
Defeasible DLV Literature Review
Tala Ross

rsstal002@myuct.ac.za
University of Cape Town
Cape Town, South Africa

ABSTRACT
Datalog is a declarative logic programming language that uses
classical logical reasoning as its basic form of reasoning. DLV is a
disjunctive logic programming language, which forms an extension
of Datalog. Defeasible reasoning is a form of non-classical reasoning
that is able to deal with exceptions to general assertions in a formal
manner. Since Datalog and DLV use classical reasoning, they are
currently not able to handle defeasible implications and exceptions.
We aim to extend the expressivity of Datalog by incorporating KLM-
style[20] defeasible reasoning into classical Datalog and extending
DLV with defeasible reasoning.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; Logic and
databases; Database query languages (principles); • Computing
methodologies→Nonmonotonic, default reasoning and be-
lief revision; Description logics;

KEYWORDS
Artificial Intelligence, Knowledge Representation and Reasoning,
classical reasoning, defeasible reasoning, propositional logic, first-
order logic, description logics, disjunctive logic, declarative logic
programming, Datalog, DLV

1 INTRODUCTION
There are two main approaches to Artificial Intelligence, Machine
Learning (ML) and Knowledge Representation and Reasoning(KRR).
We will focus our attention on the KRR approach. Knowledge repre-
sentation is the use of symbols to stand for knowledge about some
problem domain. Reasoning is the manipulation of symbols which
encode propositions to produce new propositions. We use different
logics to represent knowledge and we use automated reasoning
methods to reason about that knowledge.

A logic, or logical system, is a mechanism which formalizes valid
ways to reason.[2] It has a formal language for making statements
about objects and reasoning about properties of these objects. The
syntax of the language, given by a predefined set of rules, defines the
legal structure of statements in the language. The semantics of the
language is the meaning of statements, defined by interpretations,
which assign a single truth value, either true or false, to a statement.

This is a very general definition of logic and there are, in fact,
many different types of logics. In Section 2 we will focus our atten-
tion on Propositional logic, a simple logic, forming the basis of many
other logics. Then, in Section 3, we will briefly turn our attention to
First-order logic, an extension of Propositional logic, and the family
of Description logics which are fragments of First-order logic.

In Section 4, we then briefly describe the concepts of Classical
Reasoning and Tarskian operators which satisfy the monotonicity

property. Then, in Section 5, we describe Defeasible reasoning, a
form of non-monotonic "common-sense" reasoning which allows
for exceptions. We focus mainly on the KLM[20] approach and
briefly contrast this to a few other possible approaches.

Next, in Section 6, we describe the syntax and semantics of
Datalog and provide motivations for its use. Finally, in Section 7,
we describe the extension of the syntax and semantics of Datalog
to include disjunction, which forms the language of DLV. We then
explore a possible approach to extending DLV to handle defeasible
reasoning based on the concepts presented in the previous sections.
Lastly, we will conclude about the motivations for and feasibility
of extending Datalog and DLV using Defeasible reasoning.

2 PROPOSITIONAL LOGIC
As humans we make statements such as “Birds can fly” and “Tweety
is a bird” and we deduce intuitively that Tweety can fly. However,
without a formalization of how to state assertions and how to
deduce information from assertions, we have no way to analyse
how appropriate or correct our reasoning is. We say that an atom,
or atomic proposition, is a statement that can be assigned a truth
value (true or false), which cannot be decomposed into smaller such
statements.[2] A propositional logic system is a logical system in
which formulas can be formed by combining atomic propositions
using Boolean operators. These formulas provide a formal way
to represent assertions. In this section we will explore the syntax,
semantics and pragmatics of propositional logic, as defined in [13]
[2].

2.1 Syntax
To define the syntax for propositional logic, we need to define
its alphabet and language. The alphabet is used to construct each
formula. The language is the set of all possible formulas.

The alphabet for formulae consists of a countable set P of atoms
denoted by p,q, . . ., and, the Boolean operators ¬ (negation), ∧ (con-
junction), ∨ (disjunction),→ (implication) and↔ (bi-implication),
where ¬ is a unary operator and the other operators are binary
operators.

A formula is a string over the alphabet P, denoted by α , β,
Representations of formulas as strings can be ambiguous. We use
parentheses to preserve structure, and, a precedence order and as-
sociativity rules to resolve ambiguity. The precedence of operations
from high to low is: ¬, ∧, ∨,→,↔.

The language L of propositional logic is the set of all formulae,
defined recursively as follows:

• If p is an atom in P, p is a formula in L.
• If α and β are formulae in L, then ¬α ,α ∧ β,α ∨ β ,α → β
and α ↔ β are all formulae in L.

2.2 Semantics
To define the semantics of propositional logic we first define the
meaning of the Boolean operators and then we use this to assign
truth values to each formula.

Each Boolean operator is a function with domain L and range
{T , F }, where ¬ is a function on a single variable and the binary
operators are functions on two variables. The meaning of these
functions is shown in the truth table in Table 1.

p q ¬p p ∧ q p ∨ q p → q p ↔ q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Figure 1: A truth table defining Boolean operators semantics

To formalize the ideas demonstrated in truth tables we define
an interpretation function. An interpretation is a function I : P →
{T , F } which assigns a single truth value to each atom. We denote
the set of interpretations byW . Intuitively,W is just the set of rows
from a truth table for all atoms. Notice that since each atom can be
assigned 2 possible values, true or false, there must be 2 |P | possible
interpretations inW .

