
Defeasible DLV
Matthew Morris

matthewthemorris@gmail.com
University of Cape Town
Cape Town, South Africa

Tala Ross
rsstal002@myuct.ac.za
University of Cape Town
Cape Town, South Africa

ABSTRACT
Datalog is a declarative logic programming language that uses
classical logical reasoning as its basic form of reasoning. DLV is a
disjunctive logic programming language, which forms an extension
of Datalog. Defeasible reasoning is a form of non-classical reasoning
that is able to deal with exceptions to general assertions in a formal
manner. Since DLV uses classical reasoning, it is currently not able
to handle defeasible implications and exceptions. We aim to extend
the expressivity of DLV by incorporating KLM-style defeasible
reasoning into classical DLV.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; Logic and
databases; •Computingmethodologies→Nonmonotonic, de-
fault reasoning and belief revision; Description logics;

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, rational closure, relevant closure, lexicographic
closure, Datalog, DLV

1 INTRODUCTION
The Knowledge Representation and Reasoning approach to Arti-
ficial Intelligence uses logics to represent knowledge. Automated
reasoning methods are used to draw new conclusions from that
knowledge. Classical reasoning systems are monotonic. This means
that all information is certain and adding new information does
not change the conclusions that you could draw before. This form
of reasoning can be too weak to model certain systems. To illus-
trate this, consider this example where the following statements
are made:

(1) Students do not pay taxes
(2) First years are students
(3) Tutors are students
From this, we can conclude that ‘tutors do not pay taxes’, which

may in fact be incorrect. However, each of these statements is
perfectly reasonable from a human perspective. What we actually
meant was ‘typically, students do not pay taxes’. Then, when we add
the extra information that tutors pay taxes, we want the system
to retract its conclusion that ‘tutors do not pay taxes’. However,
a monotonic classical reasoning system cannot change previous
assumptions, and knowing that ‘tutors pay taxes’ and ‘tutors do
not pay taxes’, it must then conclude that no tutors exist. In non-
monotonic systems, defeasible statements of the form ‘typically,
something is the case’ are permitted. This allows for a more ‘common
sense’ approach to reasoning than in the approach of classical
reasoning [5].

2 BACKGROUND
2.1 Propositional Logic
Propositional logic [2] is a simple logic which uses classical rea-
soning. A propositional atom, denoted by p or q, is a statement
that can be assigned a truth value (true or false), which cannot
be decomposed into a smaller such statements. The language L
of propositional logic is the set of all formulas, denoted by α or β ,
which can be formed by combining propositional atoms from a finite
set P of atoms. This is done recursively using Boolean operators,
as follows: α ::= ⊤ | ⊥ | p | ¬α | α ∧ α | α ∨ α | α → α | α ↔ α .

An interpretation is a function I : P → {T , F } which assigns a
single truth value to each atom. A formula α ∈ L is satisfied by
an interpretation I , denoted I ⊩ α , if it can be evaluated to true
by I in the usual recursive truth-functional way, corresponding
to the “meaning” of the Boolean operators. For a knowledge base
K of formulas, we define ⟦K⟧ = {I : I ⊩ α ,α ∈ K}. Reasoning
in propositional logic involves answering questions such as ‘Is α
a logical consequence of knowledge base K?’. That is, we check if
⟦α⟧ ⊆ ⟦K⟧.

2.2 The KLM Approach
There are many different formalizations of non-monotonic reason-
ing. The KLM approach [11] is an axiomatic approach based on the
concept of plausible inference, and is currently one of the most
preferred methods [4, 15]. In this approach, plausible inference is
represented by a defeasible implication operator of the form α |∼ β ,
which means that α is typically a good enough reason to believe β .

2.3 The KLM Properties
Unlike classical entailment, defeasible entailment is not unique.
There exist multiple formalizations of defeasible entailment, such
as rational closure [13], relevant closure [4] and lexicographic closure
[12]. The KLM framework provides a list of rationality properties,
which Lehmann and Magidor [13] argued must be satisfied by de-
feasible entailment methods. This provides a way of differentiating
between acceptable and non-acceptable methods of entailment. The
KLM properties are listed below:

(Ref) K |≈ α |∼ α (LLE)
α ≡ β, K |≈ α |∼ γ
K |≈ β |∼ γ

(RW)
K |≈ α |∼ β, β |= γ
K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

(Or)
K |≈ α |∼ γ , K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ

(CM)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ , K ∤≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ

2.4 Rational Closure
Rational closure is in many ways the most simple and intuitive way
of defining defeasible entailment. Here, we present two equivalent
definitions for entailment checking within propositional logic. The
first is a semantic definition, based on underlying structures we
call Ranked Interpretations. The second is an algorithmic definition,
which we refer to as the Base Rank Algorithm.

