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ABSTRACT
Malaria is a devastating disease that leads to hundreds of thou-

sands of deaths each year. Currently, most malaria diagnoses are

performed manually by experts using microscopes, which is time

consuming. This may result in it taking longer to diagnose patients,

especially those in poor and rural areas. This problem provides mo-

tivation for the development of reliable computer aided detection

(CADe) tools. The application of deep learning techniques, specifi-

cally convolutional neural networks (CNNs), has seen success in

the existing literature. However, CNNs are more computationally

expensive and require more training data than non-deep super-

vised techniques, such as random forests (RFs) and support vector

machines (SVMs). There has been limited application of these non-

deep techniques in the existing literature. This paper evaluates the

performance of SVM and RF models when applied to the problem

of malaria diagnosis, with the aim of understanding the viability

of their use in real world CADe systems. Testing on a set of 20000

images, accuracy scores of 96.29% and 93.06% are achieved with

tuned RF and SVM models, respectively. Testing on a small dataset

of images gathered from a different source achieves similar perfor-

mance, suggesting the models may generalise to different imaging

conditions. The developed models are shown to achieve higher

recall than existing supervised approaches. Moreover, the RF model

achieved accuracy, recall and precision within 4% of the highest

performing CNN approach.

1 INTRODUCTION
Malaria is a parasitic disease that can have devastating effects, not

only for individuals who contract it, but also for their families and

communities, which may suffer economic harm as a result [30].

Malaria disproportionately affects African countries, with 92% of

global infections and 93% of global deaths falling in the World

Health Organisation (WHO) African region. Malaria also dispropor-

tionately affects poorer and rural areas, where access to diagnosis

and treatment is limited. According to the WHO, prompt diagnosis

and treatment are the most important factors in preventing mild

cases from becoming more severe [37].

This presents a clear problem, as those who are most in need of

medical assistance are less likely to receive it in time. Currently,

the gold standard for malaria diagnosis is manual microscopy per-

formed by an expert. While this is a reliable method of diagnosis, it

is also costly and time consuming [31]. Part of the reason poorer

and rural areas are worst affected by malaria may be attributable

to a lack of access to these experts, whether due to cost or location.

This motivates the need for a low-cost and reliable computer aided

detection (CADe) system that minimises the time burden on expert

medical professionals.

Computer vision techniques may be applicable in the develop-

ment of CADe systems for malaria diagnosis from blood smear

images. The field of computer vision (CV) has seen important ad-

vances in recent years due in large part to the rise in popularity of

deep learning and convolutional neural networks (CNNs), and their

application to computer vision tasks. While they have proven to

be highly effective in a broad range of CV tasks, they require large

sets of training data. For example, Krizhevsky et al. used CNNs

to achieve significant improvements in the task of image recogni-

tion on the ImageNet dataset, which is made up of over 15 million

labelled images [15].

While CNNs have proven effective when directly applied to the

problem of malaria diagnosis, with one example acheiving over 99%

accuracy, the limited amount of publicly accessible data may be a

limiting factor in widespread usage [28]. Moreover, the extensive

computational resources required to run CNN models may limit

their application in poorer and rural areas. These limitations mo-

tivate more focused efforts to apply non-deep techniques to the

problem.

On the other hand, while non-deep machine learning classifica-

tion approaches may be more limited in their performance, they

also tend to be less reliant on large datasets. For example, support

vector machines (SVMs) and random forests (RFs) have shown

success in various computer vision tasks [9, 40].

This paper aims to evaluate combinations of supervised learn-

ing models and pre-processing techniques, comparing them to the

most successful CNN and non-deep approaches documented in the

existing literature. Fortunately, while many of the existing attempts

at automated malaria diagnosis were trained and tested on private

datasets, the current cutting edge CNN approach by Rajaraman

et al. made use of a dataset that was subsequently made publicly

available, enabling a direct comparison [27]. On the other hand, the

top performing supervised learning approach by Diaz et al. was

not evaluated on a public dataset, so a completely level comparison

was not possible [8].

A secondary aim of this work is to deduce howwell the proposed

systems generalise to images collected under different conditions.

While the cutting edge approaches mentioned above were shown to

be effective on a large amount of test data, all of this data originated

from the same source. This raises questions about the viability of

these approaches when applied to data collected under different

conditions. To limit similar concerns about the systems proposed

here, an additional performance evaluation is run with test data

gathered from a different dataset.

Section 2 presents background information on the techniques

used in this work. Section 3 examines the related work around

automated malaria diagnosis. Section 4 describes the evaluation



framework developed to run experiments. Section 5 discusses the

methodology followed when conducting experiments, as well as

the experimental design. Section 6 discusses the results of experi-

mentation, and lays out the limitations of the experimental process.

Section 7 draws conclusions from the results, and Section 8 notes

future work to be completed. Finally, Section 9 provides information

on the ethics of the research.

2 BACKGROUND
This section presents background information on the evaluation

criteria, machine learning models and pre-processing techniques

applied in this paper.

2.1 Evaluation Criteria
It is important to ensure that any computational model is evaluated

by the correct criteria, but this is even more critical when dealing

with medical diagnosis. The output of a medical diagnosis model

may inform treatment decisions, and so it is necessary to have

significant evidence of the reliability of a model before it can be

deployed. This section describes the criteria upon which the models

proposed in this paper will be judged.

A medical diagnosis is a procedure that classifies a patient as

positive or negative, depending on whether a disease is present

or not. To evaluate the diagnostic procedure, we run it on data

for which we already know the correct classifications. Results that

correctly label a patient as positive are called true positives (TP),

while those that falsely label a patient as positive are called false

positives (FP). Similarly, results that correctly label a patient as

negative are called true negatives (TN), and those that falsely label

a patient as negative are called false negatives (FN) [2, 41].

These categories are useful for determining the reliability of

diagnostic procedures. In particular, there are four widely used

evaluation criteria based on the proportion of test results that fall

into each category, namely recall (also known as sensitivity), preci-

sion, specificity and accuracy. Recall is a measure of the probability

that a positive case will be detected as such, while precision is a

measure of the probability that a positive prediction will be true.