Nowwe define satisfaction, a way of extending interpretations to
each formula inL. We say that an interpretation I satisfies a formula
α , denoted I ⊩ α , if and only if one of the following conditions
holds:
• α ∈ P and I (α) = T
• α = ¬β and I does not satisfy β
• α = β ∧ γ and both I ⊩ β and I ⊩ γ
• α = β ∨ γ and at least one of I ⊩ β or I ⊩ γ
• α = β → γ and at least one of I ⊩ ¬β or I ⊩ γ
• α = β ↔ γ and either I ⊩ β and I ⊩ γ , or I ⊩ ¬β and I ⊩ ¬γ

A knowledge base K is a finite set of formulas from L. We say
that α is satisfiable if there is an interpretation I ∈ W such that
I ⊩ α ; otherwise α is unsatisfiable. More generally, K is satisfiable
if there is an interpretation I ∈W that satisfies all formulas in K .

The models of α , denoted ⟦α⟧, is the set of interpretations that
satisfy α . More generally, we define ⟦K⟧ = {⟦α⟧ : α ∈ K}. We say
α entails β , or β is a logical consequence of α , denoted α ⊩ β , if and
only if ⟦β⟧ ⊆ ⟦α⟧. That is, every interpretation that satisfies β also
satisfies α . More generally, K ⊩ β if and only if ⟦β⟧ ⊆ ⟦K⟧.

3 EXTENDING PROPOSITIONAL LOGIC
Propositional logic only allows us to express knowledge about
objects as a whole and not about their individual elements. For
example, wemaywant to express that "Some birds are penguins" but
we can only express that "All birds are penguins" using propositional
logic. Thus, we often require more expressive forms of logic.

3.1 First-order Logic
First-order logic allows assertions about elements of structures to
be expressed. This is achieved by extending Propositional logic to
allow the propositional symbols to have arguments ranging over

elements of structures. The syntax and semantics of first-order logic
is essentially the syntax and semantics of formal mathematics. We
will now very briefly explore this formalization, as defined in [13].

3.1.1 Syntax of First-order Logic. The alphabet of a First-order
language is made up of a fixed part and a non-logical part whose
contents depend on the intended application of the language. The
fixed part consists of the Boolean operators of Propositional logic,
the quantifiers ∀ (for all) and ∃ (there exists), the equality symbol =
and a countably infinite set of variables denoted byX ,Y ,Z , The
non-logical part consists of a countable set of functions denoted by
f ,д,h, . . ., a countable set of constants denoted by a,b, c, . . . and
a countable set of predicate symbols denoted by p,q, We then
inductively use this alphabet to build terms and formulas, of the
form familiar from formal mathematics, in order to construct the
language of First-order logic.

3.1.2 Semantics of First-order Logic. To define semantics, the no-
tion of a structure S = (M, I), whereM is a nonempty set called the
domain and I is the interpretation function, needs to be introduced.
This is essentially the notion of an algebra in formal mathematics.
Then, we define entailment recursively on the set of formulas, such
that, given a structure S and a formula α , for any assignment s of
values in S to the variables in α , S ⊩ α[s]. We say a formula is valid
if it is valid in every structure.

3.2 Description Logics
Description Logics are a family of fragments of first-order logic.
They can be used to represent declarative knowledge about a do-
main, while allowing automated reasoning with the knowledge to
infer implicit facts about the domain.[6] Each Description Logic
has a set of logical features which together determine its expres-
sive power but the more expressive it is the more computationally
intensive it is to perform automated reasoning with it.[6]

4 CLASSICAL REASONING
Classical reasoning is a reasoning framework in which new in-
formation is inferred from given information by making use of
Tarskian consequence operators.

4.1 Tarskian Operators
A consequence operator is an operator which maps arbitrary sets of
formulas of L to sets of formulas of L, where L is some logical lan-
guage. A consequence operator Cn is Tarskian[19] if the following
properties hold for some set A:
• Inclusion: A ⊆ Cn (A)
• Closure: Cn (Cn (A)) ⊆ Cn (A)
• Monotony: If A ⊆ B then Cn (A) ⊆ Cn (B)

Consider Th(A) ::= {α ∈ L : A ⊩ α } to be the set of all formulas
in L which are a logical consequences of formulas in A. Notice
that Th, in propositional and first-order logic and fragments is a
Tarskian operator.

4.2 Shortfalls of Classical Reasoning
Classical reasoning cannot accommodate the addition of new infor-
mation which contradicts what is known, since then learning a new

2

piece of knowledge could possibly reduce the set of what is known,
contradicting monotonicity. Consider the following example from
[20]: if a monotonic system is told that “Penguins are bird” and
“Birds fly” then when it encounters new information, an exception,
that “Tweety is a Penguin”, it will still conclude that Tweety flies.
To try handle this we can add the fact that “Penguins don’t fly” but
this doesn’t work. Now we must conclude that no penguins exist,
changing our mind about previously known information.

