Defeasible DLV Literature Review

Matthew Morris
matthewthemorris@gmail.com
University of Cape Town
Cape Town, South Africa

ABSTRACT

Knowledge representation and reasoning is a way of achieving arti-
ficial intelligence (AI). In the system, a machine has some internal
representation of the world (the knowledge base) from which it
can draw conclusions by reasoning. This is often a preferred form
of Al as the machine can reason in a manner similar to a human.
However, humans are often prone to making general statements
that do not always hold true, parts of which need to be later re-
tracted. This aspect of human reasoning is not captured in classical
reasoning, and so a model of non-monotonic reasoning such as
defeasible reasoning is required. We aim to effectively implement
defeasible reasoning in an answer set programming language, DLV.

CCS CONCEPTS

» Theory of computation — Automated reasoning; « Com-
puting methodologies — Nonmonotonic, default reasoning
and belief revision; Description logics;

KEYWORDS

artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, Datalog

1 INTRODUCTION

Currently, the two primary means for obtaining Al are machine
learning and knowledge representation and reasoning [11]. While
machine learning has demonstrated effective results across a variety
of disciplines, a primary problem with the method is the inability
of the machine to explain how it arrived at a conclusion. Such a
property would require the machine to reason in a manner similar to
a human. There are two main aspects to an Al that use knowledge
representation and reasoning; the knowledge base representing
what the machine knows about the world and the reasoning system
to draw conclusions from the knowledge. Here, we will be focusing
on the reasoning aspect.

The notion of reasoning can be poorly defined, so we will build
up to it step by step. First, we will look at propositional logic as the
most simplistic form. From there, we will introduce the notion of
defeasible reasoning, define some properties we expect it to follow
and introduce an algorithm that can be used to reason within the
framework. Finally, we will introduce Datalog, a description logic
language with limitations that make it computationally efficient.

The aim of the project is to first extend the KLM [12] properties
to statements within the Datalog language. Then, we will also
extend the rational closure algorithm [7] to Datalog, and prove
that it conforms to the extended KLM properties. Finally, we will
provide an implementation of this algorithm in DLV, an answer set
programming language that is an extension of Datalog.

2 PROPOSITIONAL LOGIC

Propositional logic is a basic logical framework which provides a
system with which to make basic statements about the world. We
will be using the formalization provided by Ben-Ari [2] to introduce
the system.

2.1 Motivation

Reasoning is something that humans do on a day to day basis, and
the ability to formalize that reasoning is important. By providing a
system with which to reason, we can find mistakes in our reasoning
and construct algorithms that can compute conclusions. Proposi-
tional logic builds up formulas by combining atomic propositions
with Boolean operators. An atomic proposition is simply a state-
ment about the world that can be assigned a value of true or false,
for example; ’it is raining outside’. There are 16 distinct Boolean
operators. However, we will provide definitions for only 5 of them,
as this is sufficient to model any statement without introducing too
much notation.

An example of a Boolean operator is "and’. Using that operator
and the atomic propositions ’it is raining’, 'l am indoors’ and ’it is
cold’, we can construct a formula which states it is raining and I
am indoors and it is cold’. If we know this formula to be true (i.e.
what it asserts is correct), then we can come to the conclusion that
it is raining’. This is a trivial example, but it illustrates how the
system could be used to reason.

2.2 Formalization

2.2.1 Constructing Formulas. We have a base finite set # of
atomic propositions, such that ¥ = {p, g, ...}, where each element
of P can be assigned a true or false value. We can then introduce
Boolean operators to combine atoms together into more complex
formulas.

Name Meaning Symbol
negation not -
conjunction and A
disjunction or v
implication if then —
equivalence if and only if o

Figure 1: The Boolean operators used in propositional logic

The negation operator takes in a single operand and the other
operators take 2 operands. The order of operator precedence from
high to low goes from top to bottom in the table.

We can then recursively define the set of all propositional for-
mulas £ from our atoms and operators; for every p € P,p € L,
andifa,f € L, then —a,a A f,aV f,a = f,a & fe L.