2.4.1 Semantic Definition. Ranked interpretations [6] are func-
tions R : U → N ∪ {∞}, which are used to define the semantics of
KLM-style defeasible implications. They organize interpretations
into ranks, in order of decreasing typicality. No level is empty, start-
ing at level 0 with the most typical interpretations, and ending at
level n for some n ∈ N with the least typical interpretations. A final
level of infinite rank is added for all the impossible interpretations.
A ranked interpretation R satisfies α , denoted R ⊩ α , if α is true in
all non-impossible levels of R. We can then say that R ⊩ α |∼ β if
in the most ‘normal’ level where α holds, β also holds.

As an example, figure 1 gives a ranked interpretation for P =
{b, f, p} satisfying K = {p → b, b |∼ f, p |∼ ¬f} [6]. For easier
reading, we omit the valuations with rank∞ in our graphical rep-
resentations of ranked interpretations. Note that the presence of an
atom (e.g. p) represents it being true in the interpretation, whereas
the presence of a barred atom (e.g. p) represents it being false in
the interpretation.

2 pbf

1 pbf pbf

0 pbf pbf pbf

Figure 1: A ranked interpretation for P = {b, f, p}.

We can define a partial order ⪯K on all ranked interpretations
of a knowledge base K and find a unique minimal ranked inter-
pretation RK with respect to ⪯K . [10]. We say that K defeasibly
entails α |∼ β , denoted K |≈ α |∼ β , if RK ⊩ α |∼ β . This form of
defeasible entailment satisfies the KLM-properties [13].

2.4.2 Algorithmic Definition. The Base Rank Algorithm provides
a means for checking defeasible entailment that is equivalent to the
above semantic definition [9]. In this algorithm, we first construct
a ranking KR of all the statements in K . This is done as follows:

(1) Define C to be all classical statements in K , and D to be all
defeasible statements in K . So we aim to rank C ∪ D.

(2) Define a sequence of knowledge bases Σ0, Σ1, . . . , Σn as fol-
lows:
• Σ0 = D,
• Σ1 = {α |∼ β ∈ Σ0 : C ∪ Σ0 |= ¬α }. Intuitively, we
keep all the defeasible statements such that the left hand
side can be ‘disproven’ by our classical statements and all
defeasible statements not in the previous iteration,
• Σ2 = {α |∼ β ∈ Σ1 : C ∪ Σ1 |= ¬α },
• and so on...

(3) Stop this process when Σi+1 = Σi or Σi+1 = ∅.

We end up with a sequence such that Σn ⊂ Σn−1 ⊂ . . . ⊂ Σ0
We then assign Σn−1 − Σn to the bottom rank, Σn−2 − Σn−1 to
second from the bottom, and so on. We end up with a ranking ofK
where the classical statements appear on the bottom; the ‘infinite’
level. The higher up in the ranking you go, the more ‘general’ the
statements become.

Now, to check entailment, perform the following steps:

(1) Turn all defeasible statements into classical statements: de-
fine ®K = {α → β : α |∼ β ∈ D} ∪ {α ∈ K : α ∈ C}.

(2) If we are checking if K |≈ α , simply check if it is entailed
by the classical statements (all the statements in the infinite
rank).

(3) If we are checking if K |≈ α |∼ β , first check if ®K |= ¬α .
(a) If not, then return ®K |= α → β .
(b) If so, then we have a conflict. Throw away the highest

level of the ranking and check again if ®K |= ¬α .
(4) If we end up with only the bottom level remaining and it is

still the case that ®K |= ¬α , then we confirm K |≈ α |∼ β as
true.