However, humans use “common-sense” reasoning, with excep-
tions, all the time. We make realistic conclusions from what we
know and when presented with new information which contradicts
our assumption we take back our previous conclusions but don’t
change our minds about previous information. In this manner, in
the previous example, we add the exception that "Penguins don’t
fly". When we learn that Tweety is a bird, we conclude that Tweety
flies. When we learn further that Tweety is a penguin, we don’t
change our mind about the fact that most birds fly, penguins are
birds that do not fly and Tweety is a bird, but we do change our mind
about the fact that Tweety flies. This is a form of Non-monotonic
reasoning, a way of deducing new information from given infor-
mation in a manner that could possibly reduce the set of what is
known, and hence does not satisfy the monotonicity property.

5 DEFEASIBLE REASONING
Defeasible reasoning is a form of non-monotonic reasoning. It
aims to eliminate or modify the monotonicity property in systems,
allowing for reasoning with exceptions, through the development
of formalisms which can represent and reason with defeasible facts
such as "Birds typically fly".[6] There are many frameworks which
have been proposed for defeasible reasoning, and, unlike entailment
for classical reasoning, it is commonly-accepted that defeasible
entailment is not unique.[5]

5.1 The KLM Approach
The framework for defasible reasoning proposed byKraus, Lehmann
and Magidor (KLM)[20] is a well-known axiomatic approach, based
on the concept of plausible inference. In the logic proposed by KLM,
a plausible inference is represented by a defeasible implication op-
erator of the form α |∼ β which is read as “typically, if α then β”.
The idea is that α |∼ β means that α is a good enough reason to
believe β .

5.1.1 Other Defeasible Reasoning Approaches. There are many
other approaches to defeasible reasoning. Default reasoning is based
on concepts of plausible inference of the form “In the absence of
any information to the contrary of α , assume α”.[25] Negation as
failure is a reasoning approach that assumes ¬α holds from failure
to derive α .[10] Autoepistemic Logic allows for the expression
of knowledge and lack of knowledge about facts, as opposed to
traditional logics which only allows the expression of facts.[9].
Other well-known defeasible reasoning approaches include include
Circumscription[24] and Probabilistic logic[17].

5.1.2 Motivation for using the KLMApproach. It has been shown
that the semantics for automated reasoning methods of KLM[16],
Default logic[26], Negation as failure[10], Autoepistemic Logic[9],
Circumscription[3] and Probabilistic logic[17] approaches can all

be characterized for Description logics. Hence it seems reasonable
to believe that the semantics of any one of these approaches could
be characterized for Datalog and DLV, which are both Description
logics.

There are twomain reasons, stated in [5], why the KLM approach
to extending Description logics seems preferable. Since Defeasi-
ble entailment is not unique, it seems necessary to have a way of
differentiating between acceptable and non-acceptable methods
of entailment. The KLM framework provides a list of rationality
properties, known as KLM properties. Lehmann and Magidor[22]
argue that all KLM properties must be satisfied by defeasible entail-
ment methods, and hence, these properties provide a mechanism
for formal analysis of defeasible entailment methods in order to
assess how rational, intuitive and acceptable they are. Furthermore
the KLM approach allows for decision problems to be reduced to
classical entailment checking when possible to avoid unnecessarily
drastically increasing the computational complexity with respect
to the underlying classical case.

5.2 KLM Extension to Propositional Logic
In [7] it was found that we can view the logic of KLM-style de-
feasible implications as an extension of propositional logic. In this
section we will explore the syntax and semantics of this extension.

First we extend to syntax of propositional logic. Suppose the set
of atoms P, the set of formulasL and the set of all interpretationsU
are all defined by the usual definitions, presented in Section 2. The
alphabet of propositional logic is now extended by adding |∼ as an
operator. The language of propositional logic is extended to include
all possible formulas of the form α |∼ β , where α , β ∈ L. Notice
that the restriction of α and β to formulas of the propositional form
prevents nesting of the defeasible implication operator.

Next, we consider extending the semantics of propositional logic.
The semantics for propositional logic remain the same, with sat-
isfaction of a formula α ∈ L by an interpretation v ∈ U , denoted
by v ⊩ α , defined as in Section 2. Similarly, the models of a set of
formulas X denoted ⟦X⟧ is defined as in Section 2.

We use structures called ranked interpretations to define the se-
mantics of KLM-style rational defeasible implications, as defined in
[7]. The idea is that a ranked interpretation is an organization of in-
terpretations into levels (or ranks), in order of decreasing typicality,
where no level is empty, starting at level 0, with the most typical
interpretations, and ending at level n for some n ∈ N, with the least
typical interpretations. A final level, of infinite rank, is added for all
the impossible interpretations. Formally, a ranked interpretation is a
function R : U → N ∪ {∞} such that R(u) = 0 for some u ∈ U , and
for every i ∈ N, if R(v) = i , then, for every j s.t. 0 ≤ j < i , there is a
u ∈ U for which R(u) = j. We call R(v) the rank of v with respect
to R. We denote the set of possible interpretations, those with finite
rank, by U R . The ranked model of a formula α ∈ L, denoted ⟦α⟧R ,
is the set of possible interpretations v ∈ U R such that v ⊩ α .