Specificity is a measure of the probability that a negative will not be

falsely predicted as a positive. Specificity and precision are rarely

used together, as they both intuitively indicate the performance

of a model in not making false positive predictions. In this paper,

precision is used due to its prominence in the machine learning field

as a whole, and because it is directly implemented in scikit-learn,

the machine learning library used for development of models in

this paper. Finally, accuracy is a measure of the probability that any

result will be correct [16, 41]. The formulae used to calculate these

criteria are shown in Figure 1.

When screening for a disease, recall is highly important, as it

could prove disastrous to incorrectly clear a patient who is actu-

ally infected. Often it is better to achieve a higher recall at the

cost of some precision or specificity when screening for a treatable

disease. If the patient is tested as positive, it may be possible to

then perform a more thorough test before beginning treatment.

For example, Lalkhen and McCluskey discuss testing for cervical

cancer in women. Initially, a high recall but relatively lower preci-

sion and specificity smear test is done, which effectively screens

Recall/Sensitivity =
TP

(TP + FN )
(1)

Precision =
TP

(TP + FP)
(2)

Speci f icity =
TN

(TN + FP)
(3)

Accuracy =
(TN +TP)

(TN +TP + FN + FP)
(4)

Figure 1: Formulae for calculation of evaluation criteria

for cases where it is highly unlikely that the disease is present.

Then, for patients who test positive, a more costly investigative

surgery procedure may be performed. While the smear test is not

perfect, it serves the purpose of greatly cutting down the need for

investigative surgery and therefore allows for more cost effective

and time efficient handling of the disease [16].

Similarly, an automated malaria test with high recall could serve

as an initial screening process to lower the burden on expert medi-

cal practitioners who would then only have to manually test those

with a positive screening result. The benefit of this use case is sup-

ported by an interview done with a pathologist from PathCare, who

stated that negative test results actually produce the greatest time

burden. This is because the whole blood smear must be examined

manually, which may take a human expert up to 40 minutes. An

automated screening test with high recall has the potential to sig-

nificantly reduce the time taken, and would require little human

input. Moreover, in cases where one or more positives are detected,

the system could flag these particular blood cells for investigation

by the pathologist in an effort to reduce the time taken to confirm

positive results.

2.2 Support Vector Machines (SVMs)
SVMs, first introduced by Cortes and Vapnik, are a machine learn-

ing approach typically associated with classification problems [7].

Intuitively, SVM classifiers fit a hyperplane between classes in a par-

ticular feature space. An optimal hyperplane is found by iteratively

reducing error, with higher weight being placed on the support

vectors, which are the data points closest to the division between

classes. They are computationally efficient in a relatively small

feature space, but when working with raw images, this feature

space expands rapidly. As such, SVMs rely on feature extraction

algorithms for computer vision applications.

SVMs have seen extensive use for CV applications in the exist-

ing literature. For example, Zhang and Wu used SVMs to classify

images of fruit into 18 categories with an 88.2% accuracy, using

a training set of 1322 images [40]. They have also shown success

when applied to other medical diagnosis problems, such as brain

tumor segmentation [17], which motivates their inclusion in this

paper.

SVMs have numerous hyperparameters that can be adjusted,

which may greatly impact their performance. The SVM models in

this paper are tuned by changing three hyperparameters:
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(1) Kernel function

(2) Degree

(3) Gamma value

The chosen kernel function typically has the greatest impact

on the performance of a model, as it fundamentally changes the

underlying calculations done to predict correct classifications. Two

kernel functions are evaluated in this paper, namely Radial Basis

Function (RBF) and Polynomial. The degree hyperparameter is only

relevant to polynomial SVMs, defining the degree of the underlying

polynomial function.

The gamma value determines how closely the classifier attempts

to fit the training data. As the gamma value increases, it becomes

more likely that the model will start to overfit the training data.

Conversely, with too low a gamma value, the model may underfit

the data.

2.3 Random Forests (RFs)
The idea of random forests was introduced by Ho, who described

the benefits of generating many complementary decision trees

operating in random subspaces of the entire feature space [12].

Traditional ensemble tree methods struggle to generalise as the

complexity of the feature space grows. On the other hand, RFs

were shown to achieve generalisation in more complicated feature

spaces than would be possible with traditional decision tree meth-

ods, while still retaining high speeds of execution. For example, Ho

demonstrated increased accuracy on the classification of images

of hand-written digits. Breiman improved on Ho’s model by inte-

grating the concept of bagging, which reduces variance by creating

trees each with only a subset of the overall training set [3, 4].

The combination of high speeds of execution and their ability to

generalise even in complex feature spaces have made RFs popular

for a broad range of CV tasks. For example, Fanelli et al. used an RF

model to classify facial poses with a 90.4% accuracy, using a training

set of 50000 automatically generated renders of a 3D modelled face

[9]. RFs have also been applied to medical imaging problems, with

Lee et al. having achieved over 98% sensitivity and 97% specificity

when applying RFs to the problem of lung nodule detection [18].

The success of RFs when applied to other CV problems, such as

those discussed above, motivates their inclusion in this paper.

RFs can be constructed using several hyperparameters, which

may affect their output substantially. The models proposed in this

paper will be tuned by adjusting two hyperparameters:

(1) Number of trees in the forest

(2) Maximum depth of trees

Typically, having more trees in the RF tends to improve perfor-

mance, but also increases time taken for training and execution.

As such, it is important to find a good balance, at the point where

increases in the forest size start to give diminishing returns.

The maximum depth of trees in the forest dictates how far trees

are allowed to expand. A highmaximum depthmay cause the model

to overfit to the training data, while a low maximum depth may

cause the model to underfit.

2.4 Image Filters
Filters are algorithms that can be applied to images to adjust their

characteristics in various ways. Applying filters to images before

they are fed into machine learning models may serve to accentuate

differences in visual characteristics between positive and negative

cases. This may, in turn, result in improved model accuracy. The

image filters used in this paper are outlined below, and Figure 2

demonstrates the effect that each has on a sample image of an

infected red blood cell.

2.4.1 HSV Conversion. The HSV colour space is made up of hue,

saturation and value (the brightness of a pixel). This colour space is

designed to better mimic the way humans perceive light compared

to the more common RGB colour space, which simply represents

pixels as a combination of red, green and blue colour intensities.

