (rule or fact) α is true under

τ we say that τ is a model of α .
We define entailment of a Horn clause (rule or fact) as we did

before. That is, a knowledge baseK entails Datalog+ Horn clause

α , denoted by K |= α , if and only if each Herbrand model of K

is also a model of α .
Notice that any Horn clause expressed in Datalog can be ex-

pressed in Datalog+ so Datalog+ is simply an extension of Data-

log.

4.7 The KLM Properties Expressed in
Datalog+

We state the KLM properties (in Datalog+) for Datalog below,

where molecules α , β,γ are used as a shorthand.

(LLE)
|= α → β, |= β → α, K |≈ α |∼ γ

K |≈ β |∼ γ

(Ref) K |≈ α |∼ α (RW)
K |≈ α |∼ β, |= β → γ

K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

(Or)
K |≈ α |∼ γ , K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ

(CM)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ , K ∤≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ

5 RATIONAL CLOSURE FOR DATALOG
In this section we propose a simple adaptation to the BaseRank
and RationalClosure algorithms so that they can be used for

Datalog.Wemake use of molecules α , β ,γ , as described in Section
4.3, as a shorthand, when describing the algorithms.

5.1 Base Rank Algorithm
The idea of the exceptionally of a statement is central to the

BaseRank algorithm. A statement is exceptional with respect to

a set of statements if it can be “disproved” by those statements.

In the propositional case, we express the notion of falsehood

using the negation connective ¬, which intuitively means “not”.

Disjunctive Datalog does not allow us to use of the negation

connective ¬, but it does allow us to use ⊥. We will use ⊥ to

define a notion of falsehood for Datalog.
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Notice that, intuitively, ¬α means that α is never true. That is,

if α is true, then ¬α is false. Recall⊥ is always false. So, whenever

α is true, the rule α → ⊥ is false. Thus, we can rewrite ¬α as

α → ⊥. This is formally stated in Proposition 5.1 below, the proof

of which is found in Appendix C.

Proposition 5.1. Let τ be a Herbrand interpretation. Then, τ is
a model of ¬α under Datalog+ semantics iff τ is a model of α → ⊥
under Datalog∨ semantics.

In the propositional case, we assume that all of the statements

in our knowledge base are defeasible. We can do this because we

can rewrite a classical statement α as the defeasible statement

¬α |∼ ⊥. However, we cannot rewrite classical Datalog clauses
in this manner, since we cannot use ¬. In fact, there is no way to

rewrite classical clauses as defeasible rules for the Datalog case.

Instead, we form a ranking of only the defeasible statements.

Then, since the classical statements are all definite, we add them

to the the most typical level, the infinite level.

We can now adapt the BaseRank algorithm, Algorithm 1, for

the Datalog case. The adapted version ranks the statements in

a knowledge base K := D ∪C , where D is the set of defeasible

rules and C the set of classical clauses. It sets out to rank the

defeasible rules by setting E0 :=
−→
D on line 2. It now assesses

the exceptionally of molecule α by using the entailment check

Ei ∪C |= α → ⊥ on line 4. Finally, when all the defeasible rules

are ranked, it adds the classical clauses to the infinite level by

setting R∞ := Ei−1∪C on line 8. For clarity, the adapted BaseRank
algorithm for the Datalog case is fully expressed in Algorithm 5

in Appendix A.

5.2 Rational Closure Algorithm
In the RationalClosure algorithm, Algorithm 2, we loop through

the statements, level by level, checking for a level where we can-

not “disprove” molecule α with the statements remaining. Thus,

we again need a notion of falsehood. As with the BaseRank algo-

rithm, we choose to adapt the RationalClosure algorithm by

using the entailment check R∞ ∪ R |= α → ⊥ on line 4 instead
of the original R∞ ∪ R |= ¬α check.

Under the assumption that we can compute classical entail-

ment for Datalog
∨
, this adapted version the RationalClosure

algorithm can now be used to check whether a rule α |∼ β
is defeasibly entailed by the knowledge base K . For clarity, the

adapted RationalClosure algorithm for the Datalog case is fully

expressed in Algorithm 6 in Appendix A.

5.3 LM-Rationality
Proposition 5.2. The adapted RationalClosure algorithm

is LM-rational. That is, it satisfies each KLM property.

Full proofs for the satisfaction of each KLM property by the

RationalClosure procedure are provided in Appendix B. We

provide a high-level overview for the proof of the And property;

to illustrate the principles used in the proof. To start, let us take

a look at what the And property is actually stating.

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

This says; if we operate on a fixed knowledge base K such

that

(1) when given query α |∼ β , the algorithm returns true, and,
(2) when given query α |∼ γ , the algorithm returns true.

Then, when passed the query α |∼ β ∧ γ , the algorithm will also

return true.
To see what this actually entails, we need to take a closer look

at the algorithm, and consider 2 cases. Note first that all 3 queries

have the same symbol α on the left hand side of the defeasible

implication. So the ranking returned by the BaseRank algorithm

will be the same for all of them.

The first case is one where during the K |≈ α |∼ β checking,

R∞∪R |= ¬α the entire time. Then, since the ranking is the same,

it is also the case in the K |≈ α |∼ β ∧ γ checking, R∞ ∪ R |= ¬α
the entire time. So the algorithm reaches the following line:

return R∞ ∪ R |= α → β ∧ γ ;
But at this point, still R∞ ∪R |= ¬α , so α → β ∧γ is vacuously

true and R∞ ∪ R |= α → β ∧ γ will return true. The reason for

this is best seen by example. Suppose it was known that there are

no apples (α ), which corresponds to the statement ¬α . We then

claim that all apples (α ) are bananas (β) and grapes (γ ), which
corresponds to the statement α → β ∧ γ . Since there are no

apples, this statement is technically true. Thus, the algorithm

will return true in the first case.

