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ABSTRACT
Datalog is a declarative logic programming language that uses clas-

sical logical reasoning as its basic form of reasoning. Defeasible

reasoning is a form of non-classical reasoning that is able to deal

with exceptions to general assertions in a formal manner. The KLM

approach to defeasible reasoning is an axiomatic approach based

on the concept of plausible inference. Since Datalog uses classical

reasoning, it is currently not able to handle defeasible implications

and exceptions. We aim to extend the expressivity of Datalog by

incorporating KLM-style defeasible reasoning into classical Datalog.

We present a systematic approach for extending the KLM properties

and Rational Closure; a well-known form of defeasible entailment.

We conclude by exploring a Datalog extension of Relevant Closure;

a less conservative form of defeasible entailment.

CCS CONCEPTS
• Theory of computation → Automated reasoning; Logic and
databases; • Computing methodologies → Nonmonotonic, de-
fault reasoning and belief revision;

KEYWORDS
knowledge representation and reasoning, defeasible reasoning, KLM

approach, Rational Closure, Relevant Closure, Datalog

1 INTRODUCTION
The Knowledge Representation and Reasoning approach to Arti-

ficial Intelligence uses logics to represent knowledge. Automated

reasoning methods are used to draw new conclusions from that

knowledge. Classical reasoning systems are monotonic. This means

that all information is certain and adding new information does not

change the conclusions that you could previously draw. This form

of reasoning can be too weak to model certain systems. To illustrate

this, consider an example where these statements are made:

Example 1.1.
(1) Students do not pay taxes

(2) First years are students

(3) Tutors are students

From this, we can conclude that “tutors do not pay taxes”, which
may in fact be incorrect. However, each of these statements is per-

fectly reasonable from a human perspective.What we actually meant

was “typically, students do not pay taxes”. Then, when we add the ex-

tra information that tutors pay taxes, we want the system to retract

its conclusion that “tutors do not pay taxes”. However, a monotonic,

classical reasoning system cannot change previous assumptions.

Knowing that “tutors pay taxes” and “tutors do not pay taxes”, it must

then conclude that no tutors can exist, otherwise we would get a con-

tradiction. In non-monotonic systems, defeasible statements of the

form “typically, something is the case” are permitted. This allows for

a more “common sense” approach to reasoning than in the approach

of classical reasoning [5].

In this paper, we discuss the KLM approach [10]; a well-supported

approach to non-monotonic reasoning. In Section 2, we discuss the

existing algorithmic definition of this approach for propositional

logic. In Section 3, we discuss Datalog; a more expressive logic. The

central focus of this paper is to extend the KLM approach to the

Datalog case. We discuss this extension in Sections 4, 5, and 6. The

work in Sections 1 - 5 was done jointly with Ross.

2 BACKGROUND
2.1 Propositional Logic
Propositional logic [2] is a simple logic which uses classical reasoning.

A propositional atom, denoted by p or q, is a statement that can be

assigned a truth value (true or false), which cannot be decomposed

into a smaller such statements. We build up a language L of propo-

sitional logic, by recursively combining statements using Boolean

operators, for example: α → β (implies), α ∧ β (and), α ∨ β (or), and

¬α (not).

We can represent the statements from Example 1.1 in proposi-

tional logic, using atoms s , x , f and t to represent students, taxes,

first years and tutors respectively:

(1) s → ¬x
(2) f → s
(3) t → s

Intuitively, α → β means that if α is true then β is true, α ∧ β
means that both α and β are true, α ∨ β means that at least one of α
or β are true, and ¬α means that α is not true.

Reasoning in propositional logic involves answering questions

such as “Can we logically conclude α from a knowledge base K?”. This
is referred to as entailment, and is denoted by K |= α . For example:

we can logically conclude that “first years do not pay taxes” from the

statements in Example 1.1 and we denote this by K |= f → ¬x .

2.2 The KLM Approach
There are many different formalizations of the more “common sense”

non-monotonic reasoning for propositional logic. The KLM approach
proposed by Kraus et al. [10] is an axiomatic approach based on the

concept of plausible inference, and is currently one of the most

preferred methods [4, 13]. In this approach, plausible inference is

represented by a defeasible implication operator of the form α |∼ β ,
which intuitively means that α is typically a good enough reason

to believe β . In this case, α and β are just classical statements. For

example: we can now represent the statement “typically, students do
not pay taxes” as follows:

s |∼ ¬x

We now want to answer questions such as “Can we typically
conclude α |∼ β from a defeasible knowledge base K (one including
defeasible implications)?”. This is referred to as defeasible entailment,

and is denoted by K |≈ α |∼ β .



2.3 The KLM Properties
Unlike classical entailment, defeasible entailment is not unique.

There exist multiple formalizations of defeasible entailment, such as

Rational Closure [12], Relevant Closure [4], and Lexicographic Closure
[11]. The KLM framework provides a list of rationality properties,

which Lehmann and Magidor [12] argued must be satisfied by de-

feasible entailment methods. This provides a way of differentiating

between acceptable and non-acceptable methods of entailment. Any

method that satisfies these properties is referred to as being LM-
rational.

2.4 Rational Closure
Rational Closure is in many ways the most simple and intuitive way

of defining defeasible entailment. There is a semantic definition,

based on underlying structures we call Ranked Interpretations. There
is also an equivalent algorithmic definition [8], which we refer to

as the Rational Closure Algorithm. For our purposes, we will use the

algorithmic definition as the sole definition of Rational Closure.

This algorithm is split into two distinct sub-algorithms, pro-

posed by Casini et al. [6]. The BaseRank algorithm is used to con-

struct a ranking of the statements in the knowledge base K . The

RationalClosure algorithm is used to compute whether a defeasi-

ble rule is entailed by the knowledge base and uses the BaseRank
algorithm in its definition.

Algorithm 1: BaseRank
Input: A knowledge base K

Output: An ordered tuple (R0, . . . ,Rn−1, R∞,n)
1 i := 0;

2 E0 :=
−→
K ;

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei |= ¬α };

5 Ri := Ei \ Ei+1;

6 i := i + 1;

7 until Ei−1 = Ei ;

8 R∞ := Ei−1;

9 if Ei−1 = ∅ then
10 n := i − 1;

11 else
12 n := i;

13 return (R0, . . . ,Rn−1, R∞,n)

Intuitively, the BaseRank algorithm starts with all the statements

fromK in Ei , converted to their classical forms. That is, every α |∼ β
would become α → β . Then, to get to Ei+1, we keep all the defeasible
statements such that the left hand side can be “proven false” by our

defeasible statements in the previous iteration and by all classical

statements.

When the algorithm stops, what will eventually be left in Ei+1
is all classical statements. Thus, R∞ (the infinite level), represents

all certain information in the knowledge base. It is important to

note that any classical sentence α can be expressed as a defeasible

implication: α if and only if ¬α |∼ ⊥. So some statements that appear

defeasible may in fact be classical, and will appear on the level of

R∞.
Let us consider the following example knowledge base K , made

up of information which we know to be true:

Example 2.1.
(1) Tutors are students (t → s)
(2) First years are students (f → s)
(3) Tutors typically pay taxes (t |∼ x )
(4) Students typically do not pay taxes (s |∼ ¬x )
(5) Students typically drink coffee (s |∼ c)

Following the BaseRank algorithm, we find the following ranking

of the statements from Example 2.1:

0 Students typically do not pay taxes (s |∼ ¬x ) Students typically drink coffee (s |∼ c )

1 Tutors typically pay taxes (t |∼ x )

∞ Tutors are students (t → s ) First years are students (f → s )

Figure 1: Base Ranking of Statements in K in Example 2.1

Intuitively, more general statements will appear higher up the

ranking. For example; since “Tutors are students”, Students are a

more general concept than Tutors, so the statements with Students
on the left hand side will appear higher in the ranking.

Algorithm 2: RationalClosure
Input: A knowledge base K and a defeasible implication α |∼ β
Output: true, if K |≈ α |∼ β , and false, otherwise

1 (R0, . . . ,Rn−1, R∞,n) := BaseRank(K);

2 i := 0;

3 R :=
⋃j<n
i=0 Rj ;

4 while R∞ ∪ R |= ¬α and R , ∅ do
5 R := R \ Ri ;
6 i := i + 1;

7 return R∞ ∪ R |= α → β ;

The RationalClosure algorithm starts with the ranking pro-

vided by BaseRank. It is also asked a question, whether α |∼ β . Note
again that while this query must be expressed in terms of the defea-

sible implication operator, we can express any classical sentence as

a defeasible implication. Thus, the algorithm can be used to check

classical queries as well.

The algorithm then goes on, and in each iteration, checks if we

can conclude ¬α from our current set of information. If we can, then

there is no point in even trying to consider if α |∼ β is the case, since

α is never true. Thus, we throw away the top level of the ranking

(the least typical statements) and proceed to the next iteration.

In Example 2.1, considerK being presented with the query t |∼ x ,
which represents asking “do tutors typically pay taxes?”. The algo-

rithm finds that ¬t is a logical consequence of all of the statements.

That is, we can conclude that there are no tutors. Thus, we throw

away the top level, as shown in Figure 2, and check again if there

are any tutors with the remaining statements.

0 Students do not pay taxes. Students drink coffee.

1 Tutors pay taxes.

∞ Tutors are students. First years are students.

Figure 2: Top level of K in Example 2.1 is thrown away
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Eventually, when we reach a point at which we can no longer

conclude¬α , we can now checkwhetherα → β holds in the classical
case, and return that as our result. Thus, the RationalClosure
algorithm just reduces to a sequence of classical entailment checks.

3 DATALOG
3.1 Standard Datalog
Datalog is a more expressive logic than propositional logic. It al-

lows us to represent statements about specific individuals as well

as generic concepts which can be associated with many individuals.

For example; in Datalog we can say that “for all X , X is a tutor” or
“Tyler is a tutor”, but in propositional logic we can only talk about

tutors in general.

