
Improved Explanations in the Protégé OWL Ontology Editor
Cilliers Pretorius

prtpie003@myuct.ac.za
University of Cape Town
Rondebosch, South Africa

ABSTRACT
Description logics and formal ontologies represent knowledge in a
way that allows for computational reasoning to generate conclu-
sions. To increase and ensure user acceptance of these conclusions,
explanations for why the conclusions were reached are required.
Protégé is a popular ontology editor that uses the Web Ontology
Language (OWL) developed for the Semantic Web. Protégé has the
ExplanationWorkbench software tool, which provides justifications
for inferred entailments in OWL ontologies. These justifications
are difficult to understand for users not familiar with description
logics and OWL. This paper details the design and implementation
of improvements to the explanations provided by the Explanation
Workbench. The theoretical framework and motivation for expla-
nations are provided. A framework allowing ontology creators to
define an explanation for an axiom is created and defined according
to the OWL standards. The keywords of the Manchester Syntax
used by Protégé are expanded and replaced with more natural lan-
guage. This paper paves the way for future research into OWL and
explanation facilities for it.

CCS CONCEPTS
• Information systems → Web Ontology Language (OWL);
Expert systems; • Computing methodologies→ Description log-
ics;

KEYWORDS
Explanation, OWL, Protégé, Manchester Syntax

1 INTRODUCTION
A logic-based reasoning system is a software system that gener-
ates conclusions that are consistent with a knowledge base (KB)
or ontology. This ontology consists of a set of propositions that
are defined to be true. There is an increasing trend to use logic-
based reasoning systems as primary advisers in industries such as
medicine, e-commerce, and finance to perform medical diagnosis,
product recommendations, and stock market decisions. However,
because the steps taken to generate a conclusion are usually hidden
from the user, it cannot be guaranteed that the user accepts and
acts upon the conclusion. [16]

This leads to systems that provide explanations and justifications
as a key part of the system’s design. [25] Research has shown that
both novice and expert users greatly benefit from explanations, and
designers should keep the intended user audience in mind when
designing the system. [5]

Protégé is an ontology development tool that allows users to
create ontologies according to the Web Ontology Language (OWL).

OWL is a Description Logic (DL) that allows for precise and un-
ambiguous definitions, allowing for reasoners to infer conclusions.
[13] Protégé is one of the most popular ontology development tools,
with users from a wide variety of backgrounds. [18]

It is bundled with the Explanation Workbench plugin developed
by Horridge et. al. [13] The Explanation Workbench allows users
to generate explanations for an inferred conclusion using the same
reasoner. In particular, it generates justifications, which is defined
as the minimal subset of the ontology sufficient for the entailment
to hold. The output of this is simply the axioms that represent the
ontology.

However, these axioms are difficult to understand if the user did
not create the ontology themselves since it uses the Manchester
Syntax of keywords in place of the mathematical symbols that are
used in description logics. [13] Despite the use of keywords, both
expert and novice users will struggle to understand the explana-
tions unless they have enough knowledge of description logics.
This is unlikely given that many ontologies are created for specific
knowledge bases not related to description logics. [18]

This project attempts to provide more readable and more con-
vincing explanations, built on the Explanation Workbench’s expla-
nations. In particular, it allows for users to see expanded keywords
for the axioms1, as well as allowing ontology creators to provide
annotations that contain an explanation that will be displayed with
the axiom.

This paper is the final report on the project. It states the aim of the
project and provides the background to the project. Related work
and the theoretical basis of description logics and explanation are
described. The initial analysis and technical approach are described,
followed by the implementation, evaluation, and discussion of the
final product. The paper ends with conclusions and an exploratory
overview of possible future research arising from this paper.

2 PROJECT AIM AND EXPECTED OUTCOMES
This project attempts to extend the ExplanationWorkbench Protégé
plugin created by Horridge et al. [13] to produce explanations that
are more readable and easily understood by users. The current tool
attempts to generate readable explanations, but this occurs as a
side-benefit of the syntax used by Protégé. It does not help users
who are not familiar with description logics or ontologies in general.

With the overarching goal of improved readability and more
effective explanations, two methods are considered. One method

1In this paper, axiom refers to a proposition in an ontology.



is to allow the creator of an ontology to define an explanation for
an axiom, which would be displayed as the explanation for that
particular axiom. The second method is to expand the keywords
that are used in the axiom to use more natural language.