The second case is where R∞ ∪ R ̸ |= ¬α for the first time at

some point i . Again, since the ranking is the same for all queries,

this will be the exact same point i in all 3 of the queries.

0 R∞ ∪ R |= ¬α

. . . R∞ ∪ R |= ¬α

i R∞ ∪ R ̸ |= ¬α

. . . . . .

Figure 3: At some point i , R∞ ∪ R ̸ |= ¬α

Then since K |≈ α |∼ β , K |≈ α |∼ γ , we know that at point

i , R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ . If we let α represent

tutors, β represent students and γ represent employees, then we

know:

α → β (tutors are students) α → γ (tutors are employees)

Then we can conclude that α → β ∧ γ , which corresponds to

tutors being both students and employees. Thus R∞ ∪ R |= α →
β ∧ γ is true at point i , so the algorithm returns true.

6 LEXICOGRAPHIC CLOSURE
The Rational Closure approach is simple and intuitive. However,

it seems unnecessary to throw away an entire level of statements

when we can “disprove” α . While it is true that a statement within

the level is likely causing the conflict, there are other statements

in the level that have no effect on the conflict occurring. To

address this, the Lexicographic Closure algorithm takes a finer

grained approach to removing statements when a conflict is

found.

6.1 An Intuitive Description
Unlike in the Rational Closure algorithm, if we can “disprove” α
using the remaining ranked statements, we do not remove all

statements with the worst rank. We try to only remove one of

the n statements of worst rank. However, the statements all have

equal rank so we cannot simply choose any one of them. We

need to remove the statement which is causing the conflict. We

do this by first considering the ranking under all possible ways

of removing one statement from the worst rank: all subsets of
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worst-ranked statements of cardinality n − 1. We again try to

“disprove” α , each time using one of these subsets as our new

worst-ranked level of statements.

Recall, in Example 2.1, when K is presented with the query

“Do tutors pay taxes?” (t |∼ x ), we can conclude that there are no

tutors (¬t ). Following the Lexicographic Closure procedure, as
shown in Figure 4, we now try to remove the single statement

s |∼ ¬x that “Students do not pay taxes” from the top level of

statements. Then, we check whether there are still no tutors. We

find that this is, in fact, the case. So we repeat the process, this

time removing the single statement s |∼ c that “Students drink
coffee”.

0 s |∼ ¬x s |∼ c

1 t |∼ x

∞ t → s f → s

Figure 4: Single statement in the top level of K in Example 2.1
is thrown away

If we can “disprove” α for all of the subsets of sizen−1, we then
try to remove only two of the worst-rankedn statements. We now

consider all subsets of worst-ranked statements of cardinality

n − 2 and try to “disprove” α . We continue in this manner until

we find that we cannot “disprove” α .
If we find that for all subsets of statements of cardinality 1 we

can still “disprove” α , then all the statements in the worst rank

are causing the conflict. We throw away the whole worst-ranked

level and repeat the previous process with the remaining ranked

statements.

For instance, in Example 2.1, when we remove the statement

“Students drink coffee”, there are still no tutors. Thus, we throw

away the whole top level, as shown in Figure 2.

As in the Rational Closure algorithm, we stop this process

when we find that we cannot “disprove” α or when we reach the

infinite rank. We conclude by checking whether we can logically

conclude α → β from the remaining statements at this point.

6.2 Rephrasing the Intuitive Description
The translation of the intuitive description of Lexicographic Clo-

sure into an algorithm results in an algorithm which does not

satisfy the And property. This is undesirable since we want the

algorithm to be LM-rational.

Suppose we are at some level i and point j ∈ [1,ni − 1], where
j is the number of worst ranked statements we want to remove

from the ni worst-ranked statements. In the intuitive description,

we want to check whether we can “disprove” α using one of the

subsets of statements, S1, S2, . . . , Sn , of cardinality ni − j as our
new worst-rank level of statements. That is, we want to check

whether we can “disprove” α using S1 or S2 or,..., or Sn as our

new worst-rank level of statements.

We are using “or” on a meta level, a level where we are making

logical statements about logical statements. The use of this meta

statement weakens our entailment checking in a manner that

violates the And property.

In the propositional case, we address this issue by rephras-

ing the algorithm without meta level statements. We do so by

rewriting the intuitive description using ∨ connectives in a single

statement instead of “or”s between multiple statements. This re-

sults in an algorithmwhich is LM-rational. Wewill systematically

describe this rephrasing in the rest of this section.

We begin by considering the following subset of statements:

Si = {x1,x2, . . . ,xm }

Suppose we want to check whether we can logically conclude

p → q from Si (Si |= p → q). So, we want to check that whenever
“x1 is true, and, x2 is true, and, . . ., and, xm is true”, then it is also

the case that “p → q is true”. This is intuitively the same as saying

that whenever “x1 and x2 and . . . and xm are true”, then it is also

the case that “p → q is true”. That is, we want to check whether

we can logically conclude p → q from the single statement:

si :=
∧
x ∈S x = x1 ∧ x2 ∧ . . . ∧ xm

Consider the set of n subsets of ranking Ri , each of sizem:

S = {S1, S2, . . . , Sn }

Suppose we want to check whether S1 |= p → q, or, S2 |= p →
q, or, . . ., or, Sn |= p → q. This is the same as checking whether

s1 |= p → q, or, s2 |= p → q, or, . . ., or, sn |= p → q. That is, we
want to check that “whenever s1 is true then p → q is true” or
“whenever s2 is true then p → q is true” or . . . or “whenever sn is
true then p → q is true”.

Notice that if the check for “whenever s1 or s2 or . . . or sn is true
then p → q is true” holds then the above check must also hold. So

this is a stronger form of entailment check. Furthermore, this is

the same as checking that “whenever s1 ∨ s2 ∨ . . .∨ sn is true then
p → q is true”. So we can restate the previous list of entailment

checks in terms of a single stronger form of entailment check:

s1 ∨ s2 ∨ . . . ∨ sn |= p → q

Using this intuition, we can replace the list of entailment

checks, using S1 or S2 or,..., or Sn as the worst-ranked level of

statements, with a single entailment check using s1∨s2∨ . . .∨sn
as a single statement on the worst rank level.