Consider the following example, which includes some statements

that can be represented using Datalog:

Example 3.1.
(1) For all X, if X is a first year, then X is a student

(2) If Tyler is a tutor, then Tyler is a student

(3) For all X, if X is a tutor and post-graduate, then X is a teaching

assistant

In this section, we briefly discuss the syntax and semantics of Dat-

alog. Complete formalizations of Logic programming and Datalog

are provided by Baral et al. [1] and Ceri et al. [7] respectively.

The language of Datalog is made up of facts and rules. Facts
provide information about the world and rules allow us to deduce

facts from other facts. Rules are expressed as Horn clauses with the

general form
1
:

l1 ∧ l2 ∧ · · · ∧ lm → l0

Each literal li has the form pi (t1, . . . , tki ), where pi is a predicate
symbol and t1, . . . , tki are terms. A term is either a constant or a
variable. The left-hand side of the clause is referred to as the body
and the right-hand side as the head.

A fact is expressed as a Horn clause with no body:

l0

We can represent the statements from Example 3.1 using variable

X, constant Tyler, and predicates f , s , t , p, and a which represent

first years, students, tutors, post-graduates, and teaching assistants

respectively:

(1) f (X ) → s(X )
(2) t(Tyler) → s(Tyler)
(3) t(X ) ∧ p(X ) → a(X )

We say that a clause such as t(Tyler) → s(Tyler) is ground, since
it does not contain any variables.

Intuitively, a rule says that “if everything in the body holds true,

then so too does the head hold true” and a fact says that “the head

is always true”. We formally assign meaning to statements using

Herbrand interpretations. A Herbrand interpretation is a subset τ of all

ground facts that can be formed using the predicates and constants

expressed in a Datalog program. For example; Tyler is the only

constant above, so the set of all possible ground facts that we can

form is:

{ f (Tyler ), s(Tyler ), t(Tyler ),p(Tyler ),a(Tyler )}.

So a possible Herbrand interpretation is:

1
Datalog Horn clauses usually have the form l0 ← l1 ∧ · · · ∧ lm . However, we choose

to use a syntax that mirrors that of propositional logic for the ease of the reader. The

semantics defined below are equivalent to the semantics defined for clauses of the

original form by Ceri et al. [7]

τ = {s(Tyler ), t(Tyler ),p(Tyler )}.

To assign truth values to ground facts we check whether they are

in the set τ . That is, a ground fact is true for an interpretation τ if

and only if it is in τ . For example; t(Tyler ) ∈ τ so t(Tyler ) is true
under τ .

We say that a rule is true under τ if and only if whenever we can

replace variables in the rule by constants and all the literals in the

body are in τ , then the head is also in τ . Intuitively this means that

whenever we can make the “requirements” of the rule true, then the

“conclusion” of the rule is also true. For example; t(Tyler ) ∈ τ and

p(Tyler ) ∈ τ so the requirements are all true but a(Tyler ) < τ so the

conclusion is not true. Thus, the statement t(X )∧p(X ) → a(X )must

not be true for τ . This is a consequence of the implicit universal

quantifier in the rule (for all X ).
If every clause (fact or rule) in a knowledge base is true in τ then

we call τ a Herbrand model. We say that a ground fact α is entailed

by K , denoted K |= α , if and only if α is in each Herbrand model of

K . Intuitively, this means that whenever our current statements are

all true, the new fact is also true.

3.2 Disjunctive Datalog
Datalog can be seen as more expressive than propositional logic, in

the sense that it allows us to represent statements about individu-

als. However, it restricts the type of statements that we can make

about these individuals. For instance, the statement below cannot

be represented using standard Datalog:

Example 3.2.
(4) Student, X, is an undergraduate or a postgraduate

It is often useful to be able to represent statements that involve

the disjunction “or”, since these type of statements allow us to model

incomplete knowledge. It is also useful to represent statements about

falsehood. However, Datalog does not allow us to represent falsehood

either. For example; the statement below cannot be represented using

standard Datalog:

Example 3.3.
(5) X is never a student and an employee

We now propose a slightly extended version of Datalog: Datalog
∨
.

We introduce the literal ⊥. Intuitively, we mean that the literal ⊥ is

such that it is never true. Additionally, we extend the syntax of rules

to allow for disjunction ∨ (or) in the head of rules. That is, rules now

have the following form, where each bi and hj is a literal:

b1 ∧ · · · ∧ bm → h1 ∨ · · · ∨ hn

Now we can represent the statement from Examples 3.2 and 3.3,

using predicates s , u, p and e to represent students, undergraduates,

postgraduates, and employees respectively:

(4) s(X ) → u(X ) ∨ p(X )
(5) s(X ) ∧ e(X ) → ⊥

We now need to define the semantics for our extended logic. We

consider ⊥ to be a ground literal. For any Herbrand interpretation τ ,
we define that ⊥ is never in τ . We say that a rule b1 ∧ · · · ∧ bm →
h1 ∨ · · · ∨ hn is true for Herbrand interpretation τ if and only if,

whenever we can replace variables in the rule by constants and all

the literals in the body are in τ , then at least one of literals in the head
is in τ . Intuitively, this now means that whenever we can make the

“requirements” of the rule true, then at least one of the “conclusions”

is true.
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For example; if we combine the statements in Examples 3.1 and

3.2, τ defined below is a Herbrand interpretation. Now, s(Tyler ) ∈ τ
so the requirement is true and p(Tyler ) ∈ τ so one of the conclusions

is true. Thus, since Tyler is the only constant we can replace X with,

s(X ) → u(X ) ∨ p(X ) is true for τ .

τ = {s(Tyler ), t(Tyler ),p(Tyler )}.

3.3 Defeasible Disjunctive Datalog
Since Disjunctive Datalog uses classical reasoning, it cannot be used

to represent defeasible statements such as the one below:

Example 3.4.
(1) Typically, if X is a tutor, X pays tax.

As discussed above, it is often useful to be able to represent such

statements. The KLM approach [10] for propositional logic intro-

duces defeasible implications of the form α |∼ β whose semantics

are given by ranked interpretations [12]. We want to allow for similar

defeasible statements to be represented by Disjunctive Datalog. So,

we introduce defeasible rules of the form:

b1 ∧ · · · ∧ bm |∼ h1 ∨ · · · ∨ hn

We intend for the logical connective |∼ to be the defeasible form of

the logical connective→ in rules. The ruleb1∧· · ·∧bm |∼ h1∨· · ·∨hn
is intended to intuitively mean that “typically, if all of b1, . . . ,bm are

true, then at least one of h1, . . . ,hn is true”. For example; the state-

ment in Example 3.4 can be represented in Defeasible Disjunctive

Datalog as shown below, where x represents taxes.

(1) t(X ) |∼ x(X )

In this paper, we will not consider a semantic definition of de-

feasible rules. We will instead define defeasible rules by adapting

rational defeasible entailment algorithms for Disjunctive Datalog.

Notice that in the defeasible entailment algorithm,

RationalClosure, defined above, the definition of entailment of

complex formulas such as α → β is required (see line 7). It stands

to reason that such definitions of entailment will also be required

when adapting these algorithms for Datalog. However, the semantics

of Datalog only define entailment of ground facts. So, we want to

extend the semantics of Datalog to allow for (classical) entailment

of non-ground facts and rules too.

Since Datalog can be seen as a subset of first-order logic, we extend

the definition of (classical) entailment under Herbrand semantics

for Datalog to match the definition of entailment under Herbrand

semantics for first-order logic [9]. We define entailment of a Horn

clause (rule or fact) as follows: a knowledge base K entails Horn

clause α , denoted by K |= α , if and only if each Herbrand model of

K is also a model of α . Intuitively, this means that whenever our

current statements are always true, the clause is also always true.

4 ADAPTED KLM PROPERTIES
Let knowledge base K be a finite set of defeasible rules. The main

focus of this paper is to algorithmically define defeasible entailment
K |≈ α |∼ β . That is, how do we answer the question: “Can we typi-
cally conclude α |∼ β from a defeasible knowledge base K?”. We want

to extend algorithms for answering this question in the propositional

case to the Datalog case. We also want to ensure that our adapted

algorithms remain “reasonable”.

Lehmann and Magidor [12] recommend that different forms of

defeasible entailment satisfy a set of rationality properties, referred to
as the KLM properties. If a defeasible entailment algorithm satisfies

all the properties, then it is believed to be an acceptable means

of computing defeasible entailment and is called LM-rational. For
completeness, the KLM properties for propositional logic are stated

below:

(Ref) K |≈ α |∼ α (LLE)
α ≡ β, K |≈ α |∼ γ
K |≈ β |∼ γ

(RW)
K |≈ α |∼ β, β |= γ
K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

(Or)
K |≈ α |∼ γ , K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ

(CM)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ , K |0 α |∼ ¬β

K |≈ α ∧ β |∼ γ

We adopt this approach to analysing the acceptability of our

extended defeasible entailment algorithms. In this section, we will

adapt the KLM properties for Datalog.

4.1 Basic KLM Properties for Datalog
Initially, we attempt to state basic versions of the KLM properties

for Datalog. We state the properties in terms of single literals in the

head and body of Datalog rules without the use of connectives ∧ and

∨. That is, the defeasible rules which we consider take the following

restricted form:

b |∼ h

Let l ,m,n be Datalog literals (of any arity). The properties below

are a simple extension of the KLM properties for propositional logic:

(Ref) K |≈ l |∼ l (CM)
K |≈ l |∼m, K |≈ l |∼ n
K |≈ l ∧m |∼ n

We notice that the intuitive “meaning” of entailmentm |= n in

propositional logic is different to that for Datalog. This is due to the

introduction of variables into the logic of Datalog. To understand

why, we first need to realise that a Datalog rule m(X ) → n(X ) is
equivalent to a first-order logic statement of the form:

∀X ,m(X ) → n(X )

For propositional logic,m |= n intuitively means “wheneverm is
true, then n is true”. However,m(X ) |= n(X ) in Datalog is equivalent

to the following first-order logic entailment:

∀X ,m(X ) |= ∀X ,n(X )
This intuitively means “wheneverm(X ) is true for every X , then

n(X ) is true for every X ”. The problem is that this actually does not

say that the X ’s are the same form and n. So we could have some

constant, say Tyler, that replaces X form but not for n. We want

to link the X ’s so that what we are actually saying is “for every X ,
wheneverm(X ) is true, then n(X ) is true”. In other words, we want to

say that ∀X ,m(X ) → n(X ) is always true. We say that ∀X ,m(X ) →
n(X ) is a tautology and denote this by |= ∀X ,m(X ) → n(X ). That
is, in Datalog we write |= m → n. This intuitive description of

|=m → n is described formally by Proposition 4.1 below. The proof

of Proposition 4.1 is trivial.