2.5 Relevant Closure
While rational closure is mostly intuitive and makes sense, it can
seem unnecessary to throw away an entire level of statements
when we have a conflict. While it is true that a statement within
the level is likely causing the conflict, there are other statements in
the level that have no effect on the conflict occurring. To solve this,
the algorithm of relevant closure introduces the notion of relevance.
Intuitively, we say that γ1 |∼ γ2 is relevant to a query α |∼ β if we
can use γ1 |∼ γ2 to prove ¬α (a conflict).

So when we’re checking ifK |≈ α |∼ β , we define R ⊆ D to be all
defeasible statements relevant to the query α |∼ β . Then, we simply
perform the rational closure algorithm as before. However, when
throwing away the highest level of the ranking, we only throw
away those statements that appear in R.

While this method seems to make sense, Casini et al[4] showed
that for description logics, relevant closure does not satisfy the
KLM properties of Or, CM and RM. This means it is unlikely that
the adapted version for DLV will satisfy those properties either.

2.6 Lexicographic Closure
Intuitively, lexicographic closure can be seen as a finer grained
version of rational closure. We check defeasible entailment K |≈
α |∼ β in a manner similar to that in the rational closure algorithm.
However, if ®K |= ¬α then we do not throw away the whole top level
of statements. Instead, we consider all possible combinations of
statements from the top layer and throw away the smallest number
of statements such that ®K ̸|= ¬α .

If such a combination exists, we return ®K |= α → β . Otherwise,
we throw away the whole top level and repeat the process. Simi-
larly to in the rational closure algorithm, if only the bottom level
remains and ®K |= ¬α , then we return ‘true’. Unlike relevant closure,
lexicographic closure for propositional logic has been shown to
satisfy all of the KLM properties [12].

2

3 PROJECT DESCRIPTION
Datalog is a declarative logic programming language, whose lan-
guage is made up of function-free Horn clauses h ← l1 ∧ · · · ∧ lm ,
where h and all li are literals. DLV [14] is an extension of Data-
log which allows disjunction (∨) in the heads of rules in the form
a1 ∨ · · · ∨ an ← b1 ∧ . . . ∧ bm , where all ai and bi are literals.
Datalog and DLV both use classical logical reasoning as their basic
form of reasoning. Hence, they are currently not able to handle
defeasible implications and exceptions.

The ability to reason with uncertainty and exceptions is a desired
property of many systems and amajor topic in Artificial Intelligence
[5]. It allows for a more expressive, common-sense and human-like
style of reasoning. This project aims to achieve this and extend
the expressivity of DLV by incorporating KLM-style defeasible
reasoning into classical DLV.

Defeasible entailment is not unique, with multiple definitions
for computing entailment existing. So, the KLM [11] properties
are used to specify how any correct form of defeasible entailment
should behave for propositional logic. In order to extend KLM-style
defeasible reasoning, the KLM properties first need to be extended
for DLV to provide a way of evaluating the correctness of the
different defeasible entailment algorithms for DLV.

The most basic form of defeasible entailment which satisfies
these properties (for propositional logic), Rational Closure [13],
should be extended to DLV to satisfy the modified KLM properties.
However, Rational Closure is usually too weak from an inferential
point of view [4]. To consider a more expressive form of defeasi-
ble entailment, Relevant Closure [4] should be extended. However,
Relevant Closure does not satisfy all the KLM properties (for propo-
sitional logic), and hence, should not satisfy them for DLV either.
Finally, Lexicographic Closure [12], a more expressive form of de-
feasible entailment which does satisfy all the KLM properties (for
propositional logic) should be extended.

3.1 Why is it Important?
Datalog is a popular query language for deductive databases. DLV
is considered to be a state-of-the-art implementation of disjunctive
logic programming (DLP) [8]. In the context of deductive databases,
DLP is recognized as a valuable tool for reasoning due to its ability
to support natural modeling of incomplete knowledge [1]. As an
extension of Datalog, DLV can solve all problems which are solved
using Datalog, and additionally, some problems which cannot be
solved using disjunction-free Datalog. The inclusion of disjunc-
tion can also allow for representing problems in a simpler and
more natural fashion in DLV than could be done using Datalog
[8]. However, there are many problems where classical reasoning
is inappropriate and defeasible reasoning is required. Thus, the
extension of DLV to allow for defeasible reasoning should further
increase its applications by allowing for a more common-sense
form of reasoning.