6.3 Algorithm for Propositional Logic
We can now define a Lexicographic Closure algorithm in terms

of the sub-algorithms SubsetRank and LexicographicClosure.
This form of Lexicographic Closure for the propositional case

has been shown to be LM-rational[13].

The SubsetRank algorithm, Algorithm 3, constructs a new

ranking of statements by using the base ranks R0, . . . ,Rn−1, R∞
computed by the BaseRank algorithm. It adds new rank levels

Di,ni−1, Di,ni−2,..., Di,1 in between each existing rank level Ri
and Ri+1.

Algorithm 3: SubsetRank
Input: A knowledge base K

Output: An ordered tuple (R0, . . . ,Rk , R∞,k + 1)
1 (B0, . . . ,Bm−1,B∞,m) := BaseRank(K);

2 i := 0; k := 0;

3 repeat
4 for j := |Bi | to 1 do
5 Si, j := Subsets(Ri , j);
6 Di, j :=

∨
X ∈Si, j

∧
x ∈X x ;

7 Rk := Di, j ;

8 k := k + 1;

9 i := i + 1;

10 until i :=m;

11 R∞ := B∞;
12 return (R0, . . . ,Rk , R∞,k + 1)
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The function Subsets(X ,k) finds all possible subsets of size
k < n of a set X of size n.

Following the SubsetRank algorithm, we find the following

ranking of the statements from Example 2.1:

R0 s |∼ ¬x s |∼ c

D0,1 (s |∼ ¬x ) ∨ (s |∼ c)

R1 t |∼ x

R∞ t → s f → s

Figure 5: Subset Ranking of Statements in K in Example 2.1

The LexicographicClosure algorithm, Algorithm 4, uses the

ranking produced by the SubsetRank algorithm to compute Lex-

icographic Closure in a manner equivalent to that used by the

RationalClosure algorithm.

Algorithm 4: LexicographicClosure
Input: A knowledge base K and a defeasible rule α |∼ β
Output: true, if K |≈ α |∼ β , and false, otherwise

1 (R0, . . . ,Rk , R∞,k + 1) := SubsetRank(K);

2 i := 0;

3 R :=
⋃j≤k
i=0 Rj ;

4 while R∞ ∪ R |= ¬α and R , ∅ do
5 R := R \ Ri ;
6 i := i + 1;

7 return R∞ ∪ R |= α → β ;

Intuitively, each set of statements Di, j , in between base rank

levels Ri and Ri+1, is a weaker form of the set of statements Ri
on level i . In fact, the set of models of Ri must be a subset of the

set of models of Di, j (⟦Ri⟧ ⊆ ⟦Di, j⟧). This means that we can

only logically conclude α → β from Ri ∪ Di, j if we can logically

conclude α → β from Ri . So, adding these extra levels has no

effect on the entailment checks on line 4 and line 7 of Algorithm

4, when we are on a base rank level Ri .
However, if we can “disprove” α when we are on a base rank

level Ri , then Algorithm 4 will remove level Ri . The algorithm
will now check whether we can “disprove” α using subset ranking

Di,ni−1 as the worst level. If we can, it will then remove subset

ranking Di,ni−1 and check whether we can “disprove” α using

subset ranking Di,ni−2 as the worst level. It will proceed in this

manner until we find that either we cannot “disprove” α or we

have reached level Ri+1.
Notice that, as described in the previous section, checking

entailment with subset ranking Di, j as the worst level is the

same as the list of entailment checks, using each of the subsets

of Ri of size j as the worst-rank level. Thus, the algorithmic

definition of Lexicographic Closure is equivalent to the intuitive

definition.

7 LEXICOGRAPHIC CLOSURE FOR
DATALOG

In this section we extend the Lexicographic Closure algorithm

for the propositional case to the Datalog case. We conclude the

section by showing that our extended algorithm is LM-rational.

7.1 Rephrasing the Intuitive Description for
Datalog

Unfortunately, the rephrasing of the intuitive definition for the

propositional case cannot directly be used for the Datalog case.

This is due to the fact that some of the statements in each subset

Si may be rules. Clearly combining multiple rules using ∧ and

∨ connectives will violate the current syntax of Datalog, which

only allows for clauses of the following form:

b1 ∧ · · · ∧ bm → h1 ∨ · · · ∨ hn

For example; consider the set of statements on some level i:

{a(X ) → b(X ), c(X ) → d(X )}

The statement representing Si,1 is shown below. Clearly this

violates the current syntax of Datalog.

(a(X ) → b(X )) ∨ (c(X ) → d(X ))

Notice that if a(X ) → b(X ) is true for some replacement of X
by constants, then either a(X ) is not true or b(X ) is true. So we

can rewrite a(X ) → b(X ) as ¬a(X ) ∨ b(X ). Recall that the clause
¬a(X ) ∨ b(X ) is the same as the following universally quantified

first-order logic clause:

∀X ,¬a(X ) ∨ b(X )
It can be shown that the first-order statement formed by com-

bining universally quantified statements with ∧ and ∨ connec-

tives can be transformed into a universally quantified Conjunc-

tive Normal Form (CNF):

∀X ,D1 ∧ D2 ∧ . . . ∧ Dn , where,

Di := ¬ai,1(X ) ∨ . . . ∨ ¬ai,ri (X ) ∨ bi,1(X ) ∨ . . . ∨ ∨bi,si (X )

For example; the statement ∀X , (a(X ) → b(X )) ∨ (c(X ) →
d(X )) can be written as ∀X , (¬a(X ) ∨ b(X )) ∨ (¬c(X ) ∨ d(X ))
which can be rewritten as ∀X , (¬a(X ) ∨ ¬c(X ) ∨ b(X ) ∨ d(X )).