Proposition 4.1. Let τ be a Herbrand interpretation and θ any
substitution which replaces variables by constants. Then, |=m → n iff
mθ ∈ τ implies that nθ ∈ τ .

We can now state the RW property in terms of the tautology

|=m → n, so that it has the same meaning as the RW property for

propositional logic in terms of the entailmentm |= n.
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(RW)
K |≈ l |∼m, |=m → n

K |≈ l |∼ n

Furthermore, we notice that the intuitive “meaning” of equiva-

lence l ≡m in propositional logic is different to that for Datalog. For

propositional logic, l ≡m intuitively means “m is true if and only if l
is true”. That is, “whenever l is true, thenm is true” and “wheneverm
is true, then l is true”. However, l(X ) ≡m(X ) in Datalog is equivalent

to the following first-order logic statement:

∀X , l(X ) ≡ ∀X ,m(X )
This intuitively means “l(X ) is true for every X if and only ifm(X )

is true for every X ”. We again find that this does not actually say that

the X ’s are the same form and l . This does not correspond to our

intuitive understanding of the word “equivalence”. We want to link

the X ’s so that what we are actually saying is “for every X , l(X ) is
true if and only ifm(X ) is true”. In other words, we want to say that

∀X ,m(X ) ≡ l(X ) is always true. That is, in Datalog we want to say

thatm ≡ n is a statement which is always true.

The problem is that the syntax of Datalog does not include the

equivalence relation ≡, so we cannot make the statementm ≡ n in

Datalog. However, we can rewritem ≡ n as |= l →m and |=m → l .
Intuitively, this is because “for every X , l(X ) is true if and only if
m(X ) is true” means the same thing as “for every X :

(1) if l(X ) is true, thenm(X ) is true, and,
(2) ifm(X ) is true, then l(X ) is true”
This intuitive description of why we can rewrite m ≡ n as |=

l →m and |=m → l is described formally by Proposition 4.2 below.

A generalized version of Proposition 4.2, Lemma C.3, is proved in

Appendix C.

Proposition 4.2. Let τ be a Herbrand interpretation and θ any
substitution which replaces variables by constants. Then, |= l → m
and |=m → l iff lθ ∈ τ andmθ ∈ τ , or, lθ < τ andmθ < τ .

We can now state the LLE property in terms of the tautologies

|= l →m and |=m → l , so that it has the same meaning as the LLE
property for propositional logic in terms of the equivalence l ≡m.

(LLE)
|= l →m, |=m → l, K |≈ l |∼ n

K |≈m |∼ n

4.2 Basic KLM Properties which we cannot State
in Datalog

TheAnd,Or, and RM properties, at first glance, also seem to be simple

extensions of the KLM properties for propositional logic. However,

we notice that the current syntax of Datalog is too restrictive to

state these properties. Recall that the current syntax of Disjunctive

Datalog only allows for rules of the form:

b1 ∧ · · · ∧ bm → h1 ∨ · · · ∨ hn

Consider the naive extension of the And property below. The rule

l |∼ m ∧ n has a ∧ connective in its head. However, the current

version of Datalog only allows for ∨ connectives in the head of a

rule.

(And)
K |≈ l |∼m, K |≈ l |∼ n
K |≈ l |∼m ∧ n

Now, consider the naive extensions of the Or and RM properties.

In the Or property, the rule l ∨m |∼ n has a ∨ connective in its body,

but the current version of Datalog only allows for ∧ connectives in

the body of a rule. Furthermore, the current Datalog syntax does not

allow for negation ¬. Hence, the rule l |∼ ¬m in the RM property

cannot be stated.

(Or)
K |≈ l |∼ n, K |≈m |∼ n
K |≈ l ∨m |∼ n

(RM)
K |≈ l |∼ n, K |0 l |∼ ¬m

K |≈ l ∧m |∼ n

Thus, the extension of the And, Or, and RM properties as stated

above cannot be used for the current version of Datalog, since they

all violate its syntax.

4.3 Molecules as Combinations of Literals
We introduce the idea of amolecules as a shorthand for a combination

of literals. This shorthand will be used to define more general KLM

properties.

We define a disjunctive molecule, denoted α∨, to be a combination

of literals using ∨ connectives in the form:

l1 ∨ l2 ∨ · · · ∨ ln

We define a conjunctive molecule, denoted α∧, to be a combination

of literals using ∧ connectives in the form:

l1 ∧ l2 ∧ · · · ∧ ln

We say that amolecule, denoted α , is either a disjunctive molecule

or a conjunctive molecule. We remark that since molecules are just

a shorthand, they have no impact on the semantics of Datalog.

4.4 Generalized KLM Properties for Datalog
The basic KLM properties stated in Section 4.1 are stated only in

terms of single literals in the head and body of rules. However, in

general, Datalog rules may have multiple literals in both the head

and body of rules. Thus, since the basic version of the KLM properties

limits the structure of rules, it does not fully assess the acceptability

of defeasible entailment for Datalog. In this section, we analyse

generalized versions of the KLM properties for Datalog. We find

that, due to the restrictive nature of Datalog’s syntax, none of the

properties can be expressed in a general manner without violating

Datalog’s syntax.

Firstly, it is clear that the And, Or and RM properties cannot be

expressed in general form, since they already cannot be expressed

in basic form using the current version of Datalog.

The general versions of the Ref, LLE, RW, and CM properties,

at first glance, all seem to be simple extensions of the properties

defined in Section 4.1. However, we notice that the current syntax

of Datalog is too restrictive to state these properties. We reiterate

that the current syntax of Disjunctive Datalog only allows for rules

of the form:

b1 ∧ · · · ∧ bm → h1 ∨ · · · ∨ hn

Notice that molecule α occurs in both the head and body of the

rule α |∼ α in the naive general extension of the Ref property below.

So, if α is disjunctive, then there will be a ∨ connective in the body

of the rule, and if α is conjunctive, then there will be a ∧ connective

in the head of the rule. Thus, α |∼ α violates the structure of Datalog

rules.

(Ref) K |≈ α |∼ α

A similar discussion can be had about the molecule β , which
occurs in both the head and body of different rules in the naive

general extensions of the RW and CM properties below.
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(RW)
K |≈ α∧ |∼ β, |= β → γ ∨

K |≈ α∧ |∼ γ ∨
(CM)

K |≈ α∧ |∼ β, K |≈ α∧ |∼ γ ∨

K |≈ α∧ ∧ β |∼ γ ∨

In the naive general extension of the LLE property below, the

molecules α∧ and β∧ both occur in the head of rules. Thus, the ∧

connective occurs in the head of rules, violating the current syntax

of Datalog.

(LLE)
|= α∧ → β∧, |= β∧ → α∧, K |≈ α∧ |∼ γ ∨

K |≈ β∧ |∼ γ ∨

Hence, the extension of the Ref, LLE, RW and CM properties in

general form cannot be used for the current version of Datalog, since

they all violate its syntax.

4.5 Motivation for Extended Datalog
We have found that all of the KLM properties cannot be expressed

in a general manner and some of them cannot be expressed even

in a basic manner. This is due to the restrictive nature of Datalog’s

syntax.

However, we need to ensure that LM-rational forms of defeasible

entailment satisfy all the KLM properties. We argue that this is nec-

essary even though the reasoning described by some of these prop-

erties will never be computed by defeasible entailment algorithms

for Datalog. We illustrate why by means of an example. Consider

the following two defeasible rules which can be represented using

Datalog:

If X is a tutor, then X is typically a student. t (X ) |∼ s(X )

If X is a tutor, then X is typically an employee. t (X ) |∼ e(X )

It seems rational to conclude the statement below. However, we

cannot represent this statement using the current version of Datalog.

If X is a tutor, then X is typically a student and an employee.

t (X ) |∼ s(X ) ∧ e(X )

Thus, to ensure that a form of defeasible entailment is rational,

we need to ensure that it will make this conclusion, even though we

cannot actually represent the conclusion using Datalog.

We argue that the restrictive nature of Datalog’s syntax is only

in place to limit the computational complexity of reasoning about

Datalog rules. In fact, by looking at the Herbrand semantics for first-

order logic [9], we notice that the Herbrand interpretation semantics

allow us to express much more in both the head and body of Datalog

rules. We propose that a Datalog extension be used to fully express

generalized versions of all of the KLM properties. This way, we can

analyse the rationality of defeasible entailment using the extended

syntax. However, when we actually compute defeasible entailment,

we will only ever use the non-extended version of Datalog.

4.6 Datalog+
Our proposed extension to Datalog, Datalog+, introduces the idea

of compounds. We again make use of the approaches of first-order

logic [9] to define the syntax and semantics of this extended logic.

We recursively define a compound in Datalog+, denoted by A,B.
If l is a literal and A and B are compounds, then the following are

all compounds:

• l
• ¬A
• A ∧ B
• A ∨ B

We define a fact in Datalog+ to be a compound A. We define

rules and defeasible rules in Datalog+ to have the following forms

respectively:

A→ B A |∼ B

Let τ be a Herbrand interpretation and consider some replacement

θ of variables by constants. We say that compound A is in τ under

the replacement, denoted Aθ ∈ τ , if and only if one of the following

conditions holds, where B, Γ are compounds and l is a literal:

• A = l and after the replacement l is in τ (lθ ∈ τ )
• A = ¬B and after the replacement B is not in τ (Bθ < τ )
• A = B ∧ Γ and after the replacement both B and Γ are in τ
(Bθ ∈ τ and Γθ ∈ τ )
• A = B ∨ Γ and after the replacement at least one of B or Γ are

in τ (Bθ ∈ τ or Γθ ∈ τ )

We say that fact A is true under Herbrand interpretation τ if and

only if A is in τ under every possible replacement of variables by

constants. We say that rule A→ B is true under Herbrand interpre-

tation τ , if and only if whenever A is in τ under some replacement

of variables by constants, B is also in τ under the same replacement.