Existing papers have shown greater success using HSV colour space

compared to RGB, both broadly in the field of CV and specifically

in relation to malaria diagnosis [1, 6].

2.4.2 Channel Isolation. Image channels are the different values

in a colour space that describe each pixel. Typical three channel

colour images provide a lot of information about each pixel, but this

extra detail can be distracting to a machine learning model if there

is little differentiation between positive and negative examples in a

particular channel. Some papers in the field of malaria diagnosis

have demonstrated success when isolating the saturation channel

of HSV blood cell images, possibly due to the effects of the stain

added before imaging [1, 23].

2.4.3 Contrast. The difference in intensity between the darkest

and brightest parts of an image is known as contrast. In the case of

image classification problems, image contrast may affect the ability

of a model to differentiate between positive and negative cases. If

there is a difference in intensity between the typical background

of images and objects that must be detected, then increasing the

image contrast may enhance the ability of a model to recognise this

difference. Existing papers have used increased contrast as an ini-

tial enhancement for more effective detection of malaria parasites,

justifying its use in the current work [1].

2.4.4 Threshold. Threshold functions operate similarly to contrast

functions, and have the same justifications for use. However, while

contrast functions change the intensity of pixels smoothly, thresh-

old functions change the value of all pixels above a threshold to a

specified value, and all pixels below that threshold to a different

value. This may create a more dramatic separation between the

object and background, possibly increasing the ability of models

to detect objects. In the past, thresholding has been applied to the

problem of hand gesture recognition to differentiate the foreground

of an image from the background [26]. In this paper, we apply

thresholding after contrast has been increased with the intention

of better isolating the parasite from the blood cell.

2.5 Feature Extraction
It is infeasible to feed raw image data into SVMand RFmodels as this

tends to result in poor performance and long runtimes, both when

training and running predictions. Image features are summaries of

images that can be extracted through traditional computer vision

algorithms to greatly reduce the size of the input that is fed into

models. Once extracted, features can be concatenated and flattened

into a final feature vector before they are used as input to models.
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Figure 2: Image filtering techniques. From left to right, we first see the unfiltered image, followed by theHSV converted version.
Next, the isolated saturation channel is displayed. Following this, we see the same isolated channel but with added contrast.
Finally, we see the application of the threshold function after contrast boosting.

The feature extraction techniques used in this paper have all seen

success when applied to various other image classification tasks.

The details of each are discussed below.

2.5.1 Hu Moments. Hu proposed a set of seven moment invariants,

all of which are invariant to scale, rotation and translation [13].

These features, known as the Hu moments, have been applied

broadly to problems in the field of computer vision. For example,

Otiniano-Rodriguez et al. achieved over 90% accuracy using the Hu

moments as input to an SVM classifier for sign language recognition

[25].

2.5.2 Haralick Texture Attributes. Haralick et al. presented a set of

14 textural features that can be extracted from images to improve

image classification accuracy [11]. These features have since been

used in a broad range of image classification tasks. For example,

Mery et al. used haralick texture attributes as part of their selected

feature space for automatic quality grading of corn tortillas [24].

Applications of haralick texture attributes extend to medical imag-

ing applications, with Roula et al. having documented their use

as part of their feature space for classifying prostatic neoplasia in

microscopic images of samples taken by needle biopsy [29].

2.5.3 Histograms. Histograms sort the pixels of an image into

a specified number of bins depending on their intensity in each

colour channel. Existing works have used histograms for various

image classification tasks. For example, Chapelle et al. extracted

histograms from a sample of stock images in seven categories and

used these as the sole inputs to an SVM classifier, achieving a best

error rate of 11% [5]. Szummer and Picard used histograms as part

of a feature set for indoor-outdoor image classification, resulting in

90.3% accuracy [32].

3 RELATEDWORK
There has been significant research interest around the topic of

automated malaria diagnosis, and the existing literature has demon-

strated varying levels of success using a wide variety of techniques.

This section critically analyses the existing literature to identify the

most promising methods that have been proposed thus far, specifi-

cally those that have been evaluated rigorously on a large, disjoint

test set.

The problem of automated malaria diagnosis can be thought of

as two or three separate computer vision tasks. First, the raw blood

smear image must be segmented into many images of individual

red blood cells. Second, each cell must be classified as either in-

fected or healthy. Third, as an extension on the second task, specific

identification of the malaria species and stage of development could

be performed, though this is a more complex problem that would

likely require significantly more data to generalise successfully.

Each of these tasks are discussed in separate subsections.

3.1 Segmentation
Segmentation refers to the process of automatically recognising

relevant objects in an image and producing cropped sub-images

of each object identified by the algorithm. The main performance

indicators of a segmentation algorithm are how closely it is able

to crop each object (minimising background distraction), and how

accurately it is able to recognise objects.

The primary challenges of cell segmentation are to deal with

overlapping blood cells and to differentiate between blood cells and

distractors, such as dust or stain marks on the blood slide.

Numerous approaches have shown success when applied to the

problem. One such approach is the use of a circular hough transform.

This measures the minimum and maximum radii of a suspected

red blood cell and averages this to infer a best fit when cropping.

Various papers have achieved accuracies of over 90% in counting the

number of red blood cells with this approach [20, 21]. For example,

in their malaria diagnosis system, Rajaraman et al. used a level-set

based algorithm to perform blood cell segmentation, for which they

did not provide runtime metrics [27]. While the authors showed

it to be quite effective, with a positive predictive value of 94.4%,

level-set segmentation is typically quite costly [35]. Given that

deployment of these systems is likely to have the greatest impact

in rural clinics with limited computational resources, it is not clear

what effect this may have on the system’s real world viability.

Due to both time constraints as well as the extensive collection

of existing work, it was decided not to develop a segmentation

algorithm for this paper. Rather pre-cropped red blood cell images

are used as inputs to the infection classification models that form

the focus of the paper.