It is expected that the project will produce an extension to the
ExplanationWorkbench that provides a framework for the ontology
creator to define an explanation for an axiom. In addition, the
keywords used by Protégé will be expanded to use more natural
language. Thus, the explanations should bemore readable and easily
understood by users, even if they are unfamiliar with description
logics.

3 BACKGROUND AND RELATEDWORK
This paper and the screenshots provided will generally use Hor-
ridge’s [11] example ontology regarding pizzas (the food item) for
a more intuitive description of the theoretical basis.

3.1 Description Logics
Description logics are a family of knowledge representation lan-
guages. A description logic consists of a set of concept names and
role names. A set of propositions (a knowledge base) are defined
using atomic concepts and atomic roles, which are conveniently de-
fined as unary predicates and binary predicates respectively. Propo-
sitions can be combined to form compound propositions, using
logical structures such as negation, conjunction, and disjunction.
[2]

The knowledge base is usually divided into the Tbox and the
Abox. The Tbox is the set of axioms that describe the limits and
structure of the knowledge base, while the Abox is the set of axioms
describing a specific situation or interpretation in the framework
defined by the Tbox. ([2], [27]) In the example description logic, the
Tbox is the set of axioms describing how a pizza is defined, while
the Abox is the set of axioms defining specific toppings and specific
types of pizza.

With this formal structure based on predicate logic, algorithms
that determine if a particular statement is true in a specific de-
scription logic can be created. [27] This can be extended to allow a
reasoner to infer all axioms that are implied but not defined in the
knowledge base.

3.2 Explanations
3.2.1 Motivation for Explanations. Explanations are considered

a key component of most knowledge-based systems used by pro-
fessionals. [14] The greatest benefit of explanations is usually the
increased user acceptance of the system’s recommendations, al-
though this is not always the case. According to [21], including
explanations in a system leads to a considerable increase in user
acceptance of the system and its recommendations.

When novice users use explanations, they solve problems faster
and more accurately than when not using explanations. [7] When
expert users have explanations available, they accept the system’s

recommendations more readily and more fully. [1]

Explanations lead to greater trust in the system, and with this
greater trust comes an increased likelihood that the system will
be used repeatedly and that its recommendations will be followed.
[23] Improved belief leads to solving problems using the system
more accurately and in a shorter time. ([1], [8], [28])

3.2.2 Defining Explanations. Explanations vary depending on
the system and what logical basis the system uses. Clancey [4]
provided a detailed epistemology of explanations for rule-based
systems, which defined three types of knowledge and types of ex-
planation, generally corresponding to the types of questions a user
might ask when using such a system. MYCIN, one of the first ex-
pert systems to feature explanations, provided multiple types of
explanations. [6]

Since this project is focused on Protégé and its ExplanationWork-
bench, only Justification explanations will be explored in detail here.
Justifications are the most commonly used type of explanations in
explanation tools. [1] Justification explanations provide the argu-
ment behind a reasoning system’s conclusions. [24] In particular,
a justification is defined as the smallest subset of the knowledge
base where an entailment or conclusion is still valid. [12]

Justifications are used because of the simplicity of calculating
them, as well as the clear link they have with the knowledge base.
[13] The next section will clarify why the link is important to the
explanation. Justifications can be calculated in two ways. Firstly, it
can be done as an additional benefit to standard reasoning calcula-
tions as performed by any reasoner. Alternatively, it can be done
separately with dedicated algorithms independent of any reasoner.
This is commonly known as glass-box and black-box algorithms
respectively. [9]

Justifications can be further refined to laconic and precise justi-
fications. Laconic justifications are justifications where no axiom
in the justification contains any superfluous parts, i.e., parts of
compound axioms that are not required for the entailment to hold.
Precise justifications are justifications that highlight parts of axioms
that can be changed to ensure the ontology’s consistency. [9] For
this paper, only laconic justifications are of tangential interest.

3.2.3 Evaluating Explanations. In a project such as this, it is
necessary to define a method of evaluating an explanation and its
acceptability. Tintarev and Masthoff [26] provide a general struc-
ture of evaluating explanations with regards to the human aspect,
with many of their criteria closely linked to the human-computer
interaction fundamentals described by Nielsen.