2.2.2 Assigning Meaning to Formulas. A formula a € L also has
a true or false value. If « is simply a propositional atom, we can
assign it the true/false value that the atom has. However, we need a
way to define whether a formula is true or false, given the true/false
values of the operands. One easy way to do this is with truth tables.
Here follows the truth table for the above listed operators, where
an entry provides the truth value of the formula in the column,
given the truth values of the operands p and q.

P g P | PAG PV PG |Pg
T T| F T T T T
T F| - F T F F
F T| T F T T F
F F| - F F T T

Figure 2: A truth table for the Boolean operators -, A, V, —
and &

The other Boolean operators can be defined similarly. Using
our definition for elements of £, we can recursively evaluate the
true/false value of any formula. We do these evaluations within
the context of an interpretation. A valuation or interpretation is an
assignment of true/false values to every atom in P.

Formally defined, an interpretation for P is a function I : P —
{T,F}. For any a € L, the truth value of @ under I is notated as
I(ar). We can express an interpretation in terms of a sequence of
atoms and barred atoms (e.g. p, ¢,7), where the atom represents
the statement being true in the valuation and the barred atom
represents the statement being false in the valuation.

An interpretation I is said to satisfy a formula « if, when « is
evaluated using the true/false values for the atoms provided by I,
the formula evaluates to true (i.e. I(«) = T). This is denoted by
I+ a. We then call I a model of a and define Mod(«) to be the set
of all models of a.

2.2.3 Defining Entailment. We now define the notion of entail-
ment. It can be thought of as starting with some statement a we
know to be true and coming to the conclusion that f is also true.
Formally, we say that a formula « entails f, notated « |= §, if and
only if Mod(e) € Mod(p).

However, this is currently not a very useful definition, as we
would like to be able to take multiple pieces of knowledge into
account when drawing conclusions. Thus, we introduce the notion
of a knowledge base, which represents every formula the system
knows to be true. Formally, if K is a finite set of formulas, then
K is a knowledge base. For example, K = {p,p — q,q V -r}is
a knowledge base. We can now define entailment in terms of a
knowledge base.

We first define Mod(K) =ger ({Mod(«) : @ € K}. Thus Mod(K)
is the set of all interpretations where every formula in K is satis-
fied. Now we can say K entails «, notated K |= « if and only if
Mod(K) € Mod(a).

2.3 Semantics

This can all be a lot to take in, but the meaning behind all the
notation is really quite simplistic. In the real world, a knowledge

base would represent what an Al knows to be true about the world.
Let us take a simplistic example, where we know the following
statements to be true:

(1) This is a bird and this is an animal

(2) Birds fly
We can identify 3 base statements here; "this is a bird, this is an
animal and ’this flies’. If we let b, a and f represent those statements
respectively, we now have 3 propositional atoms to work with.
We can then use the notation of propositional logic to turn that
sequence of statements into:

1) bAa

@b-f
The above is a representation of a knowledge base. Now since b A a
is true, b is also true which implies that f is also true. In other
words, from our initial sequence of statements, we have concluded
that ’this flies’.

Formally, we have that K = {b A a,b — f} |= f. We can
formally prove this by showing that Mod(K) € Mod(f). Intuitively,
we would need to show that every world in which all statements
in K hold true, so too does f hold true.

3 DEFEASIBLE REASONING
3.1 Motivation

As discussed by Casini et al[5], reasoning without certainty is a
major topic in Al. A monotonic system is one in which all infor-
mation is certain. In such a system, adding new information to a
knowledge base will mean you can still draw the same conclusion
that you had before. For example, if it is known that *birds fly’ and
’things that fly have wings’, we can conclude that ’birds have wings’.
If we add the extra knowledge of *wings have feathers’, we can still
conclude that ’birds have wings’.