3.2 Possible Issues and Difficulties
The following have been identified as possible issues and difficulties
for the project:
• There are no clear steps for extending the KLM properties
for DLV.

• There are no guidelines for determining new algorithms for
defeasible entailment in DLV and proving their correctness
using KLM properties.
• It is difficult to estimate the time for finding the algorithms
or proving their correctness.
• Additional properties, beyond the KLM properties, may be
required to properly constrain an extension of defeasible
reasoning in DLV. Hence, it will be difficult to fully assess the
acceptability of the new algorithms for defeasible entailment
in DLV.

4 PROBLEM STATEMENT
4.1 Aims
The primary aims of this project are to:
• Find and justify an extension of the KLM properties for DLV.
• Find satisfactory algorithms for rational closure, relevant
closure and lexicographic closure in DLV.
• Prove the correctness and computational complexity of the
rational closure, relevant closure and lexicographic closure
algorithms for DLV.

Since it is difficult to estimate the time required to find these
algorithms and prove their correctness, it is possible that these aims
are met sooner than expected. If this is the case, additional aims for
the project are to implement rational closure, relevant closure or
lexicographic closure in the DLV system.

4.2 Research Questions
The problem to be solved is summarized in the following central
research questions, which are separated into the questions to be
answered by each group member.

4.2.1 Matthew Morris.

• Can an extension of the KLM properties for DLV be found?
• Can a provably correct algorithm be found for extending
relevant closure to DLV?

4.2.2 Tala Ross.

• Can a provably correct algorithm be found for extending
rational closure to DLV?
• Can a provably correct algorithm be found for extending
lexicographic closure to DLV?

4.2.3 Additional Research Questions. Again, since it is possible
that these research questions are answered sooner than expected,
we pose the following additional research questions:
• How can the rational closure algorithm be implemented in
the DLV system?
• How can the relevant closure algorithm be implemented in
the DLV system?
• How can the lexicographic closure algorithm be implemented
in the DLV system?

5 PROCEDURES AND METHODS
The problem is divided into sections for extending the KLM proper-
ties to DLV and extending the defeasible entailment algorithms to

3

DLV. In addition, sections for implementing these algorithms may
be included.

5.1 Extending KLM Properties
In order to extend the KLM properties, we will first study how the
KLM properties for propositional logic were extended for descrip-
tion logics.Wewill then consider how the differences between these
logics and the logic of DLV impacts the definition of the properties
for DLV.

5.1.1 Testing and Analysis. It must be ensured that the defini-
tion of the extension of KLM properties is reasonable. This will be
achieved by having an expert in the field review the definitions.

5.1.2 What can this be used for? The extended KLM properties
will be used in the proofs of correctness of the defeasible entailment
algorithms for DLV. Additionally, they could be used as rules for
deciding whether or not other methods of defeasible entailment for
DLV are acceptable.

5.2 Extending Defeasible Entailment
Algorithms

In order to extend the rational closure algorithm, we will first
study the algorithm for rational closure in propositional logic and
description logics. We will consider how the differences between
these logics and the logic of DLV impacts the approach to the
rational closure algorithm for DLV. To prove the correctness of the
algorithm, we must show that the output of the algorithm satisfies
all of our extended KLM properties for DLV.

We will approach extending the relevant closure and lexico-
graphic closure algorithms in a similar manner, with additional
considerations of how approaches for the extension for rational
closure for DLV can be applied in these cases. We will again prove
correctness of the algorithms by showing that the output of the
algorithm satisfies all of our extended KLM properties, and then
prove computational complexity results for all these algorithms.

5.2.1 Testing and Analysis. The correctness of the algorithms
will be given in their proofs. These proofs cannot be tested and
should instead be verified by an expert in the field. The algorithms
will be compared and analyzed using the extended KLM proper-
ties as well as their computational complexities. Furthermore, if
they were developed, the prototype implementations could be used
for comparing and analyzing the different algorithms’ real-world
performances.

5.2.2 What can this be used for? The produced defeasible en-
tailment algorithms could be implemented to allow for defeasible
reasoning in the DLV system. These implementations could be used
to reason about systemswith uncertain and incomplete information,
and hence, would have real-world applications.