However, Swartout and Moore [24] provide a specific method
of evaluating explanations more relevant to description logics and
Protégé. Fidelity, Understandability, Sufficiency, Low Construction
Overhead, and Efficiency are the elements of a good explanation.

Fidelity focuses on how well the explanation represents what
the reasoning system does. A better explanation has greater fidelity.

2



Justifications, with a clear link to the knowledge base, has high
fidelity.

Understandability pinpoints whether the user understands the
explanation that the reasoning system generates. This aspect is mul-
tifaceted because it relies on both the users’ personal experience
and the ability of the reasoning system to generate explanations at
different levels of abstraction. The more understandable an expla-
nation is, the better the explanation is.

Sufficiency focuses on whether the KB of the system has the
required information that is needed to generate an explanation.

Low Construction Overhead. This element evaluates the dif-
ficulty of generating explanations. [24] suggest that it should not
be more difficult to construct an explanation than it is to construct
a reasoning system.

Efficiency concentrates on the impact that generating an expla-
nation has on the runtime of reasoning systems. A good explanation
consumes less runtime and is, therefore, more efficient.

This project is specifically focused on the Understandability as-
pect, also known as effectiveness in Tintarev’s [26] criteria. This
means a good explanation will require fewer additional explana-
tions to convince the user.

3.3 The Web Ontology Language (OWL)
TheWeb Ontology Language is a language intended for information
contained in documents to be processed by applications instead of
humans. [17] It is an extension of the Resource Description Frame-
work and is more expressive while still retaining computational
completeness and decidability.

OWL has three variants:

• OWL DL corresponds to a true description logic, being the
most expressive possible while guaranteeing computational
completeness.

• OWL Lite is less complex, but simpler to interact with from
a computational side.

• Lastly, OWL Full allows for the full expressiveness that is
allowed by the Resource Description Framework, but com-
putational completeness cannot be guaranteed. [17]

Something of particular note to this project is the fact that ev-
erything in OWL, whether classes, properties, or axioms, can have
annotations. Annotations can themselves have annotations in an
infinite spiral. These annotations can be of various types but are
most often used as comments or labels. OWL DL limits annotations
to a particular format, but any Annotation Property (i.e., type of
annotation) can be defined as long as the format is followed.

Protégé uses OWL DL with a variant of the Manchester Syntax,
which is a syntax developed to satisfy demands for "a less logician-
like" syntax. [10] Hence, the terminology and axioms in this paper

are likely to be less formal.

There have been several papers and considerable research es-
tablishing a theoretical base in explanations for OWL ontologies.
Much of the work has focused on justifications. ([3], [15]) There
has been some effort to generate explanations in forms closer to
natural language. [19]

Horridge et al. [13] provided the OWL Explanation Workbench
software library to calculate justifications for OWL ontologies, as
well as a plugin for Protégé that implements the Explanation Work-
bench. Richard Power provided OWL Simplified English (OSE),
which is an attempt at translating OWL statements and entailments
to a natural language form. [20] The SWAT ontology editor2 imple-
ments OSE and offers promise for future improvements to human
interaction with OWL ontologies.

3.4 Protégé-OWL
The Protégé Ontology Editor was developed by the Stanford Cen-
ter for Biomedical Informatics Research at the Stanford University
School of Medicine. It is a very popular ontology editor, with a large
community still actively creating and contributing to the project.
[18]

Given its role as one of the oldest and most popular ontologies,
Protégé is often chosen as the testbed for new research in the fields
of logic and AI. [18] The OWL Explanation Workbench, which is a
software library for generating justifications in OWL ontologies,
was first implemented as a plugin for Protégé. [13]

However, there has been no research regarding improvements
to the explanations provided by Horridge’s [13] tool. This might
be due to the audience that Protégé seemingly enjoys, composed
mainly of academics and domain experts. In this case, the users are
generally informed about description logics and OWL. With the
recent proliferation of commercial ontology editors, there appears
to be a need for better explanations for Protégé specifically.

4 ANALYSIS AND DESIGN CHOICES
4.1 Protégé
The project’s aims required familiarity with Protégé’s functionality
and how the implementation maps to the formal description of
description logics.