We notice that statements of the form¬ai,1(X )∨. . .∨¬ai,ri (X )
can be written as ¬(ai,1(X )∧ . . .∧ai,ri (X )). So we find that each
Di in Conjunctive Normal Form can be rewritten in the following

form:

Di := ¬(ai,1(X ) ∧ . . . ∧ ai,ri (X )) ∨ (bi,1(X ) ∨ . . . ∨ ∨bi,si (X ))

Now, using our previous intuition for rewriting rules, we can

rewrite each Di as follows:

Di := ai,1(X ) ∧ . . . ∧ ai,ri (X )) → bi,1(X ) ∨ . . . ∨ ∨bi,si (X )

That is, each Di can be written as a rule of the following form:

Di := α∧ → β∨

Thus, we can now replace each set Si, j = {S1, S2, . . . , Sj } in
the SubsetRank algorithm, with a single statement of the form:

(α∧
1
→ β∨

1
) ∧ (α∧

2
→ β∨

2
) ∧ . . . ∧ (α∧k → β∨k )

This statement still violates the syntax of Datalog. However,

as discussed previously, checking whether (α∧
1
→ β∨

1
) ∧ (α∧

2
→

β∨
2
)∧ . . .∧(α∧k → β∨k ) |= α → β is the same as checking whether

{α∧
1
→ β∨

1
,α∧

2
→ β∨

2
, . . . ,α∧k → β∨k } |= α → β .

So, we can now replace each set Si, j = {S1, S2, . . . , Sj } in the

SubsetRank algorithm, with the set of statements of the form:

Si, j := {α
∧
1
→ β∨

1
,α∧

2
→ β∨

2
, . . . ,α∧k → β∨k }

7.2 Algorithm for Datalog
We can now formally define the adjustments to the SubsetRank
algorithm which are required for the Datalog case. On line 7 of

Algorithm 3 for the propositional case, the algorithm sets ranking

Rk to Di, j . For the Datalog case, the algorithm should now set

Rk to RNF(Di, j ), the Rule Normal Form of Di, j .

9



Given the “extended” Datalog statement Γ, the Rule Normal

Form function RNF(Γ) does the following:

(1) Computes the Conjunctive Normal Form CNF(Γ).
(2) Converts CNF(Γ) into a conjunction of clauses of the form

(α∧
1
→ β∨

1
) ∧ (α∧

2
→ β∨

2
) ∧ . . . ∧ (α∧k → β∨k ).

(3) Converts the conjunction of clauses into a set of clauses

{α∧
1
→ β∨

1
,α∧

2
→ β∨

2
, . . . ,α∧k → β∨k }.

(4) Returns the set of clauses.

We need to adapt our definition of the notion of exceptionally

in the LexicographicClosure algorithm, Algorithm 4. As with

the RationalClosure algorithm for Datalog, we choose to adapt

the LexicographicClosure algorithm by using the entailment

check R∞∪R |= α → ⊥ on line 4 instead of the original R∞∪R |=
¬α check.

Under the assumption that we can compute classical entail-

ment for Datalog
∨
, we can define Lexicographic Closure for Data-

log, using the adapted SubsetRank and LexicographicClosure
algorithms. For clarity, the adapted algorithms for the Datalog

case are fully expressed in Appendix C.

7.3 LM-Rationality of the Algorithm
The LexicographicClosure algorithm is exactly the same as the

RationalClosure algorithm, barring the use of the SubsetRank
ranking instead of the BaseRank ranking. Furthermore, by ex-

aminging the proofs for LM-rationality of the RationalClosure
algorithm in Appendix B, we find that none of the proofs are

dependant on the type of ranking produced by the BaseRank algo-
rithm. Thus, the LM-rationality of the LexicographicClosure
algorithm follows directly from the proof of LM-rationality of

the RationalClosure algorithm. This is discussed further in

Appendix D.

Proposition 7.1. The adapted LexicographicClosure algo-
rithm is LM-rational. That is, it satisfies each KLM property.

8 RELATEDWORK
Kraus, Lehmann and Magidor (KLM) [12] introduced preferen-

tial reasoning, KLM-style defeasible implications and the KLM

properties. Lehmann and Magidor [13] presented the concept of

Rational Closure for propositional logic, provided an algorithm to

compute it, and, showed that it is LM-rational. Britz et al[3] pro-

vided an extension of the KLM properties for description logics

and presented an extension of Rational Closure for description

logics.

Lehmann [13] introduced Lexicographic Closure for proposi-

tional logic, showed that it was strictly less conservative than

Rational Closure, and proved that it is also LM-rational. Casini

et al[6] presented a systematic approach for enriching propo-

sitional logic with a defeasible implication connective, and de-

scribed algorithms for Rational Closure and Lexicographic Clo-

sure within this framework. Casini et al[7] presented an algo-

rithm for Lexicographic Closure for description logics.

9 CONCLUSIONS
The central focus of this paper is to determine what defeasible

entailment means for Datalog enriched with a defeasible rule

connective. We define this systematically by extending the KLM

approach[12] for propositional logic to the Datalog case. Due

to the differences between the Herbrand semantics of Datalog

and the semantics of propositional logic, the KLM properties

cannot be directly extended to the Datalog case. However, the

properties can be rephrased to have the same intendedmeaning in

a slightly less restricted version of Datalog. The Rational Closure

algorithm is easily extended to the Datalog case and remains

LM-rational. The less conservative form of defeasible entailment,

Lexicographic Closure, remains LM-rational when extended to

the Datalog case. However, it requires some adjustments for the

Datalog case, due to the restrictive nature of Datalog’s syntax.