5.3 Implementation
Provided the other aspects of the project have been completed, we
will attempt bare-bones implementations of the various algorithms
within DLV. The initial challenge will be working with the inte-
rior operations of DLV to try and add functionality for defeasible
entailment checking. We will use the built-in DLV libraries to do

classical entailment checks as part of the algorithms. Once we have
implemented rational closure, relevant closure and lexicographic
closure should be quick to implement and will only require some
adaptation of the existing code.

5.3.1 Testing and Analysis. The correctness of these implementa-
tions will be shown by our previous work in proving the correctness
of the algorithms. We will be able to verify that the systems behave
as expected by testing them on several real-world examples that
we will provide to them.

Furthermore, we will be able to test how long the algorithms
take to run on reasonably sized data-sets. Since the implementation
is not a core focus of the project, it is likely that they will be highly
unoptimized and run relatively slowly.

Finally, we will be able to compare the differences in defeasible
entailment between the three algorithms we are considering. While
evaluating these differences is beyond the scope of our project,
possible future work may involve comparing the three approaches
within the context of DLV. This comparison could allow for the
identification of a defeasible entailment definition that makes the
most sense within DLV.

5.3.2 What can this be used for? Since our implementation will
likely be unoptimized, it is unlikely to be useful within a practical
environment. However, it could be useful as a prototype for DLV
users. They would be able to see if extending the language with
defeasible reasoning would allow them to solve problems they
previously could not, or better code answers to solved problems.

6 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

Due to the theoretical nature of the project, it poses no inherent
ethical issues. Although, if the algorithms were to be implemented
and tested in real world cases, possible ethical issues could arise
during user testing if the test users did not give consent or were
exploited. Furthermore, there are no foreseeable professional issues
with the project. In fact, the project provides opportunity for fur-
ther study in the area of defeasible reasoning for DLV and other
description logics.

The current DLV system is open source with a custom license,
making it free for academic and non-commercial educational use.
If any of the algorithms are implemented for DLV, the extended
version of the DLV system will remain open source under this
license. Thus, any issues regarding intellectual property rights will
be avoided. This would also allow for the use of the extended system
in further research. There are no other foreseeable legal issues.

7 RELATEDWORK
Kraus, Lehmann and Magidor (KLM) [11] introduced preferential
reasoning, KLM-style defeasible implications and the KLM proper-
ties. Lehmann and Magidor [12] presented the concept of rational
closure for propositional logic and provided an algorithm to com-
pute it. It was also shown that rational closure satisfies all the KLM
properties and that it must be the most conservative form of de-
feasible entailment with respect to subset inclusion. Britz et al[3]

4

provided an extension of the KLM properties for description log-
ics and presented an extension of rational closure for description
logics.

Lehmann [12] introduced lexicographic closure for propositional
logic. This was shown to be another method for computing defea-
sible entailment which is strictly less conservative than rational
closure while still satisfying all the KLM properties. Casini et al[6]
presented a systematic approach for enriching propositional logic
with a defeasible implication connective, and described algorithms
for rational closure and lexicographic closurewithin this framework.
Casini et al[7] presented an algorithm for lexicographic closure for
description logics. Casini et al[4] introduced relevant closure for
description logics; yet another method for computing defeasible
entailment which is strictly less conservative than rational closure.
It was shown that this does not satisfy all the KLM properties.

8 ANTICIPATED OUTCOMES
8.1 Expected Impact
A successful project will impact the field of Knowledge Represen-
tation and Reasoning. An extension of existing knowledge will be
provided by extending the KLM properties and KLM-style defeasi-
ble reasoning for DLV. Ontology engineering will be impacted by
the provision of algorithms for defeasible reasoning which can be
implemented in DLV. This will allow for modeling in ways that were
previously not possible due to the limitations of classical reasoning.

A successful rational closure algorithm will provide an accept-
able way to compute defeasible entailment which is of minimal
computational complexity. A successful relevant closure algorithm
will provide a more common-sense way to compute defeasible en-
tailment, albeit one which does not satisfy the KLM properties.
A successful lexicographic closure algorithm will provide a more
common-sense but more complex way to compute defeasible en-
tailment. Furthermore, this should satisfy the KLM properties.