The opposite of this is a non-monotonic system, where statements
of the form ’typically, something is the case’ are permitted in addition
to the conventional statements. This is necessary as a monotonic
system fails to capture a ’common sense’ approach to reasoning [5].
Consider this example, where the following statements are made:

(1) Birds fly

(2) Robins are birds

(3) Penguins are birds

From this, we can conclude that ’penguins fly’, which is com-
pletely nonsensical. However, each of the above statements is per-
fectly reasonable from a human perspective. What we actually
meant was 'typically, birds fly’. Then, when we add the extra infor-
mation that penguins in fact do not fly, the system should be able
retract its conclusion that ’penguins fly’.

There are many different formalizations of non-monotonic rea-
soning. One of the earliest approaches by Reiter [18] is known as
default reasoning. However, as discussed by Casini and Straccia [20],
rational closure within the KLM approach is currently one of the
most preferred methods.

3.2 Expanded Notation

We now wish to be able to make general statements that may not
always hold true. The previous syntax for expressing *birds fly’ was
b — f.So we replace — with |~, giving us the statement b |~ f to

represent "typically, birds fly’. Formally, to extend the language £,
forall @, f € L, we add a |~ §. Note; this means that no nesting of
this defeasible implication operator is permitted.

To start defining entailment, we first need to introduce the notion
of ranked interpretations [6]. Informally, a ranked interpretation is
simply a ranking where every possible interpretation is assigned a
level of ‘normality’. Multiple interpretations can be considered to
be ’equally normal’ and would then have the same ranking in the
ranked interpretation. Interpretations furthers down the ranking
are considered ‘'more normal’ whereas ones further up are ’less
normal’. The top level of the ranking represents all ’impossible
worlds’.

Formally, a ranked interpretation R is a function from U (the set
of all interpretations) to N U {co} such that

(1) R(u) = 0 for some u € U
(2) Foralli € N, if R(v) = i then for all j s.t. 0 < j < i, there
exists u € U s.t. R(u) = j.

We then say that R satisfies a, denoted R I « if « is true in all
non-impossible levels of R. We can then say that R « |~ f if in the
most ‘normal’ level where « holds, f also holds. This satisfaction is
analogous to satisfaction by an interpretation within classical logic.

Finally, we can define a partial order <g on all ranked models
of a knowledge base K as follows. Ry < Ry if for every v €
U, R1(v) £ Ra(v). Intuitively, ranked models lower down in the
ordering are more normal. Giordano et al[10] showed that there is
a unique minimal element with respect to <¢.

As an example, figure 3 gives a ranked interpretation for P =
{b,f, p} satisfying K = {p — b,b |~ f,p |~ =f} [6]. For easier
reading, we omit the valuations with rank co in our graphical rep-
resentations of ranked interpretations.

2 pbf
1 pbf pbf
0 | pbf pbf pbf

Figure 3: A ranked interpretation for # = {b,f, p}.

3.3 KLM Properties

Unlike classical entailment, defeasible entailment is not unique.
There exist multiple formalizations and processes for performing
defining defeasible entailment. For example, Lehmann and Magidor
[15] suggested rational closure for defining defeasible entailment,
whereas Lehmann [14] proposed lexicographic closure as another
definition.

Kraus, Lehmann and Magidor [12] introduced what is commonly
known as the KLM Properties for defeasible entailment. In their
paper, they identified several properties that one would expect
any correct form of defeasible entailment to follow. Here, we will
consider the extended KLM properties provided by Lehmann and
Magidor [15].

as=p Kkaly

Ref) K k o |~ @ (L) ==
(RW) %ﬁfylﬂ (And) x h; :;f lj(;\j kv
RM) Kk t;(I; yo,{ Z(ﬁ’fiay ~ -8

3.4 Rational Closure

The versions of defeasible entailment rational closure [15] and lexi-
cographic closure [14] both satisfy the above listed KLM properties.
We will be focusing on the rational closure definition and provide
an overview of it here. Full details can be seen in the paper by
Casini et al[6].

3.4.1 Entailment in Terms of Ranked Interpretations. The first
way to check defeasible entailment is as follows. We know from
Giordano et al[10] that there is a unique minimal ranked interpre-
tation with respect to <, call it Rg. We say that K defeasibly
entails a |~ B, notated K |k o |~ B, if Ry - o |~ B.

