Defeasible Disjunctive Datalog

Logic in AI

Artificial Intelligence can be achieved using logic. We start with a knowledge base of statements known to be true:

"PENGUINS ARE BIRDS" "BIRDS DO FLY"

Rational Closure

To check if the following statement is true in our world: **"PECKY DOES NOT FLY"**

1. Rank known statements according to typicality:

Then, we can use that knowledge to draw new conclusions:

"PENGUINS DO FLY"

Reasoning with Uncertainty

We want to express and reason about statements such as:

"BIRDS TYPICALLY FLY"

This is called *Defeasible Reasoning*. There are many ways to do this, so we require that a suitable way satisfies the *KLM* properties:

0	"BIRDS DO FLY" "BIRDS HAVE WINGS"
1	"PENGUINS DO NOT FLY"

∞ "PENGUINS ARE BIRDS" "PECKY IS A PENGUIN"

- 2. Check if we can logically conclude that Pecky does not fly from the ranked statements:
- (a) Pecky cannot exist in our current world. So, we remove the least typical level of statements.

"BIRDS DO FLY" "BIRDS HAVE WINGS"

"PENGUINS DO NOT FLY"

∞ "PENGUINS ARE BIRDS" "PECKY IS A PENGUIN"

(b) Now, Pecky can exist in our world. So, we check if we can conclude that Pecky does not fly. We can!

Relevant & Lexicographic Closure

It is unnecessary to throw away an entire level of statements.

- *Relevant Closure* only throws away relevant statements.
- Lexicographic Closure throws away the smallest number

Datalog

Datalog allows us to make the following form of statements: $P(X,Y) \land P(Y,Z) \rightarrow G(X,Z) \lor T(Y)$

Project Aim: Extend Defeasible Reasoning to Datalog and prove that it satisfies the *KLM properties*.

of statements possible.

Conclusions: Rational and Lexicographic Closure satisfy the *KLM properties* for Datalog; Relevant Closure does not.

FIND OUT MORE

University of Cape Town Department of Computer Science

Matthew Morris & Tala Ross Supervised by Prof Tommie Meyer