If a Horn clause (rule or fact) α is true under τ we say that τ is a

model of α .
We define entailment of a Horn clause (rule or fact) as we did

before. That is, a knowledge base K entails Datalog+ Horn clause α ,
denoted by K |= α , if and only if each Herbrand model of K is also

a model of α .
Notice that anyHorn clause expressed in Datalog can be expressed

in Datalog+, so Datalog+ is simply an extension of Datalog.

4.7 The KLM Properties Expressed in Datalog+
We state the KLM properties (in Datalog+) for Datalog below, where

molecules α , β,γ are used as shorthand.

(LLE)
|= α → β, |= β → α, K |≈ α |∼ γ

K |≈ β |∼ γ

(Ref) K |≈ α |∼ α (RW)
K |≈ α |∼ β, |= β → γ

K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

(Or)
K |≈ α |∼ γ , K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ

(CM)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ , K |0 α |∼ ¬β

K |≈ α ∧ β |∼ γ
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5 RATIONAL CLOSURE FOR DATALOG
In this section we propose a simple adaptation to the BaseRank and

RationalClosure algorithms so that they can be used for Datalog.

We make use of molecules α , β ,γ , as described in section 4.3, as

shorthand when describing the algorithms.

5.1 Base Rank Algorithm
The idea of the exceptionality of a statement is central to the

BaseRank algorithm. A statement is exceptional with respect to

a set of statements if it can be “proven false” by those statements. In

the propositional case, we express the notion of falsehood using the

negation connective ¬, which intuitively means “not”. Disjunctive

Datalog does not allow us to use of the negation connective ¬, but it

does allow us to use ⊥. We will use ⊥ to define a notion of falsehood

for Datalog.

Notice that, intuitively, ¬α means that α is never true. That is, if

α is true, then ¬α is false. Recall ⊥ is always false. So, whenever α
is true, the rule α → ⊥ is false. Thus, we can rewrite ¬α as α → ⊥.
This is formally stated in Proposition 5.1 below, the proof of which

is found in Appendix D.

Proposition 5.1. Let τ be a Herbrand interpretation. Then, τ is
a model of ¬α under Datalog+ semantics iff τ is a model of α → ⊥
under Datalog∨ semantics.

In the propositional case, we assume that all of the statements in

our knowledge base are defeasible. We can do this because we can

rewrite a classical statement α as the defeasible statement ¬α |∼ ⊥.
However, we cannot rewrite classical Datalog clauses in this manner,

since we cannot use ¬. In fact, there is no way to rewrite classical

clauses as defeasible rules for the Datalog case. Instead, we form a

ranking of only the defeasible statements. Then, since the classical

statements are all definite, we add them to the the most typical level;

the infinite level.

We can now adapt the BaseRank algorithm, Algorithm 1, for

the Datalog case. The adapted version ranks the statements in a

knowledge base K := D ∪C , where D is the set of defeasible rules

and C the set of classical clauses. It sets out to rank the defeasible

rules by setting E0 :=
−→
D on line 2. It now assesses the exceptionality

of molecule α by using the entailment check Ei ∪C |= α → ⊥ on

line 4. Finally, when all the defeasible rules are ranked, it adds the

classical clauses to the infinite level by setting R∞ := Ei−1 ∪C on

line 8. For clarity, the adapted BaseRank algorithm for the Datalog

case is fully expressed in Algorithm 4 in Appendix B.

5.2 Rational Closure Algorithm
In the RationalClosure algorithm, Algorithm 2, we loop through

the statements, level by level, checking for a level where we cannot

prove molecule α false with the statements remaining. Thus, we

again need a notion of falsehood. As with the BaseRank algorithm,

we choose to adapt the RationalClosure algorithm by using the

entailment check R∞ ∪ R |= α → ⊥ on line 4 instead of the original

R∞ ∪ R |= ¬α check.

Under the assumption that there is an algorithm to compute classi-

cal entailment for Datalog
∨
, this adapted version of the

RationalClosure algorithm can now be used to check whether

a rule α |∼ β is defeasibly entailed by the knowledge base K . For

clarity, the adapted RationalClosure algorithm for the Datalog

case is fully expressed in Algorithm 5 in Appendix B.

5.3 LM-Rationality
Proposition 5.2. The adapted RationalClosure algorithm is

LM-rational. That is, it satisfies each KLM property.

Full proofs for the satisfaction of each KLM property by the

RationalClosure procedure are provided in Appendix C. We pro-

vide a high-level overview for the proof of the And property; to

illustrate the principles used in the proof. To start, let us take a look

at what the And property is actually stating.

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

This says; if we operate on a fixed knowledge base K such that

(1) When passed the query α |∼ β , the algorithm returns true
(2) When passed the query α |∼ γ , the algorithm returns true

Then when passed the query α |∼ β ∧ γ , the algorithm will also

return true.
To see what this actually entails, we need to take a closer look at

the algorithm and consider 2 cases. Note first that all 3 queries have

the same symbol (α ) on the left hand side of the defeasible implication

and that the the ranking returned by the BaseRank algorithm will

be the same for all of them.

The first case is one where during the K |≈ α |∼ β checking,

R∞ ∪ R |= ¬α the entire time. Then, since the ranking is the same, it

is also the case in the K |≈ α |∼ β ∧ γ checking, R∞ ∪ R |= ¬α the

entire time. So the algorithm reaches the following line:

return R∞ ∪ R |= α → β ∧ γ ;
But at this point, still R∞ ∪ R |= ¬α , so R∞ ∪ R |= α → β ∧ γ will

return true. The reason for this is best seen by example. Suppose

it was known that there are no apples (α ), which corresponds to

the statement ¬α . We then claim that all apples (α ) are bananas

(β) and grapes (γ ), which corresponds to the statement α → β ∧ γ .
Since there are no apples, this statement is technically true. Thus,

the algorithm will return true in the first case.

The second case is where R∞ ∪ R ̸ |= ¬α for the first time at some

point i . Again, since the ranking is the same for all queries, this will

be the exact same point i in all 3 of the queries.

0 R∞ ∪ R |= ¬α

. . . R∞ ∪ R |= ¬α

i R∞ ∪ R ̸ |= ¬α

. . . . . .

Figure 3: At some point i, R∞ ∪ R ̸ |= ¬α

Then since K |≈ α |∼ β , K |≈ α |∼ γ , we know that at point i ,
R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ . If we let α represent tutors,

β represent students and γ represent employees, then we know:

α → β (tutors are students) α → γ (tutors are employees)

Then we can conclude that α → β ∧γ , which corresponds to tutors

being both students and employees. Thus R∞ ∪ R |= α → β ∧ γ is

true at point i , so the algorithm returns true.
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6 RELEVANT CLOSURE FOR DATALOG
6.1 Motivation for Relevant Closure
Rational Closure appears to be a suitable definition for computing

defeasible entailment. It is simple and it satisfies the KLM properties.

However, there are other forms of defeasible entailment as well. In

her paper, Ross discusses another approach, Lexicographic Closure,

that is more complex but that does still satisfy the KLM properties

[11]. Here, we will introduce the definition for Relevant Closure

as provided by Casini et al. [4] and will start by motivating for its

existence with an example. Consider the following knowledge base

K :

Example 6.1.
(1) Adults are people (a → p)
(2) Students are people (s → p)
(3) Typically, people watch movies (p |∼m)

(4) Typically, people pay taxes (p |∼ t )
(5) Typically, students do not pay taxes (s |∼ ¬t )

When ranked according to the BaseRank algorithm, the state-

ments would appear as follows:

0 p |∼m p |∼ t

1 s |∼ ¬t

∞ a → p s → p

Figure 4: Ranking of the Knowledge Base K

For now, we’ll use the algorithm for RationalClosure to com-

pute the results for queries. Suppose we asked; “Do adults typically
watch movies?”, corresponding to the query a |∼m. Then at the start

of the algorithm when i = 0, R∞ ∪ R ̸ |= ¬a. Also, knowing a → p
and p →m allows us to conclude a →m, so the algorithm returns

true for the query. This makes sense, and the algorithm appears to

have correctly computed the result.

However, let us now consider what happens when we ask the

question; “Do students typically watch movies?”, corresponding to

the query s |∼m. In the algorithm, when i = 0, we can conclude that

s → t and s → ¬t . That is, students both pay and don’t pay taxes,

leading us to conclude that there are no students. Thus, R∞∪R |= ¬s ,
so we throw away the entire top level of the ranking and check again.

Now, R∞ ∪ R ̸ |= ¬s , so we check if s →m holds. It does not, since

the statement p → m was thrown away in the previous iteration.

Thus, the algorithm returns false. This intuitively feels wrong, since
the conclusion “Students typically watch movies” seems like a very

reasonable one to make from the given information. The issue arises

from throwing away the statement p →m in the previous iteration,

even though it had nothing to do with us being able to conclude that

there were no students.

We used the following statements to conclude ¬s;

s → ¬t s → p p → t

One could argue that since the statement p →m was not relevant

to us concluding ¬s , it should not have been thrown away with the

top level. This is the idea behind Relevant Closure.

6.2 Algorithmic Definition
The algorithm for Relevant Closure provided by Casini et al. [4] is

defined in terms of ALC, which is a type of description logic. To

make the algorithm easier to understand and to convert to Datalog,

we will first express it in terms of propositional logic. The algorithm

converts almost directly, but there is one aspect of it that does not.

We will explain the translation at a very high level, as formally

introducing the syntax and semantics of ALC is beyond the scope of

this project.

In ALC, statements take the form A ⊑ B, which intuitively says

“all objects of typeA are also objects of type B”. However, due to how
entailment is defined, it is impossible to simply add the defeasible

statements to the knowledge base in the same way that we do for

propositional logic. Thus, instead of checking something like K |=

¬α in propositional logic, we instead check something likeT |= D ⊑
¬A. In this case, T represents all of the classical information, and D
represents all of the defeasible information, bundled together in a

special way (again see Casini et al. [4] for more information).