3.4.2 Entailment in Terms of the Base Rank Algorithm. While
the above definition is neat, it says nothing about how to go about
finding the unique minimal ranked interpretation Rgc. An alterna-
tive definition, which we will refer to as the Base Rank Algorithm,
provides another means for checking defeasible entailment that is
equivalent to the above rational closure definition.

First, we construct a ranking Kg of all the statements in K. This
is done as follows:

e Define C to be all classical statements in K, and D to be all
defeasible statements in K. So we aim to rank C U D
o Define a sequence of knowledge bases %9, 21, ..., 2, as fol-
lows
e >)=D
e X ={al Be:CUIg [~a}. Intuitively, we keep all
the defeasible statements such that the left hand side can
be ’disproven’ by our classical statements and all defeasible
statements not in the previous iteration
ey ={ahpe:CUZ E a}
e and so on...
o We stop when 311 =2 0r Xy =0
We end up with a sequence such that ¥, c 3,1 C ... C 3y
We then assign £,-1 — 2, to the bottom rank, ¥,_5 — X, to
second from the bottom, and so on. We end up with a ranking of K
where the classical statements appear on the bottom; the ’infinite’
level. The higher up in the ranking you go, the more 'general’
the statements become. Note that some statements that appear
defeasible are in fact classical, and appear on the bottom rank. This
is due to the fact that R + —a |~ L if and only if R I a.

This ranking algorithm is easier shown by example. Consider
the knowledge base K = {b |~ f,r = b,p = b,p |~ ~f.b |~ w}.
Then C = {r — b,p — b}.

eSo={bl fibhrwph-f}

o 1 ={phf}
e >,=0
So we have a ranking of:
0 |bpf.bhw
L] pkof

o |r—=bp—b

Now, to check entailment, perform the following steps:

(1) Turn all defeasible statements into classical statements: de-
ﬁne7?={a—>ﬁ:a|~ﬁ€D}U{a€7(:aeC}

(2) If we are checking if K Rk «a, simply check if it is entailed
by the classical statements (all the statements in the infinite
rank)

(3) If we are checking if K k a |~ B, first check if K = —a

(a) If not, then return Ve Fa—p
(b) If so, then we have a conflict. Throw away the highest
level of the ranking and check again if e = —a

(4) If we end up with only the bottom level remaining, and it is
still the case that K |= =, then we confirm K k « |~ f§ as
true

Freund [9] showed that this algorithm returns true for K k a |~
pifand only if K |r a |~ f by the ranked interpretations definition.
Note also that the entire algorithm reduces down to a sequence of

classical entailment checks from K.

4 DATALOG

Datalog is designed to be a database query language and is in many
aspects a simplified version of logic programming [8]. It can be
considered a description logic as well [13], albeit one which is less
expressive than a standard description logic.

4.1 Motivation

Propositional logic is inherently less expressive than most descrip-
tion logics. As soon as one begins to make distinctions between
individuals and classes of individuals, it becomes too difficult to
usefully express the world with propositional logic any more.

In terms of its expressive power, Datalog has been shown to be
strictly more expressive than positive relational algebra [8], due to
its ability to express recursive queries. In terms of actual real-world
applications, both Shkapsky et al[19] and Pasarella and Lobo [17]
found success applying Datalog to solve relevant problems.

4.2 Formalization

A Datalog program consists of a finite set of facts and rules, where
facts provide information about the world and rules allow us to
deduce facts from other facts [8]. For example; "Alice is Bob’s sister’
is a fact and If X is the parent of Y and X is the parent of Z, then
Y and Z are siblings’ is a rule. In Datalog, both facts and rules are
expressed as Horn clauses.

A Datalog clause has the general form:

Lo:=L1,...,Lp

where each L; has the form p;(t1, . . ., ;). In this case, p; is referred
to as a predicate symbol and t1, . . ., tk, the terms. A term is either a

constant or a variable. The right-hand side of the clause is referred
to as the body and the left hand size as the head. Intuitively, we are
saying ’if everything in the body holds true, the so too does the
head hold true’.