3.2 Infection Classification
Infection classification is the process of taking in an image of a red

blood cell and classifying the cell as infected or uninfected. The

performance indicators of infection classification algorithms are

sensitivity, precision, specificity and accuracy (described in section

2.1).
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Liang et al. proposed a solution to malaria infection classifica-

tion based on CNNs, showing promising results. They achieved

accuracy of 97.37%, sensitivity of 96.99% and specificity of 97.75%

after training the CNN with 24300 labelled images and testing with

a disjoint set of 2700 images. The authors do acknowledge some

limitations of the approach, specifically the need for large sets of

training data and significant computing power for a CNN model

to be viable. Unfortunately, all blood smear images used in this

study were acquired from the same hospital archive. As a result, the

model may be biased towards the particular conditions under which

those images were collected [19]. In order to ensure robustness and

real world applicability of the model, it would need to be able to

accurately classify images collected in a wide range of conditions.

The use of a small testing set causes further doubt over the final

results.

Rajaraman et al. used CNNs to achieve accuracy of 98.6% and

later improved this to 99.5%, using a public dataset hosted by the U.S.

National Library of Medicine [27, 28]. The improved model demon-

strated precision of 99.8%. However, these metrics are given at the

patient level rather than the cell level, which is more commonly

used in the existing literature. Unfortunately, similarly to Liang et

al., the dataset consisted of images taken under the same conditions,

with the same staining method and from the same archive. More-

over, the images of individual blood cells were segmented using a

level-set based algorithm, which may be computationally expen-

sive. This complexity would compound with the already resource

intensive CNN model, possibly limiting the viability of the system

for deployment in poorer or rural areas if the model is not able to

maintain high performance when less computationally expensive

segmentation techniques are applied.

Transfer learning is a technique that involves using a CNN for

feature extraction before performing classification with an external

algorithm. Mehanian et al. propose a solution for malaria diag-

nosis using transfer learning with a feature extraction CNN and

non-deep logistic regression classifier. They demonstrated good

performance, having achieved sensitivity of 91.6% and specificity

of 94.1%. Though the results of their study are not quite as positive

as Liang et al. or Rajaraman et al., they also tested the model on

substantially more data that originates from 12 countries [22]. This

suggests that the model developed by Mehanian et al. may be more

robust and have more real world applicability. While the logistic

regression classifier is a non-deep supervised learning technique,

the reliance on the underlying CNN feature extractor suggests that

the real world application of this approach would still be limited

by its computational complexity.

While deep learning approaches have been more prevelent in

the existing literature, there are a few papers using non-deep super-

vised learning techniques. For example, Tek et al. used a k-nearest-

neighbours (KNN) classifier to perform binary detection of malaria

parasites and reported an accuracy of 93.3% [33]. However, this

high accuracy is achieved due to the combination of an imbalanced

testing set, with many more negatively classified images, and a high

specificity of 97.6%. The sensitivity of the approach was measured

as only 72.4%, suggesting that the approach may not be viable for

real world applications. On the other hand, Diaz et al. achieved

94% sensitivity and 99.7% specificity using an SVM based approach

[8]. However, these results were achieved when running the model

on the full dataset used in the study, including those images used

for training, casting some doubts over the validity of the reported

results. Nonetheless, these results have been used as a benchmark

in other studies evaluating non-deep approaches [36].

3.3 Species and Stage Classification
Species and stage classification is an extension of the previous task

of infection classification. This process involves taking in an image

of an infected red blood cell and classifying the parasite’s species

and life cycle stage. This is a significantly more complex problem

than simply labelling a cell as infected or not.

There are four species of the Plasmodium parasite that gener-

ally cause malaria in humans, namely P. vivax, P. falciparum, P.
malariae and P. ovale. Less often, humans may be infected by a

fifth species, P. knowlesi, but this normally affects animals. Each

species appears differently under a microscope [38]. Adding fur-

ther complexity, each parasite goes through a life cycle defined

by three stages. At each stage of a parasite’s life cycle, it appears

differently, and the distinction between different stages may not be

clear as it transitions from one to another. Plasmodium parasites

begin life as a trophozoite and later develop into a schizont and

eventually a gametocyte [38]. This means that, overall, there are 15

species-stage combinations that would need to be classifiable by a

successful algorithm.

Some existing attempts at automated classification of malaria

species and stage can be found in the literature. Tek et al. made

use of the k-nearest-neighbours algorithm for malaria species and

stage classification, proposing two configurations [33]. The first

configuration is a 16-class classifier that assumes the input image

is of an infected cell and classifies it as one of the 15 possible

combinations of species and stage or, if the classifier is unable to

conclusively categorise the input, as an inconclusive image.

The second configuration is a 20-class classifier that combines

simple infection classification with the more complex problem of

species and stage classification. It classifies an input image as one of

the 15 species-stage combinations, as one of four non-parasite arte-

facts, or as inconclusive. The 16-class classifier achieved accuracy

of 91.2% in diagnosing the parasite species and 90.1% in diagnosing

its life stage. The 20-class classifier achieved accuracy of 94.4% in

overall infection detection, 90.6% in diagnosing parasite species and

89.9% in diagnosing parasite life stage. The study is limited by the

relatively small amount of data used, with 669 blood cell images

labelled as infected and 3431 labelled as uninfected. This limited

amount of data led to the authors using the leave-one-out approach,

which seeks to maintain independence between training and test-

ing data without making them completely disjoint as mandated

by the hold-out approach [10]. While better than simply reusing

the training set for testing, the leave-one-out approach may still

produce results that are more optimistic than warranted.

It was decided to limit the scope of this paper to simple infection

classification rather than stage and species classification due to

both the short period of time available to conduct the research as

well as the lack of publicly available datasets with stage and species

labels.
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4 EVALUATION FRAMEWORK
A framework was developed to automatically run evaluations on a

set of models, with the goal of simplifying the evaluation process.

Three specific requirements were identified:

(1) The framework needed to handle loading of various datasets,

while ensuring good evaluation standards by automating the

process of splitting data into training and testing sets.

(2) It also needed to allow for the decoupled development of

models and the framework itself, which was done by provid-

ing a model interface to be implemented by concrete model

classes.

(3) Finally, the framework needed to facilitate the use of short

testing scripts to specify the design of experiments.

Each of these framework components are described in detail

below.

4.1 Dataset Loader
To ensure the validity of results, an iterative random hold-out ap-

proach was taken, whereby random subsets of the dataset are se-

lected at each iteration to form the training and test sets. The test

set is not used for training models so that when testing occurs, that

data is unseen by the model. The metrics achieved for each iteration

are aggregated to form the final result.

