

CS/IT Honours
Final Paper 2019

Title: Three Visual Approaches to Aid the Teaching of

Recursion: Visual Coding

Author: Moegamat Ra-eez Stenekamp

Project Abbreviation: BBRV

Supervisor(s): Jecton Anyango, Hussein Suleman

Category Min Max Chosen

Requirement Analysis and Design 0 20 20

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 20 20

Results, Findings and Conclusion 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

Three Visual Approaches to Aid the Teaching of Recursion: Visual

Coding

Moegamat Ra-eez Stenekamp
 Department of Computer Science

 University of Cape Town

 stnmoe001@myuct.ac.za

ABSTRACT

Recursion is one of the top concepts that students studying

Computer Science should know, however a large portion struggle

to grasp it when being taught it. This is due to issues in creating a

mental model from the conceptual model that is taught in the class

environment. Serious games are found to aid in bridging the gap

in the creation of the mental model. The aim of this software

development project is to create three visual game-like approaches

to aid the teaching of recursion. The approach of interest in this

paper is a visual coding user interface. A visual coding user

interface is a good approach in aiding the teaching of recursion as

it allows for the user to focus on understanding the problem rather

than the syntax of its traditional text-based coding counterpart.

Most of the users that tested the system developed in this software

development project found this form of coding to be more

engaging and an easier alternative that allowed their visualization

of recursion for the problem to be easier.

1. INTRODUCTION

Recursion is a fundamental concept to understand in programming

and Computer Science, especially when it is used as the

conceptual model to solve abstract problems [1]. It is also

necessary to know recursion in order to understand more

advanced topics that are taught later in Computer Science [2].

Even though it is so important in Computer Science, many

students struggle to understand this concept [10], with teachers

finding it a difficult topic to teach as well [3].

The current conceptual models used in the teaching of recursion

are inadequate in creating mental models of recursion for many

students learning this topic [4,5]. It has been found that games can

help create a mental model due to their visual and interactive

nature [6]. Games are therefore a dynamic medium that can be

used to bridge the gap between conceptual and mental models.

1.1 Project Aims

The aim of this project is to create three different game-styled

approaches to aid the teaching of recursion for first year Computer

Science students. These approaches are a visual coding user

interface, visual simulation and stack visualization. This project

will focus on the visual coding user interface.

A visual coding interface is an alternative form of coding to the

traditional text-based user interface. This uses drag and drop

mechanics, where the user will be able to select an instruction

from a list of instructions shown on the user interface. The user

can then click and drag the selected instruction and place it inside

scaffolding code, which is code with gaps in it where the user will

have to input their chosen instructions from the drag and drop.

This will complete the scaffolding code and solve the given

problem, such as navigating a character from one side of a maze-

like puzzle to another. The user would then click a proceed button

which would execute the filled in scaffolding code, where the

visualization would run their solution, whether it ends up correct

or not, allowing them to adjust their changes until the problem is

solved.

1.2 Target Users

This system is intended to be used by first year Computer Science

students as they would be learning recursion at this stage of their

Computer Science careers. The users who tested this system were

first year Computer Science students at the University of Cape

Town.

1.3 Report Layout

Related work will be looked at in the next section of this report.

This will be followed by the software processes used in the

development of this system. Requirement analysis will be shown

next, followed by the design of the system, the testing, results and

finally the conclusion of this software development project.

2. RELATED WORKS

2.1 Recursion

Recursion is a hard topic for introductory programmers to

understand, as Milne and Rowe [11] tested. This test compared

the difficulty that students found when learning recursion in their

first year of study, with it being in the top six most challenging

topics. Even though it is challenging, it is still necessary to know

as a Computer Science student, especially since it can be used as a

conceptual model that solves many abstract problems [12]. The

conversion of recursion as a conceptual model to a mental model

seems to be the reason why so many students struggle with the

learning of recursion [4,5]. Serious games can create good mental

models with their visual and interactive aspects, making them

suitable to helping to create these mental models [6].

2.2 Visual Coding Games

Kazimoglu et al. created a game called Program Your Robot [7],

which is designed to help students learn introductory

programming constructs. This is achieved by giving the users an

environment where they can build critical Computer Thinking

skills. This environment consists of a drag and drop interface and

a visualization. The user creates an algorithm that then is

simulated by a character in a mini world, where they will have to

complete certain tasks in order to progress onto the next level of

the game. Figure 1 shows the design of the drag and drop

interface placed around the problem visualization.

Figure 1 Program Your Robot [7].

Yaroslavski [8] created a phone app called Lightbot. This is a

serious game in which you must make a robot walk across maze-

like levels, accomplishing various tasks of progressively

increasing difficulty. Figure 2 shows Lightbot and its drag and

drop form of coding input, which the user uses to make the

character finish the level’s challenges and progress in the game.