If the body is empty, the clause represents a fact, otherwise it
represents a rule. For example, *Alice is Bob’s sister’ can be expressed
as sister(Alice, Bob). The rule, "If X is the parent of Y and X is the
parent of Z, then Y and Z are siblings’ can be represented as

siblings(Y,Z) : —parent(X,Y), parent(X, Z)
This is analogous to the propositional logic formula of
PXY A pxz — syz
where pxy represents "X is the parent of Y’ and so on. From this, it
is clear that Datalog is more expressive than propositional logic in

at least some aspects, although it only has access to the A and —
operators.

4.3 Limitations

The limitations within Datalog come from the limited pool of
operators and strict required structure of the rules. Most impor-
tantly, the omission of the negation (—) and disjunction (V) opera-
tors lead to statements that are impossible to make, for example;
pX) V q(X) — r(X). We can extend Datalog to Disjunctive Dat-
alog, which can then be further extended to DLV, to somewhat
circumvent these limitations.

44 DLV

Leone et al[16] provide a full definition for language and kernel of
DLV. Here, we will give a brief overview of the language.
We define a disjunctive rule, which is a formula of the form

a1V...Van:—bl,...,bk,—!bk+1,...,—|bm

where each a;, b; is a predicate as before. Semantically, this can be
interpreted in the same way as classic Datalog. However, disjunc-
tion is now permitted in the head and negation is permitted in the
body. For example;

apple(X) V orange(X) : — fruit(X), round(X), ~lemon(X)
could represent the sentence ’Every round fruit that is not a lemon

is either an apple or an orange’. We also define a weak constraint,
which is a formula of the form

i~ bl,. . ~sbks_‘bk+1s .. .,ﬂbm[w : l]

where each b; is a predicate.

The notion of a weak constraint is that the assertions on the right-
hand side should be satisfied if possible, but violating them does not
invalidate the models. This is somewhat analogous to defeasible
implication. In the constraint, w and [are integer constants, and
are referred to as the weight and layer respectively. Constraints
with higher weights are considered more important, with the best
models minimizing the sum of the weights of the violated weak
constraints.

A DLV Programis simply a finite set of disjunctive rules and weak
constraints. Given this set of rules and constraints, it will output
the set of models that are consistent with the provided constraints.
DLV is one of many answer set programming (ASP) systems [1].
However, it is one of the first reliable ASP systems, which has lead
to it being employed in many academic and industrial applications.

It has recently been updated with modern evaluation techniques
and development platforms. This makes it very suitable for the
incorporation of defeasible reasoning.

5 INCORPORATION OF DEFEASIBLE
REASONING

The main aim of the project is to incorporate defeasible reasoning
into DLV. While the inclusion of weak constraints adds a non-
monotonic element to DLV, it appears that there currently does not
exist an implementation of defeasible reasoning within DLV.

However, Britz et al[3] provided a means of computing ratio-
nal closure within a description logic environment. They showed
that computing defeasible entailment can be reduced to classical
entailment checking, and performed tests that demonstrated the
computational efficiency of the checking. The algorithm provided is
comparable in nature to the base rank algorithm for propositional
logic.

In their paper, Casini et al[4] highlighted some key failings of
rational closure for defeasible reasoning within description logics.
The example to demonstrate these failings is as follows.

Suppose we know that mammalian and avian red blood cells are
vertebrate red blood cells, denoted MRBC C VRBC and ARBC C
VRBC. We also know that vertebrate red blood cells normally have a
cell membrane (VRBC & 3hasCM.T), that vertebrate red blood cells
normally have a nucleus (VRBC & 3hasN.T), but that mammalian
red blood cells normally do not (MRBC S —3hasN.T). Rational
closure allows us to conclude that avian vertebrate red blood cells
normally have a cell membrane (ARBC & 3hasCM.T), but not so
for mammalian red blood cells (MRBC & 3hasCM.T).