8.2 Key Success Factors
The success of the project will be judged through two factors. The
first will be whether the adapted algorithms satisfy the KLM prop-
erties for DLV. The second will be the computational complexity
of the adapted algorithms. In addition, if implementations of the
algorithms within DLV are provided, success will be judged by how
optimized the implementations are.

8.3 System
As stated before, there is potential for software deliverables. The key
features of the deliverables will be being able to compute defeasible
entailment within DLV. Major design challenges for the software
will include; initially discovering how to edit the DLV compiler,
making the correct calls to the core DLV libraries, and providing
relatively optimized implementations.

9 PROJECT PLAN
9.1 Risks
A list of risks for the project and their allocated identification num-
bers (or risk numbers) is given in Appendix A.1. The table also
ranks the probability of each risk occurring and the impact that it

would have on the project if it did happen to occur. Approaches
for mitigating, monitoring, and managing each risk are given in
Appendix A.2. Based on the analysis of possible risks in Appendix
A, the project has relatively low risk and all foreseeable risks can
be mitigated.

9.2 Timeline and Milestones
The “development” phase of the project will run for 7 weeks; from
8 July 2019 to 23 August 2019. We will present our final project
and findings between 2 - 13 September 2019. The timeline, tasks
and milestones for the project can be seen in Appendix B; in our
Gantt chart (see Appendix B.1) and Tasks and Milestones table (see
Appendix B.2).

9.3 Resources required
No special resources are required for the theoretical components
of the project. However, if the implementation of an algorithm for
the DLV system is attempted, then various tools and software will
be required.

We will need access to the core code of DLV. It is written in
C++, and hence, C++ should be used to implement the defeasible
reasoning algorithms. The Eclipse IDE will be used since it is a
familiar development environment for both group members and is
widely considered a good IDE for C++ development.

9.4 Deliverables
We will present formalizations of the KLM properties, the rational
closure algorithm, the relevant closure algorithm and the lexico-
graphic closure algorithm (all for DLV). We will also provide formal
proofs that the algorithms in question satisfy the adapted KLM
properties. Finally, if the project timeline allows, we will deliver
bare-bones implementations of the algorithms within DLV. Other
deliverables are the literature review, project proposal, proposal
presentation, feasibility demonstration, final report, final demon-
stration and project poster.

9.5 Work Allocation
The project work is divided into 8 logical sections as follows:

• The extension and justification of the KLM properties for
DLV (1).
• The definition and proof of correctness of the algorithms for
rational closure (2), relevant closure (3) and lexicographic
closure (4) in DLV.

with the possibility of the additional sections:

• The implementation of the algorithms for rational closure
(5), relevant closure (6) and lexicographic closure (7) in the
DLV system.

Initially, section (1) will be completed byMatthewMorris and sec-
tion (2) by Tala Ross. After these sections are completed, Matthew
Morris will complete section (3), and possibly sections (5) and (6).
Tala Ross will complete section (4), and possibly section (7).

5

REFERENCES
[1] Chitta Baral and Michael Gelfond. 1994. Logic programming and knowledge

representation. The Journal of Logic Programming 19-20, SUPPL. 1 (may 1994),
73–148. https://linkinghub.elsevier.com/retrieve/pii/0743106694900256

[2] Mordechai Ben-Ari. 2012. Mathematical Logic for Computer Science (3 ed.).
Springer Science & Business Media, Rehovot, Israel. https://books.google.co.
za/books?hl=en

[3] Katarina Britz, Giovanni Casini, Thomas Meyer, Kody Moodley, Uli Sattler, and
Ivan Varzinczak. 2017. Rational Defeasible Reasoning for Description Logics. Techni-
cal Report. University of Cape Town, South Africa. https://core.ac.uk/download/
pdf/151756088.pdf

[4] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. 2014. Rele-
vant Closure: A New Form of Defeasible Reasoning for Description Logics. In
JELIA 2014: Logics in Artificial Intelligence. Springer, Cham, Funchal, Madeira,
Portugal, 92–106. https://doi.org/10.1007/978-3-319-11558-0_7

[5] G Casini, T Meyer, K Moodley, and I Varzinczak. 2013. Towards practical defeasible
reasoning for description logics. Technical Report. Centre for Artificial Intelligence
Research. http://researchspace.csir.co.za/dspace/handle/10204/7039

[6] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking Defeasible
Entailment beyond Rational Closure. (2019), 18 pages.