4.1.1 Classes. The Protégé OWLOntology Editor consists of the
main application and several plugins that add additional functional-
ity. To represent concept names in an ontology or description logic,
Protégé uses classes. Classes can be nested to create subclasses, and
all classes are subclasses of owl : thinд. This subsumption of classes
is transitive, i.e., A SubClassO f B and B SubClassO f C implies A
SubClassO f C . Individuals are instances of classes. From the theo-
retical description logic point of view, individuals would be part of
the Abox compared to the classes being part of the Tbox.

2http://mcs.open.ac.uk/nlg/SWAT/editor.html

3



4.1.2 Properties. To represent role names, Protégé uses Proper-
ties. This is separated into Object Properties and Data Properties.
As with classes, each property is a subproperty of a root property,
owl : topObjectProperty and owl : topDataProperty respectively
in this case. Property subsumption is transitive. Properties can be
limited to specific domains and ranges.

Object Properties are binary relations between two classes or
class instances. In description logic, this would beA.r B, where class
A is related through role r to class B. Object properties can have
functionality, inverse functionality, transitivity, symmetry, asymme-
try, reflexivity, and irreflexivity as characteristics. An example from
the Pizza tutorial would be Pizza hasToppinд PizzaToppinд.

Data Properties are binary relations between a class and one of
the OWL, RDF, or XML Schema Definition (XSD) data types, such
as string, character, or integer. In description logic terms, these
data types can be seen as concepts that are implicitly part of the
ontology and the relation is between a class and an instance or
two class instances. Unlike object properties, data properties can
only be functional as characteristic. An example from the tutorial
is ExampleAmericanaPizza hasCalori f icContentValue 359.

4.1.3 Annotations. Several predefined annotation properties
that can be added to anything, as per the OWL standards. Users
can also define their own annotation properties, with more flexibil-
ity than is allowed by OWL in the strictest sense. The annotation
values can be any of the OWL, RDF, or XSD datatypes.

Protégé uses the logical unary and binary relations that allow
for compound concepts in description logic, namely negation, con-
junction, disjunction, value restrictions, and existential restrictions.
In the Manchester Syntax that Protégé uses, these are represented
by the keywords not, and, or, only, and some respectively.

Protégé has the HermiT3 reasoner bundled with it, and allows
for other reasoners such as FaCT++ [27] to be added as plugins.
When the selected reasoner is activated, the ontology is classified
and evaluated for logical consistency. If the ontology is consistent,
Protégé will display the inferred axioms as calculated by the rea-
soner.

4.2 Explanation Workbench
The OWL Explanation Workbench is a software library that allows
justifications in OWL ontologies to be computed and displayed. It
operates with both black-box and glass-box algorithms, using inter-
faces built into the library that allow suitably designed reasoners
to be "plugged in".[13] The author of the library also created the
Protégé plugin that implements explanation facilities (as calculated
by the library) in Protégé.

The plugin creates a button for each axiom, labelled "Explain in-
ference", that calculates all justifications for the axiom or entailment.

3See [22] for the initial paper describing the reasoner.

The user can stop the calculation at will, even if all justifications
have not been calculated. Once the calculation has stopped, the
axioms contained in the justification will be displayed in a list. This
list is a sublist of the listing that displays every justification for a
particular entailment.

The user can choose whether to display regular or laconic justi-
fications. By default, the regular justifications are selected. If the
selection is changed, the justifications are recalculated according
to the selection, unless the justifications are cached. The user can
also limit the number of justifications that are displayed.

4.3 Manchester Syntax and Keyword
Expansion

The Manchester OWL Syntax was developed to replace the variant
of the German DL Syntax that was used by the most popular ontol-
ogy editors at the time. [10] This syntax, while a vast improvement
over the previous, still presents challenges to novice users and users
not familiar with ontologies and description logics.

Hence, this project attempts to further improve the understand-
ability of the Manchester Syntax by expanding the keywords to
a more natural form. Table 1 lists some of the keywords of the
syntax, along with the OWL DL concept it represents and the new
expanded keywords this project replaces it with. For the sake of
brevity, the full list of keywords and expansions can be found in
the appendix. This list was compiled from the World Wide Web
Consortium’s (W3C) OWL Manchester Syntax documentation4.

4.4 Explanatory Annotations
To generate more effective explanations, this project also looked at
allowing ontology creators to specify an explanation for a particu-
lar axiom. Annotations in OWL can be of any format or datatype,
hence it was chosen as the best way to allow creator defined expla-
nations.