10 FUTUREWORK
There are at least three lines of research to which the work in this

paper can lead. First is an implementation and optimization of

the defeasible entailment algorithms for Disjunctive Datalog. The

logic of Datalog
∨
can be seen as a subset of the logic of DLV[9],

a disjunctive logic programming system. Hence, the defeasible

entailment algorithms can be used by the DLV system for re-

stricted cases where negation-as-failure and weak constraints

are not used.

Secondly, we only define defeasible entailment for Datalog

algorithmically. However, the semantic definition in terms of

minimal models should be explored for both Rational Closure

and Lexicographic Closure for Datalog.

Finally, Casini et al[6] showed that LM-rationality is necessary

but not sufficient. The additional properties for Basic Defeasible

Entailment proposed by Casini et al[6] can be extended to Data-

log. Furthermore, other properties that are specific to defeasible

entailment for Datalog should be explored.
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APPENDICES
A RATIONAL CLOSURE ALGORITHMS FOR

DATALOG

Algorithm 5: BaseRank
Input: A defeasible knowledge base D and classical

knowledge base C
Output: An ordered tuple (R0, . . . ,Rn−1, R∞,n)

1 i := 0;

2 E0 :=
−→
D ;

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei ∪C |= α → ⊥};

5 Ri := Ei \ Ei+1;

6 i := i + 1;

7 until Ei−1 = Ei ;

8 R∞ := Ei−1 ∪C;

9 if Ei−1 = ∅ then
10 n := i − 1;

11 else
12 n := i;

13 return (R0, . . . ,Rn−1, R∞,n)

Algorithm 6: RationalClosure
Input: A defeasible knowledge base D, a classical

knowledge base C and a defeasible rule α |∼ β
Output: true, if K |≈ α |∼ β , and false, otherwise

1 (R0, . . . ,Rn−1, R∞,n) := BaseRank(D,C);

2 i := 0;

3 R :=
⋃j<n
i=0 Rj ;

4 while R∞ ∪ R |= α → ⊥ and R , ∅ do
5 R := R \ Ri ;
6 i := i + 1;

7 return R∞ ∪ R |= α → β ;

B LM-RATIONALITY OF RATIONAL
CLOSURE

Let K := D ∪C be a Datalog knowledge base, where D is a set

of defeasible rules and C is a set of classical clauses. Let α , β,γ
be molecules. We provide proofs below for the satisfaction of

each KLM property by the RationalClosure procedure. That

is, we prove that RationalClosure is LM-rational. We start by

showing that while checking K |≈ α |∼ β , if it is always the case
that R∞ ∪ R |= ¬α , then the algorithm returns true.

Lemma B.1. Let K be a knowledge base and α , β molecules
such that when checking K |≈ α |∼ β , it is always the case that
R∞ ∪ R |= ¬α . Then, the RationalClosure algorithm returns
true.

Proof of Lemma B.1: Since, in the checking, it is always the

case that R∞∪R |= ¬α , the while loop on line 4 will keep looping,
until R = ∅. Then the algorithm will jump to line 7, and return

R∞ ∪ R |= α → β .
But, since R∞ ∪ R |= ¬α , we know that αθ < τ for every

substitution θ and model τ (of R∞∪R). Thus, α → β is true under

every substitution θ and model τ . Hence, the query R∞ ∪ R |=
α → β must return true. So the algorithm itself returns true. □

B.1 Ref
We want to show that K |≈ α |∼ α . We will make use of Lemma

B.2 to do so.

Lemma B.2. The defeasible rule α → α is a tautology.

Proof of Lemma B.2: Let τ be any Herbrand interpretation

and θ a substitution which replaces variables by constants. If

αθ ∈ τ then αθ ∈ τ . So τ is a model of α → α . Hence, α → α is

a tautology. □
Let τ be a Herbrand interpretation of K and θ a substitution

which replaces variables by constants. We now consider 2 cases

below:

Case 1: At some point (when i ∈ [0,n]) in the K |≈ α |∼ α
checking, R∞ ∪ R ̸ |= ¬α for the first time. Then, since α → α
is a tautology, any model of R∞ ∪ R must satisfy α → α so

R∞ ∪ R |= α → α . Thus, the algorithm returns true.
Case 2: It is always the case in the K |≈ α |∼ α checking

that R∞ ∪ R |= ¬α . Then, the algorithm returns true, by Lemma

B.1. □

B.2 LLE
Suppose |= α → β , |= β → α and K |≈ α |∼ γ . We want to show

that K |≈ β |∼ γ . We will make use of Lemma B.3, a generalized

version of Proposition 4.2, to do so.

Lemma B.3. Let τ be a Herbrand interpretation and θ a substi-
tution which replaces variables by constants. Then, |= α → β and
|= β → α iff αθ ∈ τ and βθ ∈ τ , or, αθ < τ and βθ < τ .

Proof of Lemma B.3: Let τ be some Herbrand interpretation

and θ some substitution which replaces variables by constants.

Suppose that αθ ∈ τ . Since |= α → β we must have that τ
satisfies α → β and so βθ ∈ τ . Now suppose that αθ < τ . We

know that τ satisfies β → α since |= β → α . So we must have

βθ < τ . Similar arguments hold for when βθ ∈ τ and βθ < τ . □
Claim: At each level, R∞ ∪ R |= ¬β iff R∞ ∪ R |= ¬α .
Proof of Claim: Suppose that, at some point i ∈ [0,n], R∞ ∪

R |= ¬α . Let τ be a model of R∞ ∪ R and θ some substitution

which replaces variables by constants. So τ is a model of ¬α and,

hence, αθ < τ . Thus, by Lemma B.3, βθ < τ so τ is a model of

¬β . Hence, R∞ ∪ R |= ¬β . Similarly, we can show that if at some

point i ∈ [0,n], R∞ ∪ R |= ¬β , then R∞ ∪ R |= ¬α .
Now suppose that, at some point i ∈ [0,n], R∞ ∪ R ̸ |= ¬α .