K-fold cross validation is another popular approach that has been

used widely in the existing literature, especially when the size of

datasets is very limited. However, whenworkingwith large datasets,

both approaches have been shown to be accurate in judging model

classification performance [14, 39]. The dataset loader implemented

the randomised loading of data, and automatic splitting into training

and test sets, while the evaluation runner, described below, handled

the iterative process.

The Python glob and os packages are used to get lists of files

in a specified dataset folder. Python’s random package is used to

select random samples of files in the specified directory, which are

then loaded into memory. Once loaded, files are resized to specified

dimensions to achieve consistency across all images in the dataset.

Loading and resizing of image data is handled using the OpenCV

library. Once loaded and resized, images are split into training and

test sets of specified sizes and returned to the evaluation runner.

4.2 Model Interface
The model interface is an abstract class with two methods that must

be implemented in concrete sub-classes, for training and running

the model. The benefit of this is that the details of each model’s

implementation are completely hidden from the evaluation runner,

decoupling the development of each. This allows much greater flex-

ibility in designing models, while still making it simple to integrate

them with the evaluation runner.

For this paper, concrete SVM and RF model classes are developed.

These act as wrappers for model implementations provided by the

scikit-learn library, to allow their use with the evaluation runner.

These model classes also handle the application of image filtering

and feature extraction algorithms to input data.

Figure 3: Evaluation framework system diagram.

4.3 Evaluation Runner
The evaluation runner handles the training and testing of models,

and recording of metrics. The primary benefit of this framework

component is that experiments can be designed without needing

to write code to explicitly handle these routine tasks. It allows for

a number of iterations to be set, with each iteration retrieving new

data from the dataset loader before running the same training and

testing process. Metrics are calculated using the scikit-learn metrics

package and, for each iteration, printed to the console and written

to file. The resulting trained models for each iteration are dumped

to file using the joblib framework, which allows them to be loaded

at a later point for further testing. Finally, the metrics from all

iterations are aggregated, printed to console and written to file.

4.4 Software Architecture
The framework and models were developed using Python (version

3.6.7) and various libraries that have been noted above. Specific

efforts weremade to follow the PEP-8 code style conventions, which

have been widely adopted by Python developers [34]. The code

has been thoroughly documented and commented to ensure that

it is simple to understand by other developers. Assertion testing

was conducted to ensure the validity of the produced code. Git

source control was used and code was regularly pushed to a remote

GitHub repository.

5 METHODOLOGY
This section lays out the process by which the research aims were

addressed. Specifically, two research questions are posed:

(1) Can non-deep supervised learning models paired with image

filtering and feature extraction algorithms achieve accuracy

scores within 5% of the top performing deep learning model

when trained and tested on the same dataset?
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(2) Does the performance of models degrade when applied to

testing sets gathered from different sources to the training

set?

The details of the datasets and computational equipment used are

presented, followed by in-depth explanations of the model tuning

and experimentation processes.

5.1 Datasets
Two datasets are used to run the experiments detailed in this study.

The first is a publicly accessible dataset, originating from a study

by Rajaraman et al. and made available by the U.S. National Library

of Medicine (NLM) [27]. This dataset is made up of pre-cropped

blood cell images, with 13779 classified as infected and the same

number classified as uninfected, for a total of 27558 images.

The second is a private dataset provided to the author by Path-

Care Laboratory Services. This dataset was provided as blood slide

images, not pre-cropped but with infected cells having been identi-

fied by a pathologist. As mentioned previously, it was decided not

to implement an automatic cropping algorithm for this paper due

to time constraints. As such, this dataset was manually cropped

into a set of 120 cell images, with 60 labelled as infected and 60

labelled as uninfected.

Images in each dataset were not of a standardised size, and so

it was decided to resize all images to 50 pixel by 50 pixel squares.

These measurements were decided to avoid artifacts generated from

excessive upscaling or stretching in either axis, with most of the

original images being about the same size or larger and roughly

square in shape.

5.2 Computational Equipment
Development, training and testing were all conducted on the same

machine, a laptop running Ubuntu 18.04.1 LTS. The machine had

16GB of RAM and a four core Intel i7 CPU, with clock speeds of

2.7GHz. The machine did not have a dedicated graphics card. The

operating system and all program code were stored on an solid-state

drive.

5.3 System Selection and Tuning
We can think of each combination of model, hyperparameters, fea-

ture extraction algorithms and image filtering algorithms as an

experimental system. Due to the high number of potential experi-

mental systems, it was infeasible to perform an exhaustive search

for the best performing combination, though this would theoret-

ically result in an optimal system. Instead, a three-stage system

selection process was designed, with each stage focused one com-

ponent of the system. The selected options in each stage are used

in the following stages until final tuned systems are selected at the

end of the third stage. These stages are described in subsections

below.

Evaluations at each stage are made based on the mean accuracy,

recall and precision metrics, rounded to four decimal places, ob-

tained from five iterations. For each iteration, systems are trained

on 5000 images and tested on disjoint sets of 5000 images.

5.3.1 Feature extraction algorithms. The feature extraction algo-

rithms described in section 2.5 are considered. Greyscale and colour

histograms are evaluated with 2, 4, 8, 16, 32 and 64 bins to deter-

mine the optimal size for each. In cases where explicit channel

isolation was not conducted, the standard greyscale image conver-

sion function provided by OpenCVwas applied preceding greyscale

histogram extraction. Because this was only an initial parameter

selection process, accuracy was used as a singular metric for evalu-

ation. More granular examination of the balance between recall and

precision is done in future evaluations. After the selection of bin

sizes, the performance of these histograms is compared with that of

Haralick texture attributes and Hu moments. The most successful

feature extraction approaches are then used in the image filtering

selection phase.

5.3.2 Image filtering algorithms. The image filters described in

section 2.4 are considered in various combinations. Specifically,

models with the previously selected feature extraction algorithms

are used with five different image filter combinations:

(1) No filters

(2) HSV conversion

(3) Saturation channel isolation

(4) Saturation channel isolation with contrast

(5) Saturation channel isolation with contrast and thresholding

The most successful image filtering and feature extraction com-

binations for each model are then used in the final hyperparameter

tuning phase.