To allow for this, we define an annotation property exp:Explanation.
In terms of W3’s OWL standards, exp:Explanation is defined by the
typing triple

<owl:AnnotationProperty rdf:about="exp:Explanation"/>
However, this definition is used only because the OWL standards
do not contain a formal definition for explanations. If a formal defi-
nition or AnnotationProperty is added to the OWL standards, then
the definition used in this project should be changed to reflect the
OWL standards.

In the example ontology, an explanatory annotation for the ax-
iom AmericanaPizza SubClassOf hasTopping some MozzarellaTop-
ping could be exp:Explanation : Americana pizzas have the moz-
zarella topping. This allows for a much more natural explanation
for the axiom than just the axiom and justification alone.

4https://www.w3.org/TR/owl2-manchester-syntax/

4



OWL DL Concept Manchester Syntax Expanded Keyword
A ⊆ B A SubClassOf B A is a subclass of B
A ⊆ B A Type B A is a type of B
A ≡ B A EquivalentTo B A is equivalent to B
A = B A SameAs B A is the same as B
r ≥ i B r min i B r no less than i B
r ≤ i B r max i B r no more than i B
r X r value: X r with the value X
r ⊆ s r SubPropertyOf s r is a subproperty of s
r Domain A r Domain A r has the domain A
r Range A r Range A r has the range A
¬A not A not A
A ⊓ B A and B A and B
A ⊔ B A or B A or B
∃.r B r some B r at least one B
∀.r B r only B r only B
q = r−1 q InverseOf r q is the inverse of r
Functionality Functional: r The property r is functional
Transitivity Transitive: r The property r is transitive
A ∩ B = � DisjointClasses: A, B The classes A and B are disjoint classes.
A =

⋃
i ∈I

Ai A DisjointUnionOf A1, A2 A is the disjoint union of A1 and A2.

Table 1: A table listing some of the keywords from the Manchester Syntax and the expanded keywords used in this project.

5 IMPLEMENTATION
The full description of how the Explanation Workbench plugin was
implemented can be found in [13]. This project changes nothing
regarding the original plugin’s functionality, and only adds to it.
Explanations are still invoked when the user clicks on an "Explain
inference" button that appears next to each axiom.

Checkboxes were added to allow the user to decide if annotated
explanations should be displayed or keywords expanded. Users are
allowed to have the checkboxes checked in any combination. If
neither is checked, the output is exactly as the original Explanation
Workbench would produce. Figure 1 shows the output when no
checkbox is selected to explain the example inference of Ameri-
canaPizza SubClassOf CheesyPizza.

5.1 Expanded Keywords
Keyword expansion is implemented as a single function. If the
checkbox for expanded keywords is checked, this function receives
an axiom from the renderer that displays the axiom on the explana-
tion panel. The function splits the axiom (a String object) according
to whitespace. It then iterates through the tokens created and if it
finds a keyword listed in Table 1, it replaces the keyword with the
expanded language. It returns the expanded axiom to the renderer
to be displayed on the screen.

Using the same example inference as Figure 1, Figure 2 shows the
output when only expanded keywords are selected. Unfortunately,
the keyword expansion means that the Protégé renderer does not
highlight the syntax with colour. Since the current renderer utilises
a tokenizer, it will be near impossible to have the current renderer
add colour to the expanded keywords. This would have required a

volume of work beyond the scope of this project.

5.2 Explanatory Annotations
The explanatory annotations are displayed through a small change
to the original render method. If the checkbox for explanatory
annotations is checked, the method checks if the axiom has any
annotations attached to it. If there is at least one annotation, it
iterates over all annotations and checks if the annotation has the
annotation property corresponding to "exp:Explanation".

If the axiom has an explanatory annotation, the renderer will
display the axiom (in its original Manchester Syntax form) and
append the explanatory annotation after it. This is done to provide
context to the annotation. Figure 3 shows the same justifications as
Figure 1 with the explanatory annotations checkbox checked.

Note that this functionality requires the ontology creator to have
defined the explanatory annotations beforehand. All axioms do not
require an annotation, it might well be sufficient to have only the
less intuitive axioms annotated. Also, if the user selects laconic
justifications, the Explanation Workbench generates new axioms
that are not linked to the annotations of the original. Thus, laconic
justifications will only have the keywords expanded and will not
display any explanatory annotations.