[7] Giovanni Casini and Umberto Straccia. 2012. Lexicographic closure for defeasible
description logics. CEUR Workshop Proceedings 969 (2012), 28–39.

[8] Thomas Eiter, Wolfgang Faber, Christoph Koch, Nicola Leone, and Gerald Pfeifer.
2000. DLV - A System for Declarative Problem Solving. Technical Report. Institut
fur Informationssysteme. 6 pages. http://arxiv.org/abs/cs/0003036

[9] Michael Freund. 1998. Preferential reasoning in the perspective of Poole default
logic. Artificial Intelligence 98, 1-2 (jan 1998), 209–235. https://doi.org/10.1016/
S0004-3702(97)00053-2

[10] L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. 2015. Semantic characteriza-
tion of rational closure: From propositional logic to description logics. Artificial
Intelligence 226 (sep 2015), 1–33. https://doi.org/10.1016/J.ARTINT.2015.05.001

[11] S Kraus, D Lehmann, and M Magidor. 1990. Nomonotonic Reasoning, Prefer-
ential Method and Cumulative Logics. Artificial Intelligence 44 (1990), 167–207.
arXiv:arXiv:cs/0202021v1

[12] Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of
Mathematics and Artificial Intelligence 15, 1 (1995), 61–82. https://doi.org/10.1007/
BF01535841

[13] D Lehmann and M Magidor. 1994. What does a conditional knowledge base
entail ? Artificial Intelligence 55, 1 (1994), 1–60.

[14] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. 2006. The DLV system for knowledge
representation and reasoning. ACM Transactions on Computational Logic 7, 3 (jul
2006), 499–562. https://doi.org/10.1145/1149114.1149117

[15] Umberto Straccia and Giovanni Casini. 2013. Defeasible Inheritance-Based De-
scription Logics. Journal of Artificial Intelligence Research 48 (jun 2013), 415–473.
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewPaper/2924

6

https://linkinghub.elsevier.com/retrieve/pii/0743106694900256
https://books.google.co.za/books?hl=en
https://books.google.co.za/books?hl=en
https://core.ac.uk/download/pdf/151756088.pdf
https://core.ac.uk/download/pdf/151756088.pdf
https://doi.org/10.1007/978-3-319-11558-0_7
http://researchspace.csir.co.za/dspace/handle/10204/7039
http://arxiv.org/abs/cs/0003036
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/J.ARTINT.2015.05.001
http://arxiv.org/abs/arXiv:cs/0202021v1
https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/BF01535841
https://doi.org/10.1145/1149114.1149117
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewPaper/2924

APPENDICES
A RISKS AND RISK MANAGEMENT
A.1 Risk Identification

ID Risk Probability Impact
1 Supervisor is unavailable Very unlikely Moderate
2 Partner is unable to complete their part of the project Possible Moderate
3 Disagreement and conflict in the group Very Unlikely Significant
4 Poor communication in the group Unlikely Moderate
5 Poor time management Possible Severe
6 Adapted algorithm does not satisfy KLM properties. Unlikely Significant
7 KLM properties do not adapt well to DLV. Very unlikely Severe
8 Cannot suitably extend algorithms to DLV. Unlikely Severe
9 KLM properties are not sufficient to constrain DLV entailment. Possible Moderate

Figure 2: Ranking of risks according to probability and impact

A.2 Risk Management

ID Mitigation Monitoring Management
1 Check in advance for supervisor avail-

ability
Confirm meetings through email and
calender invites

Continue to work independently

2 Collaborate when partner gets stuck on
something

Check in on partner’s progress Make sure the work is evenly split with
a logical divide and guarantee that sec-
tions can be completed without the
other

3 Agree on parameters for collaboration
up front

Make sure both parties are always sat-
isfied with the situation

Involve supervisor in the disagreements

4 Keep partner informed on progress with
regular updates

Check in as to whether partner under-
stands what work we are currently do-
ing

Resolve miscommunications clearly
through written text such as email

5 Create initial project timeline and stick
to it

Check whether we are meeting the mile-
stones we have set by their deadlines

Restructure project timeline with new
estimates

6 Show algorithm to supervisor for ap-
proval before attempting to prove that
the KLM properties hold

Initial proof sketches before fully diving
into the proofs

Adapt algorithm so that it will satisfy
the properties

7 Read similar work where the KLM prop-
erties were adapted and see how it was
done

Check whether properties are making
sense in the context of DLV, and not just
syntactically