Then, there is some model τ of R∞ ∪ R such that τ is not a model

of ¬α . So there must be some substitution θ such that αθ ∈ τ .
Hence, by Lemma B.3, βθ ∈ τ so τ is not a model of ¬β . Thus,
R∞ ∪ R ̸ |= ¬β . Similarly, we can show that if at some point

i ∈ [0,n], R∞ ∪ R ̸ |= ¬β , then R∞ ∪ R ̸ |= ¬α . □
We now consider 2 cases below:

Case 1: At some point (when i ∈ [0,n]) in the K |≈ α |∼ γ
checking, R∞ ∪ R ̸ |= ¬α for the first time. Then, at point i , since
K |≈ α |∼ γ , R∞∪R |= α → γ . As shown above, at the same point

i , R∞ ∪ R ̸ |= ¬β for the first time. The algorithm now checks that

R∞ ∪R |= β → γ . Let τ be a model of R∞ ∪R and θ a substitution

which replaces variables by constants. Suppose βθ ∈ τ then, by

Lemma B.3, αθ ∈ τ too. And, since R∞ ∪ R |= α → γ , we must

have γθ ∈ τ . So R∞ ∪R |= β → γ and the algorithm returns true.
Case 2: It is always the case in the K |≈ α |∼ γ checking that

R∞∪R |= ¬α . Then, in theK |≈ β |∼ γ checking, as shown above,

it is also always the case that R∞ ∪ R |= ¬β . So the algorithm

returns true, by Lemma B.1. □
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B.3 RW
Suppose |= β → γ and K |≈ α |∼ β . We want to show that

K |≈ α |∼ γ . Consider the 2 cases below:
Case 1: At some point (i ∈ [0,n]) in the K |≈ α |∼ β checking,

R∞ ∪ R ̸ |= ¬α for the first time. Then, at that point i , since
K |≈ α |∼ β , we have that R∞ ∪ R |= α → β . When checking

K |≈ α |∼ γ , the algorithm reaches that same point i , where
R∞∪R ̸ |= ¬α for the first time and then checks whether R∞∪R |=
α → γ .

Let τ be a model of R∞∪R and θ a substitution which replaces

variables by constants. Suppose αθ ∈ τ then, since R∞ ∪ R |=
α → β , we have that βθ ∈ τ . Since β → γ is a tautology, we must

also have that γθ ∈ τ . So R∞ ∪ R |= α → γ and the algorithm

returns true.
Case 2: It is always the case in the K |≈ α |∼ β checking that

R∞∪R |= ¬α . Then, in theK |≈ α |∼ γ checking, it is also always

the case that R∞ ∪ R |= ¬α . So the algorithm returns true, by
Lemma B.1. □

B.4 And
Suppose K |≈ α |∼ β and K |≈ α |∼ γ . We want to show that

K |≈ α |∼ β ∧ γ . Consider the 2 cases below:
Case 1: At some point (i ∈ [0,n]) in the K |≈ α |∼ β checking,

R∞ ∪ R ̸ |= ¬α for the first time. Then, at the same point i in the

K |≈ α |∼ γ checking, R∞ ∪ R ̸ |= ¬α for the first time. Now,

since K |≈ α |∼ β and K |≈ α |∼ γ , at point i we have that

R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ . So, at point i in the

K |≈ α |∼ β ∧γ checking, R∞ ∪ R ̸ |= ¬α for the first time and the

algorithm checks whether R∞ ∪ R |= α → β ∧ γ .
Let τ be a model of R∞∪R and θ a substitution which replaces

variables by constants. Suppose αθ ∈ τ then, since R∞ ∪ R |=
α → β and R∞ ∪ R |= α → γ , we must have βθ ∈ τ and γθ ∈ τ .
So (β ∧ γ )θ ∈ τ . Thus, R∞ ∪ R |= α → β ∧ γ and the algorithm

returns true.
Case 2: It is always the case in the K |≈ α |∼ β checking that

that R∞ ∪ R |= ¬α . Then, in the K |≈ α |∼ β ∧ γ checking, it is

also always the case that R∞ ∪ R |= ¬α . So the algorithm returns

true, by Lemma B.1. □

B.5 Or
Suppose K |≈ α |∼ γ and K |≈ β |∼ γ . We want to show that

K |≈ α ∨ β |∼ γ . Consider the 2 cases below:
Case 1: It is always the case (for all i ∈ [0,n]) that in the

K |≈ α |∼ γ checking, R∞ ∪ R |= ¬α and, in the K |≈ β |∼ γ
checking, R∞ ∪ R |= ¬β . Let τ be a model of R∞ ∪ R at some

point (i ∈ [0,n]) and θ a substitution which replaces variables

by constants. Then, at point i , we must have that αθ < τ and

βθ < τ so (α ∨ β)θ < τ . Thus, R∞ ∪ R |= ¬(α ∨ β) at point i .
Hence, in the K |≈ α ∨ β |∼ γ checking, it is always the case that

R∞ ∪ R |= ¬(α ∨ β) so the algorithm returns true, by Lemma B.1.

Case 2: There is some point (i ∈ [0,n]) at which, without loss of
generality, R∞∪R ̸ |= ¬α for the first time and at each point before

point i (for each 0 ≤ j < i), R∞ ∪ R |= ¬β . That is, R∞ ∪ R ̸ |= ¬α
for the first time either at the same level or a higher level than

the level at which R∞ ∪ R ̸ |= ¬β for the first time. Since we know

that K |≈ α |∼ γ , at point i we must have that R |= α → γ .
At point i , since R∞∪R ̸ |= ¬α , there is some model τ of R∞∪R

which is not a model of ¬α . Thus, there is some substitution θ
such that αθ ∈ τ . Thus, (α ∨ β)θ ∈ τ so (¬(α ∨ β))θ < τ . Hence,
at point i in the K |≈ α ∨ β |∼ γ checking, R∞ ∪ R ̸ |= ¬(α ∨ β).