5.3 Action Priority
This project assumes that the explanations provided by the ontology
creator will always be superior to the axiom with expanded key-
words. Therefore, if both checkboxes are selected as in Figure 4, the
renderer will first look if the axiom has any suitable annotations.

5



Figure 1: Output of the Explanation Workbench for an example inference. Note the checkboxes are unchecked and therefore
the output is as the original facility would provide.

Figure 2: Output of the Explanation Workbench for an example inference, with the keywords expanded as per Table 1’s spec-
ifications.

6



Figure 3: Output of the Explanation Workbench for an example inference, with explanatory annotations appended to the
axioms that have suitable annotations.

Only if the axiom has no suitable annotations will the renderer
expand the keywords of the axiom.

6 RESULTS AND EVALUATION
The project successfully produced a framework whereby an ontol-
ogy creator can define an explanation for a particular axiom using
the explanatory annotations. Figure 3 shows the explanatory anno-
tations in use, and it clearly demonstrates increased readability in
comparison to the original Explanation Workbench.

The keyword expansion was successfully implemented, as can
be seen in Figure 2. The expansions are patterned on the suggested
reading of the description logic symbols suggested by the Baader
et al. [2] textbook on description logics. This assists not only in
readability, but also increases understanding of description logics
and therefore the users’ comprehension of the explanations. The
method that expands the keywords is separate from the Explana-
tion Workbench and can, therefore, be accessed in any project that
wants to expand the OWL Manchester Syntax keywords.

By allowing the user the option to choose whether the keywords
are expanded or the explanatory annotations are displayed, this
extension caters to all users. It allows users who are accustomed
to the current Explanation Workbench output to continue using
their preferred output while allowing novice users to have a less
formal and less complex notation for their output. This increases
the effectiveness of the explanation since they are more likely to
understand it.

Since there is no calculation involved, only string manipulation,
the program’s runtime isn’t affected in any noticeable manner. It
allows ontology creators to define a more thorough and encompass-
ing explanation for axioms, which will increase the effectiveness
of the explanation for both expert and novice users. This project
achieved the objectives set out at the start and is thus a success.

6.1 Limitations
Despite the project’s overall success, there is still potential for
improvement. Currently, the explanatory annotations need to be
manually added by the ontology creator. However, many ontologies
are not in active development anymore and it will be a substantial
undertaking to add annotations to all axioms in all ontologies. In
addition, many OWL ontologies are created automatically, without
human interaction. These generated ontologies will not have ex-
planatory annotations included.

The keyword expansion was done without any testing and eval-
uation by users, and there might be further enhancement possible
in the natural language used for this expansion.

7 USAGE
The source code of this extension of the Explanation Workbench
can be found and freely downloaded from the project’s GitHub
repository5. It will require Protégé to be of use, which can be down-
loaded from protege.stanford.edu.

5https://github.com/Pietersielie/Explanation-Workbench-More-Readable-Extension

7



Figure 4: Output of the Explanation Workbench for an example inference, with explanatory annotations appended and key-
words expanded. Note both checkboxes are selected.

7.1 Software Licence
This project is an extension of the Explanation Workbench which
is published under the GNU Lesser General Public Licence 3.0. In
accordance with this open source licence, this project’s full source
code is published under the same licence, allowing for free dis-
tribution and any modifications as long as the licence is adhered
to.

8 CONCLUSIONS
The More Readable Extension to the ExplanationWorkbench (MRE)
extends existing facilities that facilitate justification calculation for
OWL ontologies in the Protégé OWL ontology editor. It provides a
framework for ontology creators to define explanations for axioms
and thereby allow for considerably more effective explanations.

MRE proposes an OWL Annotation Property specifically for
explanations of axioms. This allows for significant future research
into explanations and natural language representation of OWL and
explanations.

It also provides a method for the keywords in the Manchester
Syntax to be expanded to use more natural language. This is of
significant value to novice users since it allows them to more eas-
ily understand description logics and the knowledge held by the
ontology. It does not prohibit the more rigid and formal notation,
thereby benefiting the expert users that prefer the more formal
notation.