5.3.3 Hyperparameter tuning. The hyperparameters for eachmodel,

discussed in sections 2.2 and 2.3, are tuned by adjusting one at a

time, finding the optimum value and locking that value for the rest

of the tuning process. While in an ideal situation tuning would

search through all the possible combinations of hyperparameters,

it is not feasible in this case given the high number of potential

combinations.

The SVM model is first tuned by selection of its kernel function.

The standard RBF kernel used by default in the scikit-learn library

is compared to 1st, 2nd, 3rd and 5th degree polynomial kernels. The

SVM model is then tuned by selection of its gamma value. Gamma

values that are tested include the automatically calculated gamma

value used by default in scikit-learn as well as 1, 0.1, 0.01 and 0.001.

The optimal resulting model is selected to proceed to the two final

experiments.

The RF model is first tuned by the selection of its forest size.

Forests with 1, 10, 50, 100 and 250 trees are evaluated. Following

the selection of the number of trees, the maximum depth of trees is

evaluated. Maximum depths of 10, 100, 250 and 1000 are compared,

along with the default scikit-learn setting of no maximum depth, to

select the final RF model to proceed to the final two experiments.

5.4 Experiment Design
Following the system selection process, two experiments are con-

ducted on the final selected systems, allowing for evaluation of

various experimental hypotheses.

5.4.1 Experiment 1: Performance of systems on NLM data. Systems

are evaluated on their ability to operate on data that is part of

the same dataset used for training. Results are obtained from ten

iterations, each time trained on 5000 images and tested on a disjoint

set of 20000 images. This experiment is designed to evaluate the
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ability of the systems to predict infection in images collected in

a similar way to the training data. It was hypothesised that the

best systems proposed in this paper would not outperform the

most successful CNN based approaches in the literature, but that

they would achieve accuracy within 5%, and improve on existing

supervised approaches.

5.4.2 Experiment 2: Performance of systems on PathCare test data.
The systems are put through a final evaluation to test their ability to

operate on datasets other than the one used for training. Results are

obtained by loading models from the first experiment, pre-trained

on the NLM dataset, and tested on the full PathCare dataset of 60

infected and 60 uninfected images.

This experiment is designed to evaluate the generalisability of

systems trained on a dataset gathered from a singular source, an-

swering the second research question. It was hypothesised that the

prediction performance on the PathCare dataset would be worse

than that seen on the NLM dataset used for training, as it is unlikely

that the systems will generalise successfully without a broad range

of collected data.

6 RESULTS AND DISCUSSION
In this section, the results of system selection and tuning and the

two experiments are presented. The implications of these results are

discussed, and possible explanations are laid out. Finally, limitations

of the experimentation process are noted.

6.1 System selection and tuning
This subsection details the results of system selection and tuning.

Detailed tables of results are available in the supplementary infor-

mation, from S1 to S8.

6.1.1 Selection of feature extraction approaches. Models showed

significant accuracy improvements as the number of bins increased

up to 64 for greyscale histogram inputs. Colour histograms resulted

in peak accuracy at 16 bins for both models. Unfortunately, 64 bin

colour histograms caused a memory error on the computer used for

testing and 32 bin colour histograms resulted in prohibitively long

training and execution times when fed into SVM models. Based on

these initial results, 64 bin greyscale histograms and 16 bin colour

histograms were selected.

Following the bin size selection, colour and greyscale histograms

were compared to Hu moments and Haralick texture attributes.

Results when using Hu moments were significantly worse, for all

metrics, than any of the other feature extraction approaches, for

both models. Colour histograms performed the best on all metrics,

for both models. Haralick texture attributes resulted in better accu-

racy than greyscale histograms for the SVMmodel, but the opposite

was true for the RF model. It was decided to eliminate Hu moments

at this point, but evaluate each of the other techniques further in

the next stage.

6.1.2 Selection of image filtering approaches. Interestingly, while
colour histograms achieved the best performance when no image

filtering was applied, once these filters were applied, other feature

extraction methods produced better results.

In almost every case, filtering significantly improved perfor-

mance, though colour histograms saw minimal performance im-

provements when used with the RF model, and actually decreased

in performance when used with the SVM model. In the case of RFs,

it was expected that the performance increase would be minimal, as

unfiltered colour histograms already demonstrated high accuracy

of over 95%.

Haralick feature extraction performance improved significantly

for both models when image filters were applied. In particular, the

SVM model saw its highest performance when used with these

combinations. SVMs saw a 17.15% increase in accuracy with Haral-

ick feature extraction on images with HSV conversion. This image

filtering approach only attained a recall of 90.55%, however. On the

other hand, while the application of thresholding on the contrast

boosted saturation channel saw 0.55% lower accuracy, it saw an

increase of 5.19% in recall, with a relative drop in precision. These

methods were the best performing overall for the SVMmodel, but it

was decided to select the thresholding approach for the next stage

despite its lower accuracy and precision, due to the high importance

of recall for automated medical screening tests.

While the RF model also saw significant performance improve-

ments with Haralick combined with image filtering, in the best

case seeing an accuracy improvement of over 20%, even better per-

formance was attained with histogram extraction. HSV converted

colour histograms saw very slight improvements in all metrics

compared to the unconverted version, but each of these metrics

were lower compared to the best greyscale histogram combination.

When the greyscale histogram was used with isolated saturation

channel filtering, it achieved an accuracy of 95.98%. This was the

best overall accuracy of any filtering method, though the contrast

boosted version achieved a very minor improvement in recall of

0.02%. The cost of this minimal improvement would be 2.22% ac-

curacy, so it was decided to select the isolated saturation channel

filtering without contrast boosting for the next stage.

6.1.3 Hyperparameter tuning. The SVM model was first tuned by

selection of its kernel function. Overall it was observed that the

performance difference between different kernel functions was

very minimal. The 3rd degree polynomial kernel demonstrated the

highest accuracy of 92.9%, and was therefore selected to go forward

to gamma value tuning.

Again, very minor differences in performance were observed be-

tween different gamma values. The automatically calculated gamma

value achieved the highest recall value of 96.36% and the second

highest accuracy of 93.07%. The highest accuracy score, achieved

with a gamma value of 0.1, was only an improvement of 0.02%, but

the recall score achieved was 0.51% lower. It was chosen to use the

automatically calculated gamma value going forward into the two

experiments, with the intention of optimising for higher recall.