This is made possible by the fact that checking ifA ⊑ B holds true

is the same as checking if ¬A⊔B always holds true. The closest trans-

lation of this idea for propositional logic is just to add our defeasible

information to the knowledge base like we did for RationalClosure.
With that in mind, here follows the adapted definition of Relevant

Closure for propositional logic:

Algorithm 3: RelevantClosure
Input: A knowledge base K , a defeasible implication α |∼ β ,

and a partition < R, R− > of K

Output: true, if K |≈ α |∼ β , and false, otherwise
1 (R0, . . . ,Rn−1, R∞,n) := BaseRank(K);

2 i := 0;

3 R′ := R;
4 while R∞ ∪ R− ∪ R′ |= ¬α and R′ , ∅ do
5 R′ := R′ \ {Ri ∩ R};
6 i := i + 1;

7 return R∞ ∪ R− ∪ R′ |= α → β ;

In the partition < R, R− > of K , R represents all statements

relevant to the query α |∼ β . When throwing away statements from

a level, the algorithm only considers these statements in R as eligible

for removal. Besides from this, the algorithm operates exactly as

RationalClosure does. We say that a statement α |∼ β is in the

Relevant Closure ofK if and only if the RelevantClosure algorithm
returns true when given α |∼ β and K .

6.3 Defining Relevance
Now that the algorithm has been defined, the only work remaining is

to define how to calculate the partition < R, R− > for a given query

α |∼ β (i.e. how to distinguish between relevant and non-relevant

statements). Based on the ideas explored in example 6.1, we would

want R to contain exactly all the statements used to prove ¬α . To
formalize this, we present a sequence of definitions to gradually

build up the idea of relevance.

Definition 6.2. α is said to be exceptional for K if K |= ¬α .

Intuitively, something is exceptional if we can prove it doesn’t

exist using our current information, which corresponds to it always

being false. For example, if K contains the statements

s → ¬t s → p p → t p →m

then we can conclude ¬s (there are no students) like we did before.

So s is exceptional for K .
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Definition 6.3. Let K be a knowledge base, J ⊆ K such that J

only contains defeasible implications, and α a propositional sentence.

Then J is said to be an α -justification w.r.t.K if α is exceptional for

J and for any J ′ ⊂ J , α is not exceptional for J ′.

This may appear complex, but actually states something very

simple. The aim of this is to try capture the idea of throwing away

as few statements as possible. J is a group of statements we can

use to prove that α is exceptional, such that no subset of J can

also be used to do the same. For example, our previous collection

of statements for K can be used to prove that s is exceptional, but
it is not an s-justification. That is because there is a subset of those
statements that can be used to prove s exceptional:

s → ¬t s → p p → t

These statements form an s-justification, as no subset of them can

prove s exceptional.

Definition 6.4. For a sentence α and knowledge base K , let

JK (α) = {J | J is an α-justification w.r.t. K}. Then α |∼ β is

said to be in the Basic Relevant Closure of K if it is in the Relevant

Closure of K w.r.t.

⋃
JK (α).

Firstly, notice that there is not necessarily a single α-justification
for a given α and K . To see this, consider an extension of Example

6.1, where the following statements are added:

Example 6.5.
(1) Tutors are students (u → s)
(2) Typically, students take breaks (s |∼ b)
(3) Typically, tutors do not take breaks (u |∼ ¬b)

When ranked according to the BaseRank algorithm, the state-

ments would now appear as follows:

0 p |∼m p |∼ t

1 s |∼ b s |∼ ¬t

2 u |∼ ¬b

∞ u → s a → p s → p

Figure 5: Ranking of the Knowledge Base K

In this example, there ends up being two different u-justifications
for K :

• J1 = {s |∼ ¬t , p |∼ t}, since u → s → ¬t and u → s → p →
t allow us to conclude ¬u
• J2 = {s |∼ b, u |∼ ¬b}, since u → ¬b and u → s → b allow

us to conclude ¬u

To get JK (u), simply collect all the sets of suchu-justifications. This
collection is then turned into the collection of statements from those

u-justifications, and passed to the RelevantClosure algorithm as

the set of all “relevant statements”. In the algorithm, this corresponds

to the set R in the partition < R, R− >. So for Example 6.5, R = {s |∼
¬t , p |∼ t , s |∼ b, u |∼ ¬b}.

We now consider the same query that failed in Example 6.1, and

check if s |∼m is in the Basic Relevant Closure of K . For the query,

R = {s |∼ ¬t , p |∼ t}. So p |∼ m is in R− and it is not thrown away

as it was before when the algorithm processes. Thus, the algorithm

returns true, s |∼m is in the Basic Relevant Closure of K , and we

have solved the highlighted issue of Rational Closure.

6.4 Minimal Relevant Closure
It could be argued that for Basic Relevant Closure, we are still consid-

ering too many statements as relevant to the query. This is because

we consider all the statements in all α-justifications as relevant to
proving that α is exceptional. However, we could instead simply

consider only one statement from each α-justification as relevant,

and still fix the exceptionality of α . This is the idea behind Mini-

mal Relevant Closure, although it may sometimes consider multiple

statements as relevant.

Definition 6.6. For some set of justifications J ⊆ K , let JKmin =

{α |∼ β | rK (α) ≤ rK (γ ) for every γ |∼ λ ∈ J}.

For a sentence α , let JKmin (α) =
⋃
J∈JK (α ) J

K
min .

Then α |∼ β is said to be in the Minimal Relevant Closure of K if

it is in the Relevant Closure of K w.r.t.

⋃
JKmin (α).

This definition captures the idea of considering only the state-

ments furthest up in the ranking (with minimal rank number) from

each α-justification as relevant. This corresponds with the intuition

that statements with lower rankings should be removed first. Let us

now consider Example 6.5, where previously we calculated J1 and

J2. We can now calculate Jmin
1

and Jmin
2

by looking at where the

statements are in the ranking of K .

• Jmin
1

= {p |∼ t}

• Jmin
2

= {s |∼ b}

Thus, the statements considered as relevant by Minimal Relevant

Closure are p |∼ t and s |∼ b. To further motivate for the use of

Minimal Relevant Closure over Basic Relevant Closure, let us now

consider the query u |∼ ¬t , corresponding to the question “Do tutors
typically not pay taxes?”. In this case, tutors are students and students
typically do not pay taxes, so it seems like the answer to this question

should be yes.

For Minimal Relevant Closure, R = {p |∼ t , s |∼ b}. Thus, the
statement s |∼ ¬t is retained while processing, allowing us to con-

clude thatu → s → ¬t . So the algorithm returns true like we expect
it to. However, for Basic Relevant Closure and the query u |∼ ¬t ,
R = {s |∼ ¬t , p |∼ t , s |∼ b, u |∼ ¬b}, meaning the information

s |∼ ¬t is thrown away while processing. So we can no longer make

the same conclusion we did before and the algorithm returns false.
This violates our intuition as to what conclusion we expect to be

able to come to.

6.5 Relevant Closure for Datalog
In terms of adapting the RelevantClosure algorithm for Datalog,

no further work needs to be done past what has already been said for

Rational Closure. The only change the algorithm has experienced

is that it now removes fewer statements per level, based on the

partition given to it. In addition, the exact same BaseRank algorithm
has been used. The only new machinery we need is being able to

determine whether or not a statement is relevant to a query.

To define a molecule α being exceptional, we simply need to be

able to check entailment of negated molecules, which is something

we already knowhow to do. To define anα -justification, we only need
to be able to check for subsets. The remainder of the definitions for

both Basic and Minimal Relevant Closure only entail manipulating

sets and checking the rankings of statements. Thus, both Basic and

Minimal Relevant Closure translate directly to Datalog.
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6.6 LM-Rationality
From here on, we will use Minimal Relevant Closure as the definition

for Relevant Closure. Also, we use the |≈ symbol to represent entail-

ment by Relevant Closure. As shown by Casini et al. [4], Relevant

Closure for propositional logic satisfies the properties Ref, LLE, And,
and RW, and does not satisfy Or, CM, and RM. We will show that

the same holds true for Relevant Closure for Datalog.

Let us consider the proofs in Appendix C that show that Rational

Closure fulfills the KLM properties of Ref, RW, and And. The only
difference RelevantClosure has from RationalClosure is the in-
clusion of the “relevance partition”. Thus, the proofs can be re-used

without editing, provided that the relevance partition is the same

throughout the various queries. The relevance partition is fully de-

termined by the antecedent of the query (e.g. α in α |∼ β), as can be

seen in the definition of Minimal Relevant Closure. In the aforemen-

tioned proofs, the antecedent is the same in all queries made to the

algorithm. Hence, the proofs can be directly re-used to show that

Relevant Closure fulfills the KLM properties of Ref, RW, and And.
The proof for satisfaction of the property LLE and the counter-

examples for satisfaction of the properties Or, CM, and RM can be

found in Appendix A. The counter-examples were adapted from the

ALC case.

7 RELATEDWORK
Kraus, Lehmann and Magidor (KLM) [10] introduced preferential

reasoning, KLM-style defeasible implications and the KLM proper-

ties. Lehmann and Magidor [11] presented the concept of Rational

Closure for propositional logic and provided an algorithm to com-

pute it. It was also shown that Rational Closure satisfies all the

KLM properties and that it must be the most conservative form of

defeasible entailment with respect to subset inclusion.

Britz et al. [3] provided an extension of the KLM properties for

description logics and presented an extension of Rational Closure

for description logics. Casini et al. [4] introduced Relevant Closure

for description logics; another method for computing defeasible

entailment which is strictly less conservative than Rational Closure.

It was shown that this does not satisfy all the KLM properties.

8 CONCLUSIONS
The main focus of this paper was to provide a version of defeasible

reasoning for Disjunctive Datalog. We started by discussing the

KLM approach to defeasible reasoning, where the KLM properties

are used to differentiate between acceptable and non-acceptable

ways of defining entailment. We then introduced an algorithm for

computing defeasible entailment, Rational Closure, expressed in

terms of propositional logic.