Furthermore, at any point j < i , we have that R∞ ∪ R |= ¬α
and R∞∪R |= ¬β . Thus, as shown above in Case 1, we must have

that R∞ ∪ R |= ¬(α ∨ β) at point j. So point i is the first point at
which R∞ ∪ R ̸ |= ¬(α ∨ β).

We again let τ be a model of R∞ ∪ R at point i and θ a substi-

tution which replaces variables by constants. Now we consider 2

sub-cases below:

i At point i , R∞ ∪ R |= ¬β . Then βθ < τ . Suppose that

αθ < τ . Then, (α ∨ β)θ < τ so α ∨ β → γ is true under

τ for substitution θ . Now suppose that αθ ∈ τ . Then,
(α ∨ β)θ ∈ τ and, since R |= α → γ , γθ ∈ τ . So, α ∨ β → γ
is true under τ for substitution θ . Hence, R |= α ∨ β → γ
and the algorithm returns true.

ii At point i , R∞ ∪ R ̸ |= ¬β (and this is not the case for any

j < i , otherwise it would violate our assumption for case
2). So, since K |≈ β |∼ γ , we have that R∞ ∪ R |= β → γ .
Suppose that αθ < τ and βθ < τ . Then, (α ∨ β)θ < τ so

α ∨ β → γ is true under τ for substitution θ . Now suppose

that, without loss of generality (since both R |= α → γ
and R |= β → γ ), αθ ∈ τ . Then, (α ∨ β)θ ∈ τ and, since

R |= α → γ , γθ ∈ τ . So, α ∨ β → γ is true under τ for

substitution θ . Hence, R |= α ∨ β → γ and the algorithm

returns true. □

B.6 CM
Suppose K |≈ α |∼ β and K |≈ α |∼ γ . We want to show that

K |≈ α ∧ β |∼ γ . We will make use of Lemma B.4 to do so.

Lemma B.4. Suppose K |≈ α |∼ β and K |≈ α |∼ γ for some
knowledge base K . Then, the following holds:

i If R∞ ∪ R |= ¬α at some point i in the RationalClosure
algorithm, then R∞ ∪ R |= ¬(α ∧ β) at that point i .

ii If R∞ ∪ R ̸ |= ¬α for the first time at some point i in the
RationalClosure algorithm, then R∞ ∪ R ̸ |= ¬(α ∧ β),
also for the first time, at that point i .

Proof of Lemma B.4:

i Suppose that R∞∪R |= ¬α at some point i . Let τ be amodel

of R∞ ∪ R at point i and θ a substitution which replaces

variables by constants. Then αθ < τ so (α ∧ β)θ < τ and,

hence, (¬(α ∧ β))θ ∈ τ . Hence, R∞ ∪ R |= ¬(α ∧ β). □
ii Suppose that, at point i , R∞ ∪ R ̸ |= ¬α for the first time.

Then, since K |≈ α |∼ β , we have that R∞ ∪ R |= α →
β . And, since R∞ ∪ R ̸ |= ¬α , there is some model τ of

R∞ ∪ R which is not a model of ¬α . Thus, there is some

substitution θ such that αθ ∈ τ . Since R∞ ∪ R |= α → β ,
we must have that βθ ∈ τ too. So (α ∧ β)θ ∈ τ and, thus,

(¬(α ∧ β))θ < τ . Hence, at point i , R∞ ∪ R ̸ |= ¬(α ∧ β).
Now, it remains to show that point i is the first point at
which R∞ ∪ R ̸ |= ¬(α ∧ β). Assume, to the contrary, that

at some point j < i , R∞ ∪ R ̸ |= ¬(α ∧ β). But, then at this

point, we know R∞ ∪ R |= ¬α , so R∞ ∪ R |= ¬(α ∧ β),
which is a contradiction. Thus, point i is the first point at
which R∞ ∪ R ̸ |= ¬(α ∧ β). □

Now we consider 2 cases below:

Case 1: At some point (i ∈ [0,n]) in the K |≈ α |∼ β checking,

R∞ ∪ R ̸ |= ¬α for the first time. Then, at the same point i , in the

K |≈ α |∼ γ checking, R∞ ∪ R ̸ |= ¬α for the first time. Thus, at

this point i we have that R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ .
And, by Lemma B.4, at point i in the K |≈ α ∧ β |∼ γ checking,

R∞ ∪ R ̸ |= ¬(α ∧ β) for the first time.
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Let τ be a model of R∞ ∪ R at point i and θ a substitution

which replaces variables by constants. Suppose that αθ < τ .
Then, (α ∧ β)θ < τ so α ∧ β → γ is true under τ for substitution

θ . Suppose now that αθ ∈ τ so, since R∞ ∪ R |= α → β and

R∞ ∪ R |= α → γ , we have that βθ ∈ τ and γθ ∈ τ . Thus,
(α ∧ β)θ ∈ τ and γθ ∈ τ so α ∧ β → γ is true under τ for

substitution θ . Hence, R∞ ∪ R |= α ∧ β → γ so the algorithm

returns true.
Case 2: It is always the case in the K |≈ α |∼ β checking that

R∞ ∪ R |= ¬α . Then, by Lemma B.4, in the K |≈ α ∧ β |∼ γ
checking, it is always the case that R∞ ∪ R |= ¬(α ∧ β) and so

the algorithm returns true, by Lemma B.1. □

B.7 RM
Suppose that K |≈ α |∼ γ and K ∤≈ α |∼ ¬β . We want to show

that K |≈ α ∧ β |∼ γ . Consider the 2 cases below:
Case 1: At some point (i ∈ [0,n]) in the K |≈ α ∧ β |∼ γ