We say R satisfies classical statement α , denoted R ⊩ α , if U R ⊆

⟦α⟧R and we call R an α -interpretation. The idea of satisfaction for a
defeasible implication is that a ranked interpretation R satisfies a de-
feasible conditional formula α |∼ β if all minimal α-interpretations
with respect to rank (the α-interpretations in the first level which
contains an α-interpretation) satisfy β in a propositional manner. It

3

is shown in [7] that we can associate each ranked interpretation R
with some total preorder ⪯ on U R , with strict version ≺. Formally,
we say R satisfies α |∼ β , denoted R ⊩ α |∼ β , if all the possible ≺-
minimal α-interpretations also satisfy β . More generally, R satisfies
a finite set of conditionals K , called a knowledge base, if R ⊩ α |∼ β
for every α |∼ β ∈ K .

5.3 The KLM Properties
Wemotivated for the use of the KLM approach mainly due to the list
of rationality properties for formalizing what is meant by acceptable
defeasible entailment, as proposed in [22]. As in [7], we will refer to
the satisfaction of all these properties as LM-rationality. The KLM
properties, or rationality properties, are listed below:

(Ref) K |≈ α |∼ α (LLE)
α ≡ β, K |≈ α |∼ γ
K |≈ β |∼ γ

(RW)
K |≈ α |∼ β, β |= γ
K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

(Or)
K |≈ α |∼ γ , K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ

(CM)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ , K ∤≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ

5.4 Rational Closure
Rational Closure, proposed by Lehmann and Magidor[22], is the
most conservative form of defeasible entailment (in terms of subset
inclusion) which is LM-rational. However, according to [5], Ratio-
nal Closure is usually too weak from an inferential point of view.
As an example, Rational Closure does not support the inheritance
of defeasible properties. Lexicographic Closure, a form of defea-
sible entailment proposed by Lehmann[21], is bolder in terms of
subset inclusion and is still LM-rational. Other more expressive
forms of defeasible entailment include Ranked Entailment[22] and
Relevant Closure[5]. However, these are not LM-rational.[7] Both
the appropriate forms of defeasible reasoning, Rational Closure and
Lexicographic Closure, can be defined in the KLM propositional
logic extension in [7] For simplicity sake, we will only consider
Rational Closure. Furthermore, we motivate for the use of Rational
Closure based on its relatively low computational complexity.

5.4.1 The Idea and Formalization. The idea is that create a or-
dering of ranked interpretations, where the lower ranked interpre-
tations are seen as more typical, on an outer level of typicality. On
an inner level of typicality, within each ranked interpretation we
know that lower interpretations are seen as more typical. So we
want the minimum ranked interpretation, the most typical one (on
an outer level), to be the one in which interpretations are as typical
(on an inner level) asK allows them to be. A defeasible conditional
formula α |∼ β is in the rational closure of a knowledge base K if
it is satisfied by the most typical ranked interpretation, and hence,
“makes sense” typically.

We know, from Giordano et al. [16], that there is a unique ⪯K -
minimal ranked interpretation, denotedRRC

K
. We say α |∼ β is in the

rational closure of K , denoted as K |≈RC α |∼ β , if RRC
K
⊩ α |∼ β .

Lehmann and Magidor found that a defeasible entailment relation
is LM-rational if and only if it can be generated from a ranked
interpretation.[22] Hence, Rational Closure must be LM-rational.

5.4.2 Algorithm for Base Ranks. We now consider how to go
about finding the unique minimal ranked interpretation RRC

K
, as

defined in [7]. The materializations of K is
−→
K = {α → β : α |∼ β ∈

K}. Intuitively,
−→
K takes all the defeasible implications in K and

turns them into classical implications.
We define an algorithm for ranking interpretations of a knowl-

edge base K into base ranks, as done in [7]. First, we define a se-
quence ofmaterializations E0, . . . ,En−1, E∞. We start with E0 =

−→
K .

Then we inductively define each Ei = {α → β ∈ Ei−1 : Ei−1 |=
¬α }, for i > 0. Intuitively, we retain only the statements α → β of
Ei−1, such that α can be proved false by all the statements not in
Ei−1. We stop this process when Ei = Ei−1, calling n = i − 1 and
E∞ = En .

Using the sequence E0, . . . ,En−1, E∞, we define the sequence
R0, . . . ,Rn−1, R∞ inductively, for 0 ⩽ i ⩽ n − 1, defining Ri =
Ei \ Ei+1. Finally, we define R∞ = E∞. We say that Ri is the set
of of classical implications α → β (corresponding to defeasible
implications α |∼ β) with base ranks i . Intuitively, if α → β has
base rank i then i is the smallest integer such that α → β is true
in at least one of the most typical interpretations in every ranked
interpretation of Ei .

5.4.3 Algorithm for Defeasible Entailment. Finally, we consider
how to go about checking for defeasible entailment, as defined in
[7]. If we are checking for entailment of a classical statement α ,
denoted K |≈ α , we check if α is entailed by all the statements in
the infinite rank, the classical statements.

Otherwise, if we are checking for K |≈ α |∼ β , then we procede
by removing the sets of classical implications R0, . . . ,Rn−1 from
−→
K , in order, starting with the classical implications in R0. We stop
when we find the first R =

−→
K \ R0 \ . . . \ Rm , for somem < n, in

which α is classically consistent. If it is the case that we get to the
last level with R∞ ⊩ α thenK |≈RC α |∼ β is true. When this is not
the case, we check if R classically entails α → β , the materialisation
of α |∼ β . If R ⊩ α → β then K |≈RC α |∼ β is true, otherwise it is
false.