The RF model was first tuned by selection of its forest size. All

metrics peaked at a forest size of 100, so it made sense to select

this going forward. Next, the maximum depth value was tuned.

Increasing this value had very little effect after 100, and even the

increase from 10 to 100 only had an accuracy improvement of 0.33%.

It was therefore decided to select a value of 100, as unnecessar-

ily increasing this value may result in overfitting of the data and

increased computation times.
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Model Accuracy Recall Precision Train Time Test Time
Tuned SVM 0.9306 0.9613 0.9058 63.9346s 254.9055s

Tuned RF 0.9629 0.9606 0.9649 1.2108s 1.0796s

Table 1: Results of Experiment 1. The best result for each
column is highlighted.

6.2 Experiment 1: Performance of Tuned
Models on NLM Data

The results observed when testing on the NLM dataset were highly

positive. The SVM system achieved an accuracy of 93.06%, recall

of 96.12% and precision of 90.58%. The best performing existing

approach by Diaz et al. does not report precision but reports speci-

ficity of 99.7% and recall of 94% [8]. As described in section 2.1,

precision and specificity are comparable metrics. While the SVM

system’s precision is significantly lower than the specificity re-

ported by Diaz et al., it also demonstrates a 2.12% improvement

in recall. The RF system achieved an accuracy of 96.29%, recall of

96.06% and precision of 96.49%. This amounts to a 2.06% increase

in recall with a 3.68% lower precision than the specificity achieved

by Diaz et al.

As argued in section 2.1, for an automated screening test in-

creases in recall may be more beneficial than higher specificity

or precision. In this sense, the hypothesis that the systems in the

current work would improve on existing supervised approaches is

confirmed, though it is acknowledged that the improvement is not

observed across all metrics.

The current work also evaluates models on significantly more

testing data than Diaz et al.: 20000 blood cells compared to 12557.

Moreover, the parasitemia of the testing data used by Diaz et al. is

reported as 5.6%, amounting to approximately 703 infected blood

cells. On the other hand, the testing data used in this experiment

is balanced, with 10000 infected cells, possibly resulting in a more

accurate reflection of the real-world recall that can be expected

from the system.

The models did not achieve better results than the CNN ap-

proaches detailed by Rajaraman et al. However, the RF model’s met-

rics all fell within 5%, as hypothesised [27, 28]. The SVM achieved

a recall score within 5% of that reported for the approaches by

Rajaraman et al., but precision and overall accuracy did not fall

within this bracket. Mehanian et al. achieved recall of 91.6% and

specificity of 94.1% with their transfer learning model [22]. Both

the SVM and RF systems improve significantly on this recall, and

the RF also shows higher precision than the specificity reported by

Mehanian et al. The testing set used in this paper was significantly

larger than those used by both Mehanian et al. and Rajaraman et al.,

though that used by the former was far more diverse, with images

taken under different conditions and originating from 12 countries.

Papers in the existing literature have not reported training or

testing time metrics, so it is not possible to provide a comparison

here. However, comparing the RF and SVM systems proposed in

this paper, it is clear that the RF system is significantly less compu-

tationally expensive. The testing time of the SVM system is a factor

of 236 greater than that of the RF system, while the training time is

a factor of 53 greater. These runtime metrics suggest that the RF

Model Accuracy Recall Precision Train Time Test Time
Tuned SVM 0.9417 1.000 0.8955 n/a 2.053s

Tuned RF 0.9667 1.000 0.9375 n/a 0.016s

Table 2: Results of Experiment 2. The best result for each
column is highlighted.

Figure 4: Comparison of proposed systems with the current
best performing non-deep approach.

system may be more suitable for deployment in situations where

computational power is limited.

6.3 Experiment 2: Performance of Tuned
Models on PathCare Data

Both the SVM and RF systems saw slight improvements in accuracy

when run on the PathCare dataset. The precision of both decreased:

by 1.03% for the SVM system and 2.74% for the RF system. However,

each achieved 100% recall. It must be noted that these results are

likely overly optimistic due to the exceptionally small size of the

PathCare dataset. For this reason, further work is warranted using

a larger dataset. With this limitation acknowledged, the hypoth-

esis that performance would decrease on the PathCare dataset is

falsified, if recall is judged to be more important than precision for

automated screening systems, as argued in section 2.1. However, it

is acknowledged that the increased performance was not universal

across all metrics.

The runtime metrics of this experiment confirm the observation

made in the first experiment, that the RF system is more computa-

tionally efficient than the SVM system. While train times are not

evaluated, as the systems were pretrained, the test time of the SVM

system is a factor of 128 greater than that of the RF system.

6.4 Limitations
The small size of the PathCare dataset limits the credibility of the

results of the second experiment. While the results achieved were

very positive as an initial evaluation, further experimentation on a

significantly larger set of data is necessary to confirm the viability

of the system.

Due to time constraints, an automatic cropping algorithm was

not developed for this paper and instead manual cropping of the
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Figure 5: Comparison of proposed systems with existing
deep learning approaches.

PathCare dataset was performed. While there are successful exam-

ples of automatic segmentation of red blood cells in the existing

literature, it is not certain what effect these algorithms may have

had on the performance of any of the models presented in this paper.

Certainly, this warrants future work to build and evaluate a full

diagnosis pipeline that performs both segmentation and infection

classification.

The data that was made available for this research was only clas-

sified in two classes: as parasitised or non-parasitised. However, in

reality there are multiple species of the malaria parasite, each with

various life stages. Because the data was only classified in this bi-

nary manner, it is unclear whether the models generalise to provide

similar performance for all species and life stage combinations.

7 CONCLUSIONS
The conducted experiments demonstrated the usefulness of super-

vised learning techniques as an alternative to the popular deep

learning approaches, which have been the primary focus of the ex-

isting literature. Various conclusions can be drawn from the results

of these experiments.