They proposed two new forms of defeasible reasoning to solve
this problem; Basic Relevant Closure and Minimal Relevant Closure.
They converted the KLM properties be in terms of description logics,
and then showed that neither of the new algorithms conform to all
of the converted KLM properties for defeasible reasoning. However,
due to the limited expressivity of DLV, this specific counter-example
does not show why rational closure would fail in the DLV case.

6 CONCLUSIONS

Propositional logic, while neat and easy to understand, is not suffi-
cient to model all natural human reasoning. The ability to reason
without certainty is a desired property of some systems and a ma-
jor topic in AI [5]. Such reasoning is referred to as non-monotonic
reasoning and the chosen form thereof is called defeasible reason-
ing. However, defeasible entailment is not unique, with multiple
definitions for computing entailment existing.

Kraus, Lehmann and Magidor [12] introduced the KLM properties,
which specify rules for how one would expect any correct form
of defeasible entailment to behave. Lehmann and Magidor [15]
provided the rational closure definition, which has been shown to
satisfy the the KLM properties. Furthermore, it was shown that
base rank algorithm fully computes rational closure.

We highlighted the failings of the expressivity of propositional
logic, and provided Datalog as an alternative. Datalog is a database
query language and can also be considered as a description logic
[13]. However, due to the limited pool of operators and strict rule
structure, Datalog also has limitations.

We provided DLV as an extension to Datalog, and concluded
that it is very suitable for the incorporation of defeasible reasoning.
The work of Britz et al[3] and Casini et al[4] show the feasibility
of incorporating defeasible reasoning into description logics. Much
like with propositional logic, the computation for defeasible entail-
ment can be reduced to a sequence of classical entailment checks.
In many aspects, DLV can be considered a weaker form of a descrip-
tion logic. Thus, the techniques used by Casini et al[4], particularly
with respect to the adaption of the KLM properties, can be applied
to defeasible DLV.

REFERENCES

[1] Weronika T. Adrian, Mario Alviano, Francesco Calimeri, Bernardo Cuteri,
Carmine Dodaro, Wolfgang Faber, Davide Fusca, Nicola Leone, Marco Manna,
Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari. 2018.
The ASP System DLV: Advancements and Applications. KI - Kiinstliche Intelligenz
32, 2-3 (aug 2018), 177-179. https://doi.org/10.1007/s13218-018-0533-0

[2] Mordechai Ben-Ari. 2012. Mathematical Logic for Computer Science (3 ed.).
Springer Science & Business Media, Rehovot, Israel. https://books.google.co.
za/books?hl=en

[3] Katarina Britz, Giovanni Casini, Thomas Meyer, Kody Moodley, Uli Sattler, and
Ivan Varzinczak. 2017. Rational Defeasible Reasoning for Description Logics. Techni-
cal Report. University of Cape Town, South Africa. https://core.ac.uk/download/
pdf/151756088.pdf

[4] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. 2014. Rele-
vant Closure: A New Form of Defeasible Reasoning for Description Logics. In
JELIA 2014: Logics in Artificial Intelligence. Springer, Cham, Funchal, Madeira,
Portugal, 92-106. https://doi.org/10.1007/978-3-319-11558-0_7

[5] G Casini, T Meyer, K Moodley, and I Varzinczak. 2013. Towards practical defeasible
reasoning for description logics. Technical Report. Centre for Artificial Intelligence
Research. http://researchspace.csir.co.za/dspace/handle/10204/7039

[6] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking Defeasible
Entailment beyond Rational Closure. (2019), 18 pages.