It can be proved that this algorithm returns true if and only if
K |≈RC α |∼ β . [12] What is really desirable about this algorithm
is that it consists only of a sequence of classical entailment checks,
where the number of checks is linearwith respect to the size ofK .[7]
Hence, computing Rational Closure is only as hard as checking
classical entailment.[7]

6 DATALOG
Logic programming is a programming paradigm based mainly on
formal logic. There are many different types of logic programming
with major logic programming language families such as Prolog,
Answer set programming(ASP) and Datalog. We focus our attention
on Datalog, a declarative logic programming language which is a
syntactic subset of Prolog but with different semantics. We will first
provide a motivation for the use of Datalog and then define both
the syntax and semantics of Datalog.

4

6.1 Why is Datalog Useful?
Datalog is a popular query language for deductive databases, sys-
tems that can deduce new facts from a large amount of facts stored
in a relational database based on a set of rules.[39] However, in re-
cent year, many new applications of Datalog have become apparent,
proving its usefulness and versatility. Datalog has been used for
applications of data integration, declarative networking, program
analysis, information extraction, network monitoring, security, and
cloud computing.[18]

6.2 Syntax
Datalog is a simplified version of general Logic Programming. As
such its syntax follows from that of a general logic programming
language, and hence, from that of First-order logic. The language
of Datalog is a set of formulas in the form of function-free Horn
clauses. In this section we briefly, formalize this language and thus
the syntax of Datalog, based on complete formalizations of Logic
programming in [23][1] and Datalog in [8].

The alphabet, as in First-order logic, is made up of variables de-
noted by X ,Y ,Z , . . . , constants denoted by a,b, c, . . . and predicate
symbols denoted by p,q, Since Datalog is function-free, a term
is defined to be either a variable or a constant.

A literal has the form p(t1, . . . , tn), where p is a predicate and
each ti is a term called an argument to the predicate. The idea of a
literal is equivalent to that of an atom as in First-order logic.

AHorn clause, or definite clause, whichwewill denote byα , β, . . . ,
has the form h ← l1 ∧ · · · ∧ lm , where the left-hand side(LHS)
h is a literal, called the head of the clause, and the right-hand
side(RHS), called the body of the clause, is also made up only of
literals li .[8] This corresponds to the idea of a formula (in first-order
logic) ∀X1, . . . ,∀Xm , (l1 ∧ · · · ∧ lm → h), where X1, . . . ,∀Xm are
all the variables occurring in the clause. We call the clause a rule
if there is at least one literal on the RHS. Otherwise we call the
clause a fact, which we denote by h for simplicity. Notice, this now
corresponds to the idea of an atom h in first-order logic.

We call an expression, a term, literal or Horn clause, ground if it
does not contain any variables. A safety condition is specified for
Datalog, stating that every formula is either a ground fact or a rule
such that every variable in the head of a clause also appears in the
body of the clause. This safety condition ensures that only a finite
number of facts can be derived from any Datalog program.[8]

6.2.1 Syntax and Relational Databases. In general logic pro-
gramming all formulas are contained in a single logic program.[23]
Datalog, however, is intended to be used by programs which use a
large amount of facts stored in a relational database. So we need to
consider two sets of clauses[8]:

• The Extensional Database(EDB) is a set of ground facts, which
is physically stored in a relational database DB. We call the
set of predicates occurring in DB EDB-predicates. Each EDB-
predicate r corresponds to exactly one relation R in DB,
such that each fact r (t1, . . . , tn) of DB is stored as a tuple
< t1, . . . , tn > of R.

• The Intensional Database(IDB) is a Datalog program P . We
call the set of predicates occurring in P but not in DB IDB-
predicates. The head predicate of each clause in P is an IDB-
predicate and EDB-predicates only occur in P in clause bod-
ies.

6.3 Semantics
We will now briefly describe the semantics of the Datalog language
in terms of Model Theory, as formalized in [8].

The Herbrand Universe U P is the set of all constants in P . The
Herbrand Base BP is the set of all ground facts constructible from
the symbols in P . We denote EHB as the set of all literals of BP
whose predicate is an EDB-predicate. Similarly, we denote IHB as
the set of all literals of BP whose predicate is an IDB-predicate.

As shown when defining the syntax of Datalog, we can associate
each EDB-fact f and Datalog rule α with a first-order logic atom
f ∗ and formula α∗, respectively. Then we can associate each set of
Datalog clauses S with the conjunction S∗ of all formulas α∗ such
that α ∈ S . And, we define cons(S) to be the set of facts f ∗ such
that S∗ ⊩ f ∗ in first-order fashion.

A Herbrand interpretation assigns each constant symbol to it-
self and each predicate symbol to a set of predicates ranging over
constant symbols and is identified with a subset τ ⊆ BP . That is,
Herbrand interpretations directly assign truth values to ground
facts. Notice that this differs from normal semantics in First-order
logic which is based of the concept of interpretations of constants,
assigning truth values to constants.

A ground factp(t1, . . . , tn) is true underτ if and only ifp(t1, . . . , tn) ∈
τ . A Datalog rule h ← l1 ∧ · · · ∧ lm is true under τ if and only
if for each substitution θ which replaces variables by constants,
l1θ ∈ τ , l2θ ∈ τ , . . . , lmθ ∈ τ implies that hθ ∈ τ . We say τ satisfies
clause c if c is true under τ . If τ satisfies c then we call τ a Herbrand
model for c . It is shown in [8] that cons(S) is the least Herbrand
model of any set S of datalog clauses.