The aim of this game was to teach players programming

constructs.

Tessler, Beth and Lin [9] created a mobile game called Cargo-

Bot, which was intended to help students learn recursion via

having them teach a robot how to move crates. Figure 3 shows

that this game works by having the user create recursive functions

out of basic commands such as movement directions and the

function names that would have to be used in the functions

themselves to be recursively called. Recursion can be broken

down into two core parts, the active flow and the passive flow.

The active flow is the forward passing of control where the stack

gets called by the program. The passive flow is the backwards

flow of control, in which control is passed back once the active

flow has filled up all the calls it can on the stack [13]. This game

shows the active flow of recursion; however, the passive flow of

recursion cannot be viewed.

Figure 3 Cargo-Bot [9].

3. SOFTWARE PROCESS

The chosen software process was an iterative agile approach. This

was chosen over other forms of software processes to ensure that

this system will achieve its overall goal of helping students learn

recursion. This also guarantees the system caters to the user’s

needs and what would benefit them as opposed to what we

speculate would benefit them. This would be achieved by using

this software development process as the system would be flexible

and able to change as the user’s requirements are changed and

updated (see user requirements below).

Figure 2 Lightbot [8].

This visual coding user interface was developed in 5 core

iterations, which are described in detail in the design process.

3.1 Software Specifications

This system was created using Unity, which is a game developing

engine. The code for this system was created using the

programming language C#. The programming language Python

was chosen as the language of choice for the users to interact with

via the scaffolding code. Python was chosen as our target users

who tested this system had been taught Python.

4. REQUIREMENTS ANALYSIS

Requirement gathering is crucial for the creation of this project.

This ensures that the system will cater to the needs of the users.

4.1 Requirements Gathering

Since this system is designed to be used with first year Computer

Science students, it was decided that before construction of this

system, 10 first year Computer Science Students would be

interviewed. This was done by getting the correct ethical

clearance to be allowed to interview the students. The target

interviewees were determined to be first year Computer Science

students who were studying CS1016S in the second semester of

2019. This group of students was chosen for feedback as they

would have recently finished learning recursion from the prior

course CS1015F, allowing their opinions, findings and struggles

of learning recursion to still be relatively new. In order to

interview these students, it was arranged with the course convener

of CS1016S to allow for the students to be interviewed, with their

consent, during one of their Friday lab sessions.

They were asked several questions regarding a visual coding user

interface and recursion (full notes that were taken during the

interviews are available on the website of this project [14]). They

were asked what they found difficult about recursion. This was

enquired in order to see what aspects of learning recursion caused

them to struggle, so that this system could help address these

issues.

Most of the students said that the reasons they found recursion

hard was because of the way it was taught and that there was not

enough time to learn such a complex topic. Another key thing that

many of the students said was that it was hard to visualize the

concept of recursion and how it works. Less popular, but still

notable answers include: recursion is not as intuitive as loops and

that there wasn’t anything in their lives that they could relate to

recursion, so it was hard to relate to, making it tougher to

understand.

Regarding the visual coding user interface, the students were

asked two questions: if they would consider a drag and drop

visual coding user interface less daunting/ intimidating than

regular text-based coding and why they thought it would be more/

less intimidating and finally whether they thought that recursion

should be first coded using a visual interface instead of a text-

based interface. These questions were asked so whether the

students would find the visual coding user interface helpful could

be gauged.

60% of the students said that they would prefer visual coding,

with only 30% of the students preferring text-based coding and

the remaining 10% of the students finding that they were

equivalent.

90% of the students thought that there should be a transition from

visual coding to text-based coding, with the remaining 10% of the

students being against visual coding entirely.

From these results we can see that the students struggle a lot with

recursion because of the time they have to learn it, as well as their

lack of ability to visualize recursion easily. It is also clear that the

majority of the students want a form of visual coding that

transitions into text-based coding.

4.2 User Requirements

The requirements gathering process, alongside the use case

diagram for the visual coding user interface shown in Figure 4 (all

UML diagrams used in this report and a few additional ones are

available on this project’s website [14]), where used to determine

the user requirements.

It was determined that the system had to be developed in a way

that would be intuitive for the users to use, and that would help

develop a visualization of recursion. It is important to represent

the problem in a way that would prevent them from thinking

about solving the problem using loops, so that they could focus on

their visualization of recursion.

Figure 4 Use case diagram of visual coding user interface.

This system would have to work fast, smoothly and seamlessly.

The visualization should run immediately after the proceed button

is pressed once the scaffolding code has been filled in.

5. DESIGN

A description of the high-level design of this system will be given,

giving a deeper understanding of this system. The details of

design will then be shown, in which the system, and how it works

will be gone through in detail, followed by the class interaction

and finally the design process gone through in the creation of this

project.

5.1 High-Level Design

This system was created on Unity within the canvas game object,

which is the user interface element available