To be able to express the KLM properties and the algorithm in

Datalog, we motivated for extensions that would have to be made to

the syntax and semantics of Datalog. We eventually settled on what

we call Datalog+ to express the properties. Once we had adapted

both the algorithm and properties, we proved that Rational Closure

for Datalog was LM-rational (i.e. it conforms to the KLM properties).

This is useful, as it means that any system currently using Datalog

can add defeasible reasoning and still have the system compute

entailment in a reasonable manner.

Finally, we introduced Relevant Closure as an alternative for

computing defeasible entailment. We considered two different forms

of Relevant Closure; Basic Relevant Closure and Minimal Relevant

Closure. Next, we adapted Relevant Closure for Datalog and showed

that it conforms to some of the KLM properties, but not to others.

This means that it is not an acceptable way of computing defeasible

entailment, according to the properties provided by Lehmann and

Magidor [12].

9 FUTUREWORK
Future work on this topic would most likely include finding a seman-

tic definition of Rational Closure for Datalog+, based on minimal

models. This would be similar to the work done by Lehmann and

Magidor [12]. We would have to use the same ideas and motivations

to come up with an equivalent semantic definition for Datalog, and

then attempt to prove it equivalent to an algorithmic definition that

can be used to compute the entailment. The hope is that the equiv-

alent algorithmic definition is the one defined in this paper, as we

have argued that it is the adaptation from propositional logic that

makes the most sense.

Other future work could include an attempted adaptation of the

Relevant Closure method for computing defeasible entailment, done

in such a way that it satisfies the KLM properties, while still main-

taining the basic ideas of Relevant Closure. If this turns out to be

impossible, another potential route is to add extra assumptions to

the KLM properties, in a way that Relevant Closure will now satisfy

them. If this is done, motivation will have to be given as to why

the original KLM properties are inaccurate, and do not fully capture

how we expect defeasible reasoning to operate.
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APPENDICES
A LM-RATIONALITY OF RELEVANT CLOSURE
Here we provide a proof that Minimal Relevant Closure satisfies the

KLM property of LLE. We also provide counter-examples to show

that it does not satisfy the properties of Or, CM, and RM.

A.1 LLE
Let us start by examining the KLM property of LLE:

(LLE)
|= α → β , |= β → α , K |≈ α |∼ γ

K |≈ β |∼ γ

The proof (in Appendix C.2) that Rational Closure satisfies LLE
does not directly translate to a proof for Relevant Closure, since the

relevance partitions in the two queries are different. The two queries

in question areK |≈ α |∼ γ andK |≈ β |∼ γ . The relevance partitions
for these queries are fully determined by α and β respectively, since

the K in both instances is the same K .

Thus, to allow the proof to translate, we just have to prove that⋃
JKmin (α) =

⋃
JKmin (β) (i.e. the relevance partitions for the two

queries are the same). To do this, we start by showing that JK (α) =
JK (β). We first prove that JK (α) ⊆ JK (β).

Let J ∈ JK (α); then J is an α-justification. This means that

J |= ¬α . Now since |= β → α , J |= ¬β .
Assume to the contrary that there is some J ′ ⊂ J such that

J ′ |= ¬β . Then since |= α → β , J ′ |= ¬α , contradicting J being

an α-justification. So J is also a β-justification. This means that

J ∈ JK (β) as required, proving that JK (α) ⊆ JK (β). The proof
that JK (β) ⊆ JK (α) is very similar.

Thus, we have that JK (α) = JK (β). Since these are exactly equal,

it must also be the case then that

⋃
JKmin (α) =

⋃
JKmin (β). The

proof (in Appendix C.2) that Rational Closure satisfies the property

of LLE can now be used directly to show that Relevant Closure also

satisfies the property.

A.2 Or
For the upcoming three counter-examples, we will use the symbol a
to represent the Datalog molecule a(Tyler), b to represent b(Tyler),
and so on. In this case, Tyler is just some constant in our Datalog

program. This way, truth can be assigned to these molecules in the

same way that it is for propositional logic.

We need to find a knowledge base K and molecules a, д, e such
that K |≈ a |∼ e and K |≈ д |∼ e , but K |0 a ∨ д |∼ e . Define:

K = {a |∼ b, b |∼ c, a |∼ ¬c, a |∼ d,

д |∼ d, d |∼ e, д |∼ h, h |∼ ¬e, д |∼ e}

This can be represented neatly by a lattice, where a |∼ b would

be represented by a line going upwards from a to b and a |∼ ¬b by a

dashed line.

a

b

c

d

e

д

h

Figure 6: Lattice Representing K

When ranked according to the base rank algorithm, the statements

would appear as follows. Note that there is no “infinite rank”, since

there are no classical statements in the knowledge base.

0 b |∼ c d |∼ e h |∼ ¬e

1 a |∼ b a |∼ ¬c a |∼ d д |∼ d д |∼ h д |∼ e

Figure 7: Ranking of the Knowledge Base K

To compute Relevant Closure, we first need to compute the justi-

fication sets for each of the queries we will be making:

• JK (a) = {a |∼ b, b |∼ c, a |∼ ¬c}, so J
K
min (a) = {b |∼ c}

• JK (д) = {{д |∼ e, д |∼ h, h |∼ ¬e}, {д |∼ d, d |∼ e, д |∼

h, h |∼ ¬e}}, so JKmin (д) = {h |∼ ¬e, d |∼ e}

• JK (a∨д) = JK (¬(¬a∧¬д)) = {{a |∼ b, b |∼ c, a |∼ ¬c, д |∼
e, д |∼ h, h |∼ ¬e}, {a |∼ b, b |∼ c, a |∼ ¬c, д |∼ d, d |∼

e, д |∼ h, h |∼ ¬e}}, soJKmin (a∨д) = {b |∼ c, h |∼ ¬e, d |∼ e}

From this, it can be clearly seen that K |≈ a |∼ e and K |≈ д |∼ e .
We now consider what happens when the algorithm is passed the

querya∨д |∼ e . When i = 0, R−∪R′ = K |= ¬(a∨д), so the algorithm
proceeds to the next iteration. When i = 1, R− ∪ R′ ̸ |= ¬(a ∨ д), so
we check if R− ∪ R′ |= a ∨ д→ e . At this point:

R− ∪ R′ = {a |∼ b, a |∼ ¬c, a |∼ d, д |∼ d, д |∼ h, д |∼ e}

Consider a Herbrand interpretation τ such that a,b,d,h ∈ τ and

c,д, e < τ . Then τ ⊩ R− ∪ R′, but τ ⊮ a ∨ д → e . Thus R− ∪ R′ ̸ |=
a ∨ д → e , and the algorithm returns false. So K |0 a ∨ д |∼ e as
required.

A.3 CM
We now need to findK , c , d , and e such thatK |≈ c |∼ d ,K |≈ c |∼ e ,
but K |0 c ∧ d |∼ e . Define:

K = {e |∼ ¬д, h |∼ e, b |∼ ¬d, c |∼ d,

c |∼ b, c ∧ d |∼ д, c |∼ h, c ∧ d |∼ h}

This can be represented by a lattice, where a |∼ b would be

represented by a line going upwards from a to b, a |∼ ¬b by a dashed

line, and a ∧ b by thinly dotted lines from a, b to a ∧ b.

c

b

d

c ∧ d

h

e

д

Figure 8: Lattice Representing K
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0 e |∼ ¬д h |∼ e b |∼ ¬d

1 c |∼ d c |∼ b c ∧ d |∼ д c |∼ h c ∧ d |∼ h

Figure 9: Ranking of the Knowledge Base K

When ranked according to the base rank algorithm, the statements

would appear as shown in Figure 9.

We now compute the justification sets for each of the queries we

will be making:

• JK (c) = {b |∼ ¬d, c |∼ d, c |∼ b}, so J
K
min (c) = {b |∼ ¬d}

Thus K |≈ c |∼ d and K |≈ c |∼ e . Now we consider the justification

set for c ∧ d , which consists of three different c ∧ d-justifications:

• {b |∼ ¬d, c |∼ d, c |∼ b}
• {c ∧ d |∼ д, c ∧ d |∼ h, h |∼ e, e |∼ ¬д}
• {c ∧ d |∼ д, c |∼ h, h |∼ e, e |∼ ¬д}

Thus JKmin (c ∧ d) = {b |∼ ¬d, e |∼ ¬д, h |∼ e}. Thus, when
processing the query c ∧d |∼ e , the 0th rank is entirely thrown away,

leaving only the 1st rank in R−∪R′. So when i = 1, R−∪R′ ̸ |= ¬(c∧d),
so we check if R− ∪ R′ |= c ∧ d → e .

Consider a Herbrand interpretation τ such that c,b,d,h,д ∈ τ and
e < τ . Then τ ⊩ R−∪R′, but τ ⊮ c∧d → e . Thus R−∪R′ ̸ |= c∧d → e ,
and the algorithm returns false. So K |0 c ∧ d |∼ e as required.

A.4 RM
Wenow need to findK , c ,d , and e such thatK |0 c |∼ ¬d ,K |≈ c |∼ e ,
but K |0 c ∧ d |∼ e . Consider the same counter-example as above

for CM. Since K |≈ c |∼ d , it is also the case that K |0 c |∼ ¬d .
To see this, assume to the contrary that K |≈ c |∼ ¬d . Then at

some point i when R− ∪ R′ ̸ |= ¬c , R− ∪ R′ |= c → ¬d . However, this
stopping point i is the same stopping point for the query c |∼ d , so
R− ∪R′ |= c → d . But then R− ∪R′ |= c → ¬d and R− ∪R′ |= c → d ,
so R− ∪ R′ |= ¬c , a contradiction.

Thus, we have that K |0 c |∼ ¬d , K |≈ c |∼ e , but K |0 c ∧ d |∼ e
as before. So the previous counter-example is also a counter-example

for RM.