7 DLV
DLV (or DataLog with ∨) is a form of disjunctive logic program-
ming. It is an extension of Datalog which allows disjunction (∨) in
the heads of rules and negation (∧) in the bodies of the rules. In
this section we will first provide a motivation for the extension of
Datalog and then define both the syntax and semantics of DLV.

7.1 Motivations for Extending DLV
DLV is considered to be a state-of-the-art implementation of DLP.[11]
Disjunctive logic programming (DLP) is very expressive and, under
widely-supported assumptions, it is strictly more expressive than
disjunction-free logic programming.[11] This means that we can
represent problems using DLP which we could not represent using
disjunction-free logic programming. On the other hand, disjunction
can also allow for representing problems in a simpler and more
natural fashion than could be done using disjunction-free logic
programming.[11] It is important to note, though, that the high
expressiveness of disjunctive logic programming results in a higher
computational complexity (in the worst case) for DLP programs.

Furthermore, in the context of deductive databases, DLP is rec-
ognized as a valuable tool for reasoning due to its ability to support

5

natural modeling of incomplete knowledge.[1] It is clear that DLV
and DLP have many important applications due to their increased
expressivity and ability to handle incomplete knowledge. Thus,
the extension of DLV to allow for defeasible reasoning should fur-
ther increase its use cases by allowing for common-sense style
reasoning.

7.2 Syntax
In Datalog, only rules and facts in the form of Horn clauses are
allowed. For example a Datalog program could include the fact
Parent(p,c) or the rule GrandParent(g,c)←Parent(g,p)∧Parent(p,c).
However in DLVwe allow rules such asMom(p)∨Dad(p)←Parent(p)
or Mom(p)←Parent(p)∧¬Dad(p).

The syntax of DLV, as defined in [11], is similar to that of Dat-
alog, with the addition of a disjunction rule. A disjunctive rule is
a formula a1 ∨ · · · ∨ an ← b1 ∧ . . . ∧ bk ∧ notbk+1 ∧ . . . ∧ notbm ,
where a1, . . . ,an ,b1, . . . ,bm are literals, n ⩾ 0,m ⩾ k ⩾ 0, and
not represents negation-as-failure. This, intuitively, means if we
can derive b1, . . . ,bk and we cannot derive bk+1, . . . ,bm then we
derive at least one of a1, . . . ,an .

7.3 Semantics
There has been a lot of research into the semantics of DLP and
many different semantics have been proposed.[11] The Answer Sets
semantics, proposed by Gelfond and Lifschitz[14], as an extension
of stable model semantics of disjunction-free logic programs[15],
is a commonly accepted semantic for DLP. These semantics were
chosen to be implemented by DLV. We will briefly explore the
semantics of DLV as defined in [11].

The semantics of a Herbrand Universe U P and a Herbrand Base
BP are as described in the semantics of Datalog. The Ground Instan-
tiation of a rule r , denotedGround(r), is the set of rules obtained by
applying all possible substitutions θ from variables in r to constants
inU P . More generally, Ground(P) =

⋃
r ∈P Ground(r).

We first define the answer sets of a positive program P , a not-
free program, using Ground(P). An interpretation τ ⊆ BP is a set
of literals, as for Datalog. We say τ is called closed under positive
program P if, for any r ∈ Ground(P), a literal of the head of r is in
τ whenever a literal of the body of r is in τ . We say τ is an answer
set for positive program P if it is closed under P and minimal with
respect to set inclusion. Notice, that an answer set is a special case
of a Herbrand interpretation from datalog.

Now we give a reduction of general programs to positive ones
and use it to define answer sets of general programs. The Gelfond-
Lifschitz transform of a general ground program P with respect
to a set X ⊆ BP is the positive ground program PX , obtained by
deleting rules r ∈ P which contain notl for some l ∈ X and then
deleting the notbi parts of the remaining rules. Then an answer set
of P can be defined to be the set X ⊆ BP such that X is an answer
set of Ground(P)X .

Finally, we say P entails a ground literal l , denoted P ⊩ l if l is
satisfied by every answer set τ of P , where satisfaction is as for
Herbrand interpretations in Datalog.

7.4 Extending Defeasible Reasoning to DLV
The main aim of this project is to extend DLV to inlcude defeasible
reasoning capabilities. It has been shown, by Britz et al[4], that
computing rational closure when using description logics is feasible.
Furthermore, as in the propositional version of rational closure[7],
checking defeasible entailment can be reduced to a sequence of
classical entailment checks for description logics[4]. Since DLV can
be seen as a less expressive form of description logic than that used
by Britz et al,it seems reasonable to assume that we can define a
way of computing rational closure for DLV.

As seen in the extension of KLM-style defeasible entailment
to propositional logic[7], to extend KLM-style defeasible entail-
ment to DLV, the first step would be to extend the syntax to in-
clude the defeasible implication operator, which we will denote
by say ∼|. Similarly to the propositional extension, it seems rea-
sonable that defeasible implications take the form a1 ∨ · · · ∨ an ∼|
b1 ∧ . . .∧bk ∧notbk+1 ∧ . . .∧notbm , where a1, . . . ,an ,b1, . . . ,bm
are literals from the DLV language as usual. As seen previously,
this approach would prevent nesting of the defeasible implication
operator. Hence, the approaches to checking entailment, as pro-
posed for the propositional extension, should follow for the DLV
case.