checking, R∞ ∪ R ̸ |= ¬(α ∧ β). We claim that we must have that

both R∞ ∪ R ̸ |= ¬α and R∞ ∪ R ̸ |= ¬β . Suppose, to the contrary,

R∞ ∪ R |= ¬α . Let τ be a model of R∞ ∪ R at point i and θ a

substitution which replaces variables by constants. Then αθ < τ
so (α∧β)θ < τ . Thus, R∞∪R |= ¬(α∧β), a contradiction. Similarly,

if R∞ ∪ R |= ¬β then R∞ ∪ R |= ¬(α ∧ β), a contradiction.
Claim: Point i is the first point at which R∞ ∪ R ̸ |= ¬α .
Proof of Claim: Assume to the contrary that there exists

some j < i such that R∞ ∪ R ̸ |= ¬α , where j is minimal. Based on

the assumptions of Case 1, we know that R∞ ∪ R |= ¬(α ∧ β) at
point j . And, sinceK ∤≈ α |∼ ¬β , we know that R∞∪R ̸ |= α → ¬β
at point j. Let τ be a model of R∞ ∪ R and θ a substitution that

replaces variables with constants. Now, either αθ ∈ τ or αθ < τ .
We consider 2 sub-cases below:

i If αθ < τ . Then, α → ¬β must be true under τ for θ .
ii If αθ ∈ τ . Then, we must have that βθ < τ . Otherwise, we
would have (α ∧ β)θ ∈ τ , and, hence, R∞ ∪ R ̸ |= ¬(α ∧ β),
a contradiction. Thus, ¬βθ ∈ τ and so α → ¬β must be

true under τ for θ .

Either way,α → ¬β is true under τ for θ , so R∞∪R |= α → ¬β ,
a contradiction. Thus, no such j < i exists. □

So, since R∞ ∪ R ̸ |= ¬α at point i (and not before) and K |≈

α |∼ γ , we know that R∞ ∪ R |= α → γ at this point. Suppose

that at least one of αθ < τ or βθ < τ holds. Then, (α ∧ β)θ < τ
so α ∧ β → γ is true under τ for substitution θ . Now suppose

that both αθ ∈ τ and βθ ∈ τ . Then, (α ∧ β)θ ∈ τ and, since

R∞ ∪ R |= α → γ , we know that γθ ∈ τ too. So α ∧ β → γ is true

under τ for substitution θ . Hence, R∞ ∪ R |= α ∧ β → γ and the

algorithm returns true.
Case 2: It is always the case in the K |≈ α ∧ β |∼ γ checking

that R∞ ∪ R |= ¬(α ∧ β). Then, the algorithm returns true, by
Lemma B.1. □

C LEXICOGRAPHIC CLOSURE
ALGORITHMS FOR DATALOG

Proof of Proposition 5.1: Let τ be a Herbrand interpretation

and θ a substitution which replaces variables with constants. We

want to show that τ is a model of ¬α under Datalog+ semantics

iff τ is a model of α → ⊥ under Datalog
∨
semantics.

Suppose τ is a model of ¬α under Datalog+ semantics. Then,

αθ < τ under Datalog+ semantics. Clearly, we also have that

αθ < τ under Datalog
∨
semantics. So, α → ⊥ is true under τ for

θ . Hence, τ is a model of α → ⊥ under Datalog
∨
semantics.

Suppose τ is a model of α → ⊥ under Datalog
∨
semantics.

We claim that αθ < τ under Datalog
∨
semantics. Suppose, to

the contrary, that αθ ∈ τ . Notice that it is always the case that
⊥θ < τ . Thus, α → ⊥ is not true under τ for θ , contradicting the

assumption that τ is a model of α → ⊥. Thus, our claim holds

- αθ < τ under Datalog
∨
semantics. Clearly, we also have that

αθ < τ under Datalog+ semantics. Thus, ¬α is true under τ for θ .
Hence, τ is a model of ¬α under Datalog+ semantics. □

Algorithm 7: SubsetRank
Input: A knowledge base K

Output: An ordered tuple (R0, . . . ,Rk , R∞,k + 1)
1 (B0, . . . ,Bm−1,B∞,m) := BaseRank(K);

2 i := 0; k := 0;

3 repeat
4 for j := |Bi | to 1 do
5 Si, j := Subsets(Ri , j);
6 Di, j :=

∨
X ∈Si, j

∧
x ∈X x ;

7 Rk := RNF(Di, j );

8 k := k + 1;

9 i := i + 1;

10 until i :=m;

11 R∞ := B∞;
12 return (R0, . . . ,Rk , R∞,k + 1)

Algorithm 8: LexicographicClosure
Input: A knowledge base K and a defeasible rule α |∼ β
Output: true, if K |≈ α |∼ β , and false, otherwise

1 (R0, . . . ,Rk , R∞,k + 1) := SubsetRank(K);

2 i := 0;

3 R :=
⋃j≤k
i=0 Rj ;

4 while R∞ ∪ R |= α → ⊥ and R , ∅ do
5 R := R \ Ri ;
6 i := i + 1;

7 return R∞ ∪ R |= α → β ;

D LM-RATIONALITY OF LEXICOGRAPHIC
CLOSURE

In this section we provide proofs for the satisfaction of each

KLM property by the LexicographicClosure procedure. That
is, we prove Proposition 7.1, that LexicographicClosure is LM-
rational.

Notice that the proofs for the satisfaction of each KLM prop-

erty by the RationalClosure procedure, in Appendix B, are

independent of the ranking produced by the BaseRank proce-

dure. Furthermore, notice that the only difference between the

LexicographicClosure procedure and the RationalClosure
procedure is the use of the SubsetRank procedure to rank state-

ments instead of the BaseRank procedure.
Thus, the proofs for the satisfaction of each KLM property in

Appendix B can be used to prove for the satisfaction of each KLM

property by the LexicographicClosure procedure.
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