[7] Giovanni Casini and Umberto Straccia. 2010. Rational Closure for Defeasible
Description Logics. Lecture Notes in Computer Science 6341 (2010), 77-90. https:
//doi.org/10.1007/978-3-642-15675-5_9

[8] S. Ceri, G. Gottlob, and L. Tanca. 1989. What you always wanted to know about

Datalog (and never dared to ask). IEEE Transactions on Knowledge and Data

Engineering 1, 1 (mar 1989), 146-166. https://doi.org/10.1109/69.43410

Michael Freund. 1998. Preferential reasoning in the perspective of Poole default

logic. Artificial Intelligence 98, 1-2 (jan 1998), 209-235. https://doi.org/10.1016/

50004-3702(97)00053-2

[10] L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. 2015. Semantic characteriza-

tion of rational closure: From propositional logic to description logics. Artificial
Intelligence 226 (sep 2015), 1-33. https://doi.org/10.1016/J.ARTINT.2015.05.001

[11] David Gunning. 2017. Explainable Artificial Intelligence (XAI). Technical Report.

DARPA. http://listverse.com/

S Kraus, D Lehmann, and M Magidor. 1990. Nomonotonic Reasoning, Prefer-

ential Method and Cumulative Logics. Artificial Intelligence 44 (1990), 167-207.

arXiv:arXiv:cs/0202021v1

Markus Krotzsch, Sebastian Rudolph, and Peter H. Schmitt. 2015. A closer look

at the semantic relationship between Datalog and description logics. Semantic

Web 6, 1 (jan 2015), 63-79. https://doi.org/10.3233/SW-130126

Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of

Mathematics and Artificial Intelligence 15, 1 (1995), 61-82. https://doi.org/10.1007/

BF01535841

[15] D Lehmann and M Magidor. 1994. What does a conditional knowledge base

entail ? Artificial Intelligence 55, 1 (1994), 1-60.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,

Simona Perri, and Francesco Scarcello. 2006. The DLV system for knowledge

representation and reasoning. ACM Transactions on Computational Logic 7, 3 (jul
2006), 499-562. https://doi.org/10.1145/1149114.1149117
Edelmira Pasarella and Jorge Lobo. 2017. A Datalog Framework for Modeling
Relationship-based Access Control Policies. In Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies - SACMAT °17 Abstracts.
ACM Press, New York, New York, USA, 91-102. https://doi.org/10.1145/3078861.
3078871
[18] R. Reiter. 1980. A logic for default reasoning. Artificial Intelligence 13, 1-2 (apr
1980), 81-132. https://doi.org/10.1016/0004-3702(80)90014-4

[19] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,
and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on Spark. In
Proceedings of the 2016 International Conference on Management of Data - SIGMOD
’16. ACM Press, New York, New York, USA, 1135-1149. https://doi.org/10.1145/

[

[12

[13

=
&

[16

(17

https://doi.org/10.1007/s13218-018-0533-0
https://books.google.co.za/books?hl=en
https://books.google.co.za/books?hl=en
https://core.ac.uk/download/pdf/151756088.pdf
https://core.ac.uk/download/pdf/151756088.pdf
https://doi.org/10.1007/978-3-319-11558-0_7
http://researchspace.csir.co.za/dspace/handle/10204/7039
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1109/69.43410
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/J.ARTINT.2015.05.001
http://listverse.com/
http://arxiv.org/abs/arXiv:cs/0202021v1
https://doi.org/10.3233/SW-130126
https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/BF01535841
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/3078861.3078871
https://doi.org/10.1145/3078861.3078871
https://doi.org/10.1016/0004-3702(80)90014-4
https://doi.org/10.1145/2882903.2915229

2882903.2915229

[20] Umberto Straccia and Giovanni Casini. 2013. Defeasible Inheritance-Based De-
scription Logics. Journal of Artificial Intelligence Research 48 (jun 2013), 415-473.
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewPaper/2924

https://doi.org/10.1145/2882903.2915229
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewPaper/2924

	Abstract
	1 Introduction
	2 Propositional Logic
	2.1 Motivation
	2.2 Formalization
	2.3 Semantics

	3 Defeasible Reasoning
	3.1 Motivation
	3.2 Expanded Notation
	3.3 KLM Properties
	3.4 Rational Closure

	4 Datalog
	4.1 Motivation
	4.2 Formalization
	4.3 Limitations
	4.4 DLV

	5 Incorporation of Defeasible Reasoning
	6 Conclusions
	References