We noted, while defining the semantics of Datalog, that Her-
brand interpretations assign truth values to ground facts directly.
Furthermore, while defining the semantics of DLV, we noted that
answer sets are just a special case of Herbrand interpretations. It
seems that the waywe interact with a ground fact in DLV intuitively
corresponds to the way we interact with an atom in propositinal
logic. Hence, the way we interact with an answer set in DLV intu-
itively corresponds to the way we interact with an interpretation
in propositional logic. Thus, it seems reasonable to assume that
concepts of entailment, using ranked interpretations, for the propo-
sitional extension, can be adjusted to use a form of ranked answer
sets, where the idea of a ranked answer set would be that answer
sets (Herbrand interpretations) are ranked based on their typicality.

8 CONCLUSIONS
Knowledge Representation and Reasoning is a well-established
approach to artificial intelligence. Logics are used to represent
knowledge and automated reasoning methods are used to reason
about that knowledge. Propositional logic is easy to understand
and define. However, it is not nearly expressive enough to reason in
a manner that parallels that of human. Hence, it is often not useful
for real-world applications. Many extensions to propositional logic
exist, such as first-order logic and description logics. These provide
increased expressivity but often with the trade-off of increased
computational complexity for automated reasoning methods.

Classical reasoning is a form of reasoning that does not allow
for uncertainty and exceptions to general rules. It is simpler to
define and often has lower computational complexity than other
approaches. However, reasoning with uncertainty, known as defea-
sible reasoning, closely parallels the reasoning methods used by
humans. Thus, this form of reasoning has many useful applications
in the real-world.

6

There are many approaches to defeasible reasoning. Even more,
there are many forms of defeasible entailment. However, the ap-
proach introduced by Kraus, Lehmann and Magidor (KLM)[20] is
favoured as it provides a set of KLM properties which can be used
can be used to assess the correctness of any form of defeasible
entailment. Lehmann and Magidor [21] provided a definition of the
most conservative form of defeasible entailment, rational closure,
and showed that it satisfied the the KLM properties.

Datalog is a declarative logic programming language which is
used as a query language for deductive databases. It can be consid-
ered as a description logic. Datalog is seen to be a popular language
with many current applications. However, due to the strict Horn
clause structure and safety constraints, it has limited expressivity
in certain modelling situations. DLV is an extension to Datalog,
which loosens the rule structure, allowing for disjunction in rule
heads and negation-as-failure (not) in rule bodies. As a result, it is
found that DLV can represent problems which Datalog is not able
to represent.

It has been shown that rational closure can be defined for propo-
sitional logic[7] and description logics[4], and that checking for
defeasible entailment can be performed as a sequence of classical
entailment checks in both cases. We conclude that the techniques
presented by Casini et al[7] can be used to extend DLV to include
defeasible reasoning.

REFERENCES
[1] Chitta Baral and Michael Gelfond. 1994. Logic programming and knowledge

representation. The Journal of Logic Programming 19-20, SUPPL. 1 (may 1994),
73–148. https://linkinghub.elsevier.com/retrieve/pii/0743106694900256

[2] Mordechai Ben-Ari. 2012. Mathematical Logic for Computer Science. Springer
London, London.

[3] Piero Bonatti, Carsten Lutz, and Frank Wolter. 2006. Description Logics with
Circumscription. In Proceedings of the Tenth International Conference on Principles
of Knowledge Representation and Reasoning (KR’06). AAAI Press, Lake District,
UK, 400–410. http://dl.acm.org/citation.cfm?id=3029947.3030000

[4] Katarina Britz, Giovanni Casini, Thomas Meyer, Kody Moodley, Uli Sattler, and
Ivan Varzinczak. 2017. Rational Defeasible Reasoning for Description Logics. Techni-
cal Report. University of Cape Town, South Africa. https://core.ac.uk/download/
pdf/151756088.pdf

[5] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. 2014. Rele-
vant Closure: A New Form of Defeasible Reasoning for Description Logics. In
Logics in Artificial Intelligence, Eduardo Fermé and João Leite (Eds.). Springer
International Publishing, Cham, 92–106.

[6] Giovanni Casini, T Meyer, Kody Moodley, and I Varzinczak. 2013. Towards
Practical Defeasible Reasoning for Description Logics, In Proceedings of the 26th
International Workshop on Description Logics. CEURWorkshop Proceedings 1014,
587–599.

[7] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking Defeasible
Entailment beyond Rational Closure. (2019), 18 pages.

[8] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you AlwaysWanted to
KnowAbout Datalog (And Never Dared to Ask). Knowledge and Data Engineering,
IEEE Transactions on 1 (04 1989), 146 – 166. https://doi.org/10.1109/69.43410

[9] Francesco Donini, Daniele Nardi, and Riccardo Rosati. 1998. Autoepistemic
Description Logics. IJCAI International Joint Conference on Artificial Intelligence
1 (05 1998).

[10] Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. 2002. Description
logics of minimal knowledge and negation as failure. ACM Transactions on
Computational Logic 3, 2 (apr 2002), 177–225.