B RATIONAL CLOSURE ALGORITHMS FOR
DATALOG

Algorithm 4: BaseRank
Input: A defeasible knowledge base D and classical knowledge

base C
Output: An ordered tuple (R0, . . . ,Rn−1, R∞,n)

1 i := 0;

2 E0 :=
−→
D ;

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei ∪C |= α → ⊥};

5 Ri := Ei \ Ei+1;

6 i := i + 1;

7 until Ei−1 = Ei ;

8 R∞ := Ei−1 ∪C;

9 if Ei−1 = ∅ then
10 n := i − 1;

11 else
12 n := i;

13 return (R0, . . . ,Rn−1, R∞,n)

Algorithm 5: RationalClosure
Input: A defeasible knowledge base D, a classical knowledge

base C and a defeasible rule α |∼ β
Output: true, if K |≈ α |∼ β , and false, otherwise

1 (R0, . . . ,Rn−1, R∞,n) := BaseRank(D,C);

2 i := 0;

3 R :=
⋃j<n
i=0 Rj ;

4 while R∞ ∪ R |= α → ⊥ and R , ∅ do
5 R := R \ Ri ;
6 i := i + 1;

7 return R∞ ∪ R |= α → β ;

12



C LM-RATIONALITY OF RATIONAL CLOSURE
Let K := D ∪ C be a Datalog knowledge base, where D is a set

of defeasible rules and C is a set of classical clauses. Let α , β ,γ be

molecules. We provide proofs below for the satisfaction of each KLM

property by the RationalClosure procedure. That is, we prove that
RationalClosure is LM-rational. We start by showing that while

checkingK |≈ α |∼ β , if it is always the case that R∞ ∪R |= ¬α , then
the algorithm returns true.

LemmaC.1. LetK be a knowledge base andα , β molecules such that
when checking K |≈ α |∼ β , it is always the case that R∞ ∪ R |= ¬α .
Then, the RationalClosure algorithm returns true.

Proof of Lemma C.1: Since, in the checking, it is always the

case that R∞ ∪ R |= ¬α , the while loop on line 4 will keep looping,

until R = ∅. Then the algorithm will jump to line 7, and return

R∞ ∪ R |= α → β .
But, since R∞ ∪ R |= ¬α , we know that αθ < τ for every substi-

tution θ and model τ (of R∞ ∪ R). Thus, α → β is true under every

substitution θ and model τ . Hence, the query R∞ ∪R |= α → β must

return true. So the algorithm itself returns true. □

C.1 Ref
We want to show that K |≈ α |∼ α . We will make use of Lemma C.2

to do so.

Lemma C.2. The defeasible rule α → α is a tautology.

Proof of Lemma C.2: Let τ be any Herbrand interpretation and

θ a substitution which replaces variables by constants. If αθ ∈ τ then

αθ ∈ τ . So τ is a model of α → α . Hence, α → α is a tautology. □
Let τ be a Herbrand interpretation ofK and θ a substitution which

replaces variables by constants. We now consider 2 cases below:

Case 1: At some point (when i ∈ [0,n]) in the K |≈ α |∼ α
checking, R∞ ∪ R ̸ |= ¬α for the first time. Then, since α → α is a

tautology, any model of R∞ ∪ R must satisfy α → α so R∞ ∪ R |=
α → α . Thus, the algorithm returns true.

Case 2: It is always the case in the K |≈ α |∼ α checking that

R∞ ∪ R |= ¬α . Then, the algorithm returns true, by Lemma C.1. □

C.2 LLE
Suppose |= α → β , |= β → α and K |≈ α |∼ γ . We want to show

that K |≈ β |∼ γ . We will make use of Lemma C.3, a generalized

version of Proposition 4.2, to do so.

Lemma C.3. Let τ be a Herbrand interpretation and θ a substitution
which replaces variables by constants. Then, |= α → β and |= β → α
iff αθ ∈ τ and βθ ∈ τ , or, αθ < τ and βθ < τ .

Proof of LemmaC.3: Let τ be someHerbrand interpretation and

θ some substitution which replaces variables by constants. Suppose

that αθ ∈ τ . Since |= α → β we must have that τ satisfies α → β
and so βθ ∈ τ . Now suppose that αθ < τ . We know that τ satisfies

β → α since |= β → α . So we must have βθ < τ . Similar arguments

hold for when βθ ∈ τ and βθ < τ . □
Claim: At each level, R∞ ∪ R |= ¬β iff R∞ ∪ R |= ¬α .
Proof of Claim: Suppose that, at some point i ∈ [0,n], R∞∪R |=

¬α . Let τ be a model of R∞ ∪ R and θ some substitution which

replaces variables by constants. So τ is a model of ¬α and, hence,

αθ < τ . Thus, by Lemma C.3, βθ < τ so τ is a model of ¬β . Hence,
R∞ ∪ R |= ¬β . Similarly, we can show that if at some point i ∈ [0,n],
R∞ ∪ R |= ¬β , then R∞ ∪ R |= ¬α .

Now suppose that, at some point i ∈ [0,n], R∞ ∪ R ̸ |= ¬α . Then,
there is some model τ of R∞ ∪ R such that τ is not a model of ¬α .
So there must be some substitution θ such that αθ ∈ τ . Hence, by
Lemma C.3, βθ ∈ τ so τ is not a model of ¬β . Thus, R∞ ∪ R ̸ |= ¬β .
Similarly, we can show that if at some point i ∈ [0,n], R∞ ∪ R ̸ |= ¬β ,
then R∞ ∪ R ̸ |= ¬α . □

We now consider 2 cases below:

Case 1: At some point (when i ∈ [0,n]) in the K |≈ α |∼ γ
checking, R∞ ∪ R ̸ |= ¬α for the first time. Then, at point i , since
K |≈ α |∼ γ , R∞ ∪ R |= α → γ . As shown above, at the same point

i , R∞ ∪ R ̸ |= ¬β for the first time. The algorithm now checks that

R∞ ∪ R |= β → γ . Let τ be a model of R∞ ∪ R and θ a substitution

which replaces variables by constants. Suppose βθ ∈ τ then, by

Lemma C.3, αθ ∈ τ too. And, since R∞ ∪ R |= α → γ , we must have

γθ ∈ τ . So R∞ ∪ R |= β → γ and the algorithm returns true.
Case 2: It is always the case in the K |≈ α |∼ γ checking that

R∞ ∪ R |= ¬α . Then, in theK |≈ β |∼ γ checking, as shown above, it

is also always the case that R∞ ∪ R |= ¬β . So the algorithm returns

true, by Lemma C.1. □

C.3 RW
Suppose |= β → γ andK |≈ α |∼ β . We want to show thatK |≈ α |∼
γ . Consider the 2 cases below:

Case 1: At some point (i ∈ [0,n]) in the K |≈ α |∼ β checking,

R∞∪R ̸ |= ¬α for the first time. Then, at that point i , sinceK |≈ α |∼ β ,
we have that R∞ ∪ R |= α → β . When checking K |≈ α |∼ γ , the
algorithm reaches that same point i , where R∞ ∪ R ̸ |= ¬α for the

first time and then checks whether R∞ ∪ R |= α → γ .
Let τ be a model of R∞ ∪ R and θ a substitution which replaces

variables by constants. Suppose αθ ∈ τ then, since R∞∪R |= α → β ,
we have that βθ ∈ τ . Since β → γ is a tautology, we must also have

that γθ ∈ τ . So R∞ ∪ R |= α → γ and the algorithm returns true.
Case 2: It is always the case in the K |≈ α |∼ β checking that

R∞ ∪ R |= ¬α . Then, in the K |≈ α |∼ γ checking, it is also always

the case that R∞∪R |= ¬α . So the algorithm returns true, by Lemma

C.1. □

C.4 And
Suppose K |≈ α |∼ β and K |≈ α |∼ γ . We want to show that

K |≈ α |∼ β ∧ γ . Consider the 2 cases below:
Case 1: At some point (i ∈ [0,n]) in the K |≈ α |∼ β checking,

R∞ ∪ R ̸ |= ¬α for the first time. Then, at the same point i in the

K |≈ α |∼ γ checking, R∞ ∪ R ̸ |= ¬α for the first time. Now, since

K |≈ α |∼ β andK |≈ α |∼ γ , at point i we have that R∞∪R |= α → β
and R∞ ∪ R |= α → γ . So, at point i in the K |≈ α |∼ β ∧γ checking,

R∞ ∪ R ̸ |= ¬α for the first time and the algorithm checks whether

R∞ ∪ R |= α → β ∧ γ .
Let τ be a model of R∞ ∪ R and θ a substitution which replaces

variables by constants. Suppose αθ ∈ τ then, since R∞ ∪R |= α → β
and R∞ ∪ R |= α → γ , we must have βθ ∈ τ and γθ ∈ τ . So
(β ∧ γ )θ ∈ τ . Thus, R∞ ∪ R |= α → β ∧ γ and the algorithm returns

true.
Case 2: It is always the case in the K |≈ α |∼ β checking that

that R∞ ∪ R |= ¬α . Then, in the K |≈ α |∼ β ∧ γ checking, it is also

always the case that R∞ ∪ R |= ¬α . So the algorithm returns true,
by Lemma C.1. □
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C.5 Or
Suppose K |≈ α |∼ γ and K |≈ β |∼ γ . We want to show that

K |≈ α ∨ β |∼ γ . Consider the 2 cases below:
Case 1: It is always the case (for all i ∈ [0,n]) that in the K |≈

α |∼ γ checking, R∞ ∪ R |= ¬α and, in the K |≈ β |∼ γ checking,

R∞ ∪ R |= ¬β . Let τ be a model of R∞ ∪ R at some point (i ∈ [0,n])
and θ a substitution which replaces variables by constants. Then, at

point i , we must have that αθ < τ and βθ < τ so (α ∨ β)θ < τ . Thus,
R∞∪R |= ¬(α ∨β) at point i . Hence, in theK |≈ α ∨β |∼ γ checking,

it is always the case that R∞∪R |= ¬(α ∨ β) so the algorithm returns

true, by Lemma C.1.