8 Present adapted algorithm to supervisor
for comments and editing

Check whether all needed library calls
can be accessed within DLV

Adapt the algorithm so that it can be
implemented within DLV

9 Nomitigation possible, the KLM proper-
ties are widely agreed upon to be useful
and DLV itself cannot be changed

Investigate the nature of DLV to identify
other properties we might want it to
have that the KLM properties do not
constrain

Add additional properties to constrain
defeasible entailment

Figure 3: Approaches for mitigation, monitoring and management of risks

7

B TIMELINE AND MILESTONES
B.1 Gantt Chart

Figure 4: Gantt chart

8

B.2 Tasks and Milestones

Milestone/Task Start Date Finish Date
Literature Review
Literature Review Draft
Literature Review Final

04-04-2019
04-04-2019
26-04-2019

02-05-2019
25-04-2019
02-05-2019

Project Proposal
Project Proposal
Proposal Presentation
Revised Project Proposal

28-04-2019
28-04-2019
24-05-2019
03-06-2019

10-06-2019
23-05-2019
29-05-2019
10-06-2019

KLM Property Extension
KLM Property Extension Definition
Approval & Review of Properties

08-07-2019
08-07-2019
11-07-2019

14-07-2019
10-07-2019
14-07-2019

Rational Closure Algorithm Extension
Algorithm Development
Approval & Review of Algorithm
Proof of Correctness
Approval & Review of Proof

08-07-2019
08-07-2019
15-07-2019
18-07-2019
25-07-2019

28-07-2019
14-07-2019
17-07-2019
24-07-2019
28-07-2019

Relevant Closure Algorithm Extension
Algorithm Development
Approval & Review of Algorithm
Proof of Correctness
Approval & Review of Proof

29-07-2019
29-07-2019
04-08-2019
08-08-2019
15-07-2019

20-08-2019
03-08-2019
07-08-2019
14-08-2019
20-08-2019

Lexicographic Closure Algorithm Extension
Algorithm Development
Approval & Review of Algorithm
Proof of Correctness
Approval & Review of Proof

29-07-2019
29-07-2019
04-08-2019
08-08-2019
15-07-2019

20-08-2019
03-08-2019
07-08-2019
14-08-2019
20-08-2019

Demonstrations
Feasibility Demonstration
Final Demonstration

08-07-2019
08-07-2019
20-07-2019

16-09-2019
19-07-2019
16-09-2019

Report
Draft Report
Final Report

08-07-2019
08-07-2019
17-08-2019

02-09-2019
16-08-2019
26-08-2019

Project Media
Final Presentation Slide Deck
Project Poster
Web Page

27-08-2019
27-08-2019
27-08-2019
16-09-2019

30-09-2019
02-09-2019
23-09-2019
30-09-2019

Reflection Paper
Reflection Paper

16-09-2019
16-09-2019

07-10-2019
07-10-2019

Figure 5: Tasks and milestones

9

	Abstract
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 The KLM Approach
	2.3 The KLM Properties
	2.4 Rational Closure
	2.5 Relevant Closure
	2.6 Lexicographic Closure

	3 Project Description
	3.1 Why is it Important?
	3.2 Possible Issues and Difficulties

	4 Problem Statement
	4.1 Aims
	4.2 Research Questions

	5 Procedures and Methods
	5.1 Extending KLM Properties
	5.2 Extending Defeasible Entailment Algorithms
	5.3 Implementation

	6 Ethical, Professional and Legal Issues
	7 Related Work
	8 Anticipated Outcomes
	8.1 Expected Impact
	8.2 Key Success Factors
	8.3 System

	9 Project Plan
	9.1 Risks
	9.2 Timeline and Milestones
	9.3 Resources required
	9.4 Deliverables
	9.5 Work Allocation

	References
	A Risks and Risk Management
	A.1 Risk Identification
	A.2 Risk Management

	B Timeline and Milestones
	B.1 Gantt Chart
	B.2 Tasks and Milestones