Firstly, the proposed RF and SVM systems outperform existing

supervised approaches in terms of recall, which is seen as the most

important metric for judging the performance of initial screening

tests. Secondly, the proposed systems are able to achieve recall

within 5% of that reported by existing CNN approaches. This indi-

cates that supervised techniques may be an effective alternative in

situations where the high computational power required by CNN

systems is not possible, such as in rural clinics. Thirdly, initial re-

sults when run on a small dataset gathered from a different source to

the training data seem to indicate that the promising performance

demonstrated by the proposed systems may generalise to various

imaging conditions. However, further work is necessary to confirm

this. Fourthly, the RF system appears more suitable for real-world

use, as it achieves better accuracy and is far more computationally

efficient than the SVM system. Finally, increased performance is

demonstrated when systems apply appropriate image filtering as

pre-processing before feature extraction is conducted, which en-

courages the use of image filtering in future work on this problem.

On the whole, it is shown that non-deep supervised learning

techniques have great promise for reducing the burden on medical

professionals in performing malaria diagnosis. This may, in turn,

result in much faster times to diagnosis, and allow quicker inter-

vention, which is described by the WHO as the most important

factor in preventing severe cases and deaths from occuring [37].

The higher computational efficiency of non-deep systems, such as

those presented in this paper, may allow for more widespread adop-

tion, especially in areas where extensive computational resources

are not available. Thus, the value added by these systems may have

a significant impact on rural and poor communities, particularly

those in the WHO African region.

8 FUTUREWORK
The systems proposed in this paper show promise as a compu-

tationally cheap alternative to CNN based systems, with a lower

training data requirement. As such, future work to develop a fully

integrated CADe system is warranted. Such a system should include

the full computational pipeline of automated blood cell cropping,

pre-processing, feature extraction and classification. Evaluation of

this system would focus on the accuracy in predicting parasitemia

for blood smear images, which is likely to be a more acceptable

metric for predicting real-world performance of the system than

the accuracy of predicting infection on a per cell basis.

Rajaraman et al. improved the performance of their initial CNN

approach by adopting an ensemble strategy, whereby numerous

CNNs each ’vote’ with their classification of a cell and the clas-

sification with the most votes is returned [28]. Similarly, future

work may produce better results using an ensemble of the most

successful non-deep models presented in this paper.
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SUPPLEMENTARY INFORMATION
This section contains additional tables of results which could not

be included in the main paper due to space limitations.

Grey
RF

Grey
SVM

Colour
RF

Colour
SVM

2 bin 0.5568 0.5923 0.8959 0.6970

4 bin 0.6159 0.6216 0.9289 0.7360

8 bin 0.6945 0.5901 0.9521 0.7686

16 bin 0.7760 0.6308 0.9528 0.8263

32 bin 0.8114 0.6564 0.9351 n/a

64 bin 0.8242 0.6686 n/a n/a

Table S1: Results of histogram bin size selection process. Val-
ues are the mean accuracy score achieved, rounded to four
decimal places. Maximum values for each column are high-
lighted.

Model Features Accuracy Recall Precision
Haralick 0.7060 0.7462 0.7064

Hu 0.5587 0.7054 0.5473

Grey Hist 0.8228 0.8512 0.8064

RF

Colour Hist 0.9515 0.9574 0.9462

Haralick 0.6964 0.6258 0.8071

Hu 0.5939 0.5111 0.6632

Grey Hist 0.6715 0.6314 0.6885

SVM

Colour Hist 0.8182 0.7559 0.8646

Table S2: Results from the feature extraction selection pro-
cess. The best results for each model are highlighted.

Features Filtering Accuracy Recall Precision
None 0.7242 0.8033 0.7005

H 0.9159 0.9186 0.9160

H + IS 0.9095 0.9080 0.9133

H + IS + C 0.7845 0.7227 0.8271

Haralick

H + IS + T 0.9291 0.9376 0.9219

None 0.8222 0.8521 0.8043

H 0.8741 0.8910 0.8619

H + IS 0.9598 0.9644 0.9556

H + IS + C 0.9376 0.9646 0.9153

Grey Hist

H + IS + T 0.9223 0.9328 0.9136

None 0.9498 0.9564 0.9439Colour Hist
H 0.9525 0.9606 0.9453

Table S3: Results from the RF image filtering selection pro-
cess. The best results for each feature extraction approach
are highlighted.

Features Filtering Accuracy Recall Precision
None 0.7615 0.7900 0.7741

H 0.9350 0.9055 0.9632

H + IS 0.9090 0.9214 0.9032

H + IS + C 0.8466 0.8586 0.8414

Haralick

H + IS + T 0.9295 0.9574 0.9068

None 0.6645 0.6422 0.6733

H 0.7058 0.7368 0.6939

H + IS 0.7810 0.6592 0.8730

H + IS + C 0.7758 0.7021 0.8244

Grey Hist

H + IS + T 0.6486 0.3481 0.8727

None 0.8160 0.7374 0.8753Colour Hist
H 0.7744 0.7126 0.8136

Table S4: Results from the SVM image filtering selection pro-
cess. The best results for each feature extraction approach
are highlighted.

Forest Size Accuracy Recall Precision
1 0.9274 0.9228 0.9314

10 0.9594 0.9595 0.9594

50 0.9610 0.9587 0.9631

100 0.9618 0.9596 0.9647

250 0.9615 0.9594 0.9644

Table S5: Results of the RF forest size selection process. The
best result for each column is highlighted.

Max Depth Accuracy Recall Precision
None 0.9658 0.9633 0.9682

10 0.9624 0.9569 0.9675

100 0.9657 0.9629 0.9683

250 0.9654 0.9630 0.9677

1000 0.9654 0.9638 0.9669

Table S6: Results of the RF maximum depth selection pro-
cess. The best result for each column is highlighted.

Kernel Function Accuracy Recall Precision
RBF 0.9287 0.9558 0.9067

1st degree polynomial 0.9281 0.9519 0.9087

2nd degree polynomial 0.9288 0.9560 0.9067

3rd degree polynomial 0.9290 0.9566 0.9066

5th degree polynomial 0.9288 0.9568 0.9062

Table S7: Results of the SVM kernel selection process. The
best result for each column is highlighted.

12



Gamma Accuracy Recall Precision
Auto 0.9307 0.9636 0.9041

1 0.9305 0.9631 0.9041

0.1 0.9309 0.9585 0.9084

0.01 0.9301 0.9526 0.9116

0.001 0.9301 0.9526 0.9116

Table S8: Results of the SVM gamma hyperparameter selec-
tion process. The best result for each column is highlighted.
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