Case 2: There is some point (i ∈ [0,n]) at which, without loss of
generality, R∞ ∪ R ̸ |= ¬α for the first time and at each point before

point i (for each 0 ≤ j < i), R∞ ∪ R |= ¬β . That is, R∞ ∪ R ̸ |= ¬α
for the first time either at the same level or a higher level than the

level at which R∞ ∪ R ̸ |= ¬β for the first time. Since we know that

K |≈ α |∼ γ , at point i we must have that R |= α → γ .
At point i , since R∞ ∪ R ̸ |= ¬α , there is some model τ of R∞ ∪ R

which is not a model of ¬α . Thus, there is some substitution θ such

that αθ ∈ τ . Thus, (α ∨ β)θ ∈ τ so (¬(α ∨ β))θ < τ . Hence, at point i
in the K |≈ α ∨ β |∼ γ checking, R∞ ∪ R ̸ |= ¬(α ∨ β).

Furthermore, at any point j < i , we have that R∞ ∪ R |= ¬α and

R∞ ∪ R |= ¬β . Thus, as shown above in Case 1, we must have that

R∞ ∪ R |= ¬(α ∨ β) at point j. So point i is the first point at which
R∞ ∪ R ̸ |= ¬(α ∨ β).

We again let τ be a model of R∞∪R at point i and θ a substitution

which replaces variables by constants. Now we consider 2 sub-cases

below:

i At point i , R∞ ∪ R |= ¬β . Then βθ < τ . Suppose that αθ < τ .
Then, (α∨β)θ < τ soα∨β → γ is true under τ for substitution
θ . Now suppose that αθ ∈ τ . Then, (α ∨ β)θ ∈ τ and, since

R |= α → γ , γθ ∈ τ . So, α ∨ β → γ is true under τ for

substitution θ . Hence, R |= α ∨ β → γ and the algorithm

returns true.
ii At point i , R∞ ∪ R ̸ |= ¬β (and this is not the case for any

j < i , otherwise it would violate our assumption for case 2).
So, sinceK |≈ β |∼ γ , we have that R∞∪R |= β → γ . Suppose
that αθ < τ and βθ < τ . Then, (α ∨ β)θ < τ so α ∨ β → γ is

true under τ for substitution θ . Now suppose that, without

loss of generality (since both R |= α → γ and R |= β → γ ),
αθ ∈ τ . Then, (α ∨ β)θ ∈ τ and, since R |= α → γ , γθ ∈ τ .
So, α ∨ β → γ is true under τ for substitution θ . Hence,
R |= α ∨ β → γ and the algorithm returns true. □

C.6 CM
Suppose K |≈ α |∼ β and K |≈ α |∼ γ . We want to show that

K |≈ α ∧ β |∼ γ . We will make use of Lemma C.4 to do so.

Lemma C.4. Suppose K |≈ α |∼ β and K |≈ α |∼ γ for some
knowledge base K . Then, the following holds:

i If R∞ ∪ R |= ¬α at some point i in the RationalClosure
algorithm, then R∞ ∪ R |= ¬(α ∧ β) at that point i .

ii If R∞ ∪ R ̸ |= ¬α for the first time at some point i in the
RationalClosure algorithm, then R∞ ∪ R ̸ |= ¬(α ∧ β), also
for the first time, at that point i .

Proof of Lemma C.4:

i Suppose that R∞ ∪ R |= ¬α at some point i . Let τ be a model

of R∞ ∪ R at point i and θ a substitution which replaces

variables by constants. Then αθ < τ so (α ∧ β)θ < τ and,

hence, (¬(α ∧ β))θ ∈ τ . Hence, R∞ ∪ R |= ¬(α ∧ β). □
ii Suppose that, at point i , R∞ ∪ R ̸ |= ¬α for the first time. Then,

since K |≈ α |∼ β , we have that R∞ ∪ R |= α → β . And, since
R∞ ∪ R ̸ |= ¬α , there is some model τ of R∞ ∪ R which is not

a model of ¬α . Thus, there is some substitution θ such that

αθ ∈ τ . Since R∞ ∪ R |= α → β , we must have that βθ ∈ τ
too. So (α ∧ β)θ ∈ τ and, thus, (¬(α ∧ β))θ < τ . Hence, at
point i , R∞ ∪ R ̸ |= ¬(α ∧ β).
Now, it remains to show that point i is the first point at which
R∞∪R ̸ |= ¬(α∧β). Assume, to the contrary, that at some point

j < i , R∞ ∪ R ̸ |= ¬(α ∧ β). But, then at this point, we know

R∞∪R |= ¬α , so R∞∪R |= ¬(α ∧ β), which is a contradiction.

Thus, point i is the first point at which R∞∪R ̸ |= ¬(α∧β). □

Now we consider 2 cases below:

Case 1: At some point (i ∈ [0,n]) in the K |≈ α |∼ β checking,

R∞ ∪ R ̸ |= ¬α for the first time. Then, at the same point i , in the

K |≈ α |∼ γ checking, R∞ ∪ R ̸ |= ¬α for the first time. Thus, at

this point i we have that R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ .
And, by Lemma C.4, at point i in the K |≈ α ∧ β |∼ γ checking,

R∞ ∪ R ̸ |= ¬(α ∧ β) for the first time.

Let τ be a model of R∞ ∪ R at point i and θ a substitution which

replaces variables by constants. Suppose thatαθ < τ . Then, (α∧β)θ <
τ so α ∧ β → γ is true under τ for substitution θ . Suppose now that

αθ ∈ τ so, since R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ , we have
that βθ ∈ τ and γθ ∈ τ . Thus, (α ∧ β)θ ∈ τ and γθ ∈ τ so α ∧ β → γ
is true under τ for substitution θ . Hence, R∞ ∪ R |= α ∧ β → γ so

the algorithm returns true.
Case 2: It is always the case in the K |≈ α |∼ β checking that

R∞ ∪ R |= ¬α . Then, by Lemma C.4, in theK |≈ α ∧ β |∼ γ checking,

it is always the case that R∞ ∪ R |= ¬(α ∧ β) and so the algorithm

returns true, by Lemma C.1. □

C.7 RM
Suppose that K |≈ α |∼ γ and K |0 α |∼ ¬β . We want to show that

K |≈ α ∧ β |∼ γ . Consider the 2 cases below:
Case 1: At some point (i ∈ [0,n]) in the K |≈ α ∧ β |∼ γ checking,

R∞ ∪R ̸ |= ¬(α ∧ β). We claim that we must have that both R∞ ∪R ̸ |=
¬α and R∞ ∪ R ̸ |= ¬β . Suppose, to the contrary, R∞ ∪ R |= ¬α .
Let τ be a model of R∞ ∪ R at point i and θ a substitution which

replaces variables by constants. Then αθ < τ so (α ∧ β)θ < τ . Thus,
R∞ ∪ R |= ¬(α ∧ β), a contradiction. Similarly, if R∞ ∪ R |= ¬β then

R∞ ∪ R |= ¬(α ∧ β), a contradiction.
Claim: Point i is the first point at which R∞ ∪ R ̸ |= ¬α .
Proof of Claim: Assume to the contrary that there exists some

j < i such that R∞ ∪ R ̸ |= ¬α , where j is minimal. Based on the

assumptions of Case 1, we know that R∞ ∪ R |= ¬(α ∧ β) at point
j. And, since K |0 α |∼ ¬β , we know that R∞ ∪ R ̸ |= α → ¬β at

point j . Let τ be a model of R∞ ∪ R and θ a substitution that replaces

variables with constants. Now, either αθ ∈ τ or αθ < τ . We consider

2 sub-cases below:

i If αθ < τ . Then, α → ¬β must be true under τ for θ .
ii If αθ ∈ τ . Then, we must have that βθ < τ . Otherwise, we
would have (α ∧ β)θ ∈ τ , and, hence, R∞ ∪ R ̸ |= ¬(α ∧ β), a
contradiction. Thus, ¬βθ ∈ τ and so α → ¬β must be true

under τ for θ .

Either way, α → ¬β is true under τ for θ , so R∞ ∪ R |= α → ¬β ,
a contradiction. Thus, no such j < i exists. □
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So, since R∞ ∪R ̸ |= ¬α at point i (and not before) andK |≈ α |∼ γ ,
we know that R∞ ∪ R |= α → γ at this point. Suppose that at least

one of αθ < τ or βθ < τ holds. Then, (α ∧ β)θ < τ so α ∧ β → γ is

true under τ for substitution θ . Now suppose that both αθ ∈ τ and

βθ ∈ τ . Then, (α ∧ β)θ ∈ τ and, since R∞ ∪ R |= α → γ , we know
that γθ ∈ τ too. So α ∧ β → γ is true under τ for substitution θ .
Hence, R∞ ∪ R |= α ∧ β → γ and the algorithm returns true.

Case 2: It is always the case in the K |≈ α ∧ β |∼ γ checking that

R∞ ∪ R |= ¬(α ∧ β). Then, the algorithm returns true, by Lemma

C.1. □

D OTHER PROOFS
Proof of Proposition 5.1: Let τ be a Herbrand interpretation and

θ a substitution which replaces variables with constants. We want

to show that τ is a model of ¬α under Datalog+ semantics iff τ is a

model of α → ⊥ under Datalog
∨
semantics.

Suppose τ is a model of ¬α under Datalog+ semantics. Then,

αθ < τ under Datalog+ semantics. Clearly, we also have that αθ < τ
under Datalog

∨
semantics. So, α → ⊥ is true under τ for θ . Hence,

τ is a model of α → ⊥ under Datalog
∨
semantics.

Suppose τ is a model of α → ⊥ under Datalog
∨
semantics. We

claim that αθ < τ under Datalog
∨
semantics. Suppose, to the con-

trary, that αθ ∈ τ . Notice that it is always the case that ⊥θ < τ . Thus,
α → ⊥ is not true under τ for θ , contradicting the assumption that τ
is a model of α → ⊥. Thus, our claim holds - αθ < τ under Datalog

∨

semantics. Clearly, we also have that αθ < τ under Datalog+ seman-

tics. Thus, ¬α is true under τ for θ . Hence, τ is a model of ¬α under

Datalog+ semantics. □
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