[11] Thomas Eiter, Wolfgang Faber, Christoph Koch, Nicola Leone, and Gerald Pfeifer.
2000. DLV - A System for Declarative Problem Solving. Technical Report. Institut
fur Informationssysteme. 6 pages. http://arxiv.org/abs/cs/0003036

[12] Michael Freund. 1998. Preferential Reasoning in the perspective of Poole default
logic. Artificial Intelligence 98 (1998), 209–235. http://www.sciencedirect.com/
science/article/pii/S0004370297000532

[13] Jean H Gallier. 2003. Logic for Computer science: Foundations of automatic
theorem proving. Foundations of Physics 1, June (2003), 534.

[14] Michael Gelfond and Vladimir Lifschitz. 1991. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing 9, 3 (01 Aug 1991),

365–385. https://doi.org/10.1007/BF03037169
[15] Michael Gelfond and Vladimir Lifschitz. 2000. The Stable Model Semantics For

Logic Programming. Logic Programming 2 (12 2000).
[16] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2015.

Semantic characterization of rational closure: From propositional logic to de-
scription logics. Artificial Intelligence 226 (05 2015). https://doi.org/10.1016/j.
artint.2015.05.001

[17] Jochen Heinsohn. 1994. Probabilistic Description Logics. In Uncertainty Pro-
ceedings 1994, Ramon Lopez de Mantaras and David Poole (Eds.). Morgan Kauf-
mann, San Francisco (CA), 311 – 318. https://doi.org/10.1016/B978-1-55860-332-5.
50044-4

[18] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog and
Emerging Applications: An Interactive Tutorial. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’11). ACM,
New York, NY, USA, 1213–1216. https://doi.org/10.1145/1989323.1989456

[19] Bjarni Jonnson and Alfred Tarski. 1952. Boolean Algebras with Operators. Amer-
ican Journal of Mathematics 74, 1 (jan 1952), 127.

[20] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 2002. Nonmonotonic
Reasoning, Preferential Models and Cumulative Logics. Artificial Intelligence 44
(03 2002), 167–207. https://doi.org/10.1016/0004-3702(90)90101-5

[21] Daniel Lehmann. 1999. Another perspective on Default Reasoning. Annals
of Mathematics and Artificial Intelligence 15 (11 1999). https://doi.org/10.1007/
BF01535841

[22] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Artificial Intelligence 55, 1 (1992), 1–60.

[23] J. W. Lloyd. 1984. Foundations of Logic Programming. Springer-Verlag, Berlin,
Heidelberg.

[24] John McCarthy. 1980. CircumscriptionâĂŤA form of non-monotonic reasoning.
Artificial Intelligence 13, 1 (1980), 27 – 39. https://doi.org/10.1016/0004-3702(80)
90011-9 Special Issue on Non-Monotonic Logic.

[25] Raymond Reiter. 1980. A Logic for Default Reasoning. Artif. Intell. 13 (04 1980),
81–132. https://doi.org/10.1016/0004-3702(80)90014-4

[26] Kunal Sengupta, Pascal Hitzler, and Krzysztof Janowicz. 2015. Revisiting Default
Description Logics – and Their Role in Aligning Ontologies. In Semantic Technol-
ogy, Thepchai Supnithi, Takahira Yamaguchi, Jeff Z. Pan, Vilas Wuwongse, and
Marut Buranarach (Eds.). Springer International Publishing, Cham, 3–18.

7

https://linkinghub.elsevier.com/retrieve/pii/0743106694900256
http://dl.acm.org/citation.cfm?id=3029947.3030000
https://core.ac.uk/download/pdf/151756088.pdf
https://core.ac.uk/download/pdf/151756088.pdf
https://doi.org/10.1109/69.43410
http://arxiv.org/abs/cs/0003036
http://www.sciencedirect.com/science/article/pii/S0004370297000532
http://www.sciencedirect.com/science/article/pii/S0004370297000532
https://doi.org/10.1007/BF03037169
https://doi.org/10.1016/j.artint.2015.05.001
https://doi.org/10.1016/j.artint.2015.05.001
https://doi.org/10.1016/B978-1-55860-332-5.50044-4
https://doi.org/10.1016/B978-1-55860-332-5.50044-4
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/BF01535841
https://doi.org/10.1016/0004-3702(80)90011-9
https://doi.org/10.1016/0004-3702(80)90011-9
https://doi.org/10.1016/0004-3702(80)90014-4

	Abstract
	1 Introduction
	2 Propositional Logic
	2.1 Syntax
	2.2 Semantics

	3 Extending Propositional Logic
	3.1 First-order Logic
	3.2 Description Logics

	4 Classical Reasoning
	4.1 Tarskian Operators
	4.2 Shortfalls of Classical Reasoning

	5 Defeasible Reasoning
	5.1 The KLM Approach
	5.2 KLM Extension to Propositional Logic
	5.3 The KLM Properties
	5.4 Rational Closure

	6 Datalog
	6.1 Why is Datalog Useful?
	6.2 Syntax
	6.3 Semantics

	7 DLV
	7.1 Motivations for Extending DLV
	7.2 Syntax
	7.3 Semantics
	7.4 Extending Defeasible Reasoning to DLV

	8 Conclusions
	References