It can allow all users to receive terminological knowledge regard-
ing the ontology with significantly greater ease and is therefore of
great benefit to users wanting to familiarise themselves with a new
ontology.

9 FUTURE RESEARCH
The next step in the development of this research would be to cre-
ate a tool to automatically generate the explanatory annotations
for axioms. This research could draw inspiration from the SWAT
ontology editor and its use of OWL Simplified English to formulate
the actual annotations. It might also look at Horridge’s work on
justifications to determine what axioms should get annotations if
annotations are prioritised to the most important axioms. Associ-
ated with this, a formal definition of an explanatory annotation is
a logical direction for research.

Further research can also be done to integrate the keyword
expansion and the OWL Simplified English syntax. This can be inte-
grated with user testing to evaluate the various attempts at natural
language expressions for OWL and the associated explanations.

ACKNOWLEDGEMENTS
This project could not have succeeded without the support and
contributions of several parties. Firstly, much gratitude is due Pro-
fessor Tommie Meyer, project supervisor, for not only providing
the basic framework and topic of the project but doing his best to
find a project focus that is of interest to me. Thanks to Victoria

8



Chama for her assistance in the early research phases, and Solomon
Malesa for being a willing project partner to bounce ideas from and
helping with understanding the abstract theory.

REFERENCES
[1] Vicky Arnold, Nicole Clark, Philip A Collier, Stewart A Leech, and Steve G Sutton.

2006. The differential use and effect of knowledge-based system explanations in
novice and expert judgment decisions. Mis Quarterly (2006), 79–97.

[2] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. 2017. An Introduc-
tion to Description Logic. Cambridge University Press. https://doi.org/10.1017/
9781139025355

[3] Samantha Bail. 2013. The justificatory structure of OWL ontologies. Ph.D. Disser-
tation. The University of Manchester (United Kingdom).

[4] William J Clancey. 1983. The epistemology of a rule-based expert system – a
framework for explanation. Artificial intelligence 20, 3 (1983), 215–251.

[5] Jasbir S Dhaliwal. 1993. An experimental investigation of the use of explanations
provided by knowledge-based systems. Ph.D. Dissertation. University of British
Columbia.

[6] Richard O Duda and Edward H Shortliffe. 1983. Expert systems research. Science
220, 4594 (1983), 261–268.

[7] Martha M Eining and Patrick B Dorr. 1991. The impact of expert system usage
on experiential learning in an auditing setting. Journal of Information Systems 5,
1 (1991), 1–16.

[8] Shirley Gregor and Izak Benbasat. 1999. Explanations from intelligent systems:
Theoretical foundations and implications for practice. MIS quarterly (1999),
497–530.

[9] Matthew Horridge. 2011. Justification based explanation in ontologies. Ph.D.
Dissertation. The University of Manchester (United Kingdom).

[10] Matthew Horridge, Nick Drummond, John Goodwin, Alan L Rector, Robert
Stevens, and Hai Wang. 2006. The Manchester OWL syntax.. In OWLed, Vol. 216.

[11] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and Chris
Wroe. 2004. A Practical Guide To Building OWL Ontologies Using The Protégé-
OWL Plugin and CO-ODE Tools Edition 1.0. University of Manchester (2004).

[12] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. 2008. Laconic and precise
justifications in OWL. In International semantic web conference. Springer, 323–
338.

[13] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. 2009. The OWL Explanation
Workbench: A toolkit for working with justifications for entailments in OWL
ontologies. (2009).

[14] Izak Benbasat Ji-Ye Mao. 2000. The use of explanations in knowledge-based
systems: Cognitive perspectives and a process-tracing analysis. Journal of Man-
agement Information Systems 17, 2 (2000), 153–179.

[15] Aditya Anand Kalyanpur. 2006. Debugging and repair of OWL ontologies. Ph.D.
Dissertation.

[16] Deborah L. McGuinness and Peter F. Patel-Schneider. 1998. Usability Issues in
Knowledge Representation Systems. In AAAI/IAAI.

[17] Deborah L McGuinness, Frank Van Harmelen, et al. 2004. OWL web ontology
language overview. W3C recommendation 10, 10 (2004), 2004.

[18] Mark A Musen et al. 2015. The protégé project: a look back and a look forward.
AI matters 1, 4 (2015), 4.

[19] Tu Nguyen. 2013. Generating natural language explanations for entailments in
ontologies. Ph.D. Dissertation. The Open University.

[20] Richard Power. 2012. OWL Simplified English: a finite-state language for ontology
editing. In International Workshop on Controlled Natural Language. Springer, 44–
60.

[21] Thomas Roth-Berghofer and Bjorn Forcher. 2011. Improving understandability
of semantic search explanations. Int. J. Knowledge Engineering and Data Mining
1, 3 (2011), 216–234.

[22] Rob Shearer, Boris Motik, and Ian Horrocks. 2008. HermiT: A Highly-Efficient
OWL Reasoner.. In Owled, Vol. 432. 91.

[23] William R Swartout. 1983. XPLAIN: A system for creating and explaining expert
consulting programs. Artificial intelligence 21, 3 (1983), 285–325.

[24] William R Swartout and Johanna D Moore. 1993. Explanation in second genera-
tion expert systems. In Second generation expert systems. Springer, 543–585.

[25] Randy L Teach and Edward H Shortliffe. 1981. An analysis of physician atti-
tudes regarding computer-based clinical consultation systems. Computers and
Biomedical Research 14, 6 (1981), 542–558.

[26] Nava Tintarev and Judith Masthoff. 2011. Designing and evaluating explanations
for recommender systems. In Recommender systems handbook. Springer, 479–510.

[27] Dmitry Tsarkov and Ian Horrocks. 2006. FaCT++ description logic reasoner:
System description. In International joint conference on automated reasoning.
Springer, 292–297.

[28] L Richard Ye and Paul E Johnson. 1995. The impact of explanation facilities on
user acceptance of expert systems advice. Mis Quarterly (1995), 157–172.

9

https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355


APPENDIX
List of keywords in Manchester Syntax

OWL DL Concept Manchester Syntax Expanded Keyword
A ⊆ B A SubClassOf B A is a subclass of B
A ⊆ B A Type B A is a type of B
A ≡ B A EquivalentTo B A is equivalent to B
A = B A SameAs B A is the same as B
r ≥ i B r min i B r no less than i B
r ≤ i B r max i B r no more than i B
r X r value: X r with the value X
r ⊆ s r SubPropertyOf s r is a subproperty of s
r Domain A r Domain A r has the domain A
r Range A r Range A r has the range A
¬A not A not A
A ⊓ B A and B A and B
A ⊔ B A or B A or B
∃.r B r some B r at least one B
∀.r B r only B r only B
q = r−1 q InverseOf r q is the inverse of r
q = r−1 q inverse r q is the inverse of r
Functionality Functional: r The property r is functional
Transitivity Transitive: r The property r is transitive
Reflexivity Reflexive: r The property r is reflexive
Symmetry Symmetric: r The property r is symmetric
A ∩ B = � DisjointClasses: A, B The classes A and B are disjoint classes.
r ∩ s = � DisjointProperties: r, s The properties r and s are disjoint properties.
A ≡ B = � EquivalentClasses: A, B The classes A and B are equivalent classes.
r ≡ s = � EquivalentProperties: r, s The properties r and s are equivalent properties.
A ∩ B = � A DisjointWith B The classes A and B are disjoint classes.
A1 = B1 SameIndividual: A1, B1 A1 and B1 are the same individual.
A1 , B1 DifferentIndividuals: A1, B1 A1 and B1 are different individuals.
A =

⋃
i ∈I

Ai A DisjointUnionOf A1, A2 A is the disjoint union of A1 and A2.

Table 2: A table listing keywords from the Manchester Syn-
tax and the expanded keywords used in this project.

10


	Abstract
	1 Introduction
	2 Project Aim and Expected Outcomes
	3 Background and Related Work
	3.1 Description Logics
	3.2 Explanations
	3.3 The Web Ontology Language (OWL)
	3.4 Protégé-OWL

	4 Analysis and Design Choices
	4.1 Protégé
	4.2 Explanation Workbench
	4.3 Manchester Syntax and Keyword Expansion
	4.4 Explanatory Annotations

	5 Implementation
	5.1 Expanded Keywords
	5.2 Explanatory Annotations
	5.3 Action Priority

	6 Results and Evaluation
	6.1 Limitations

	7 Usage
	7.1 Software Licence

	8 Conclusions
	9 Future Research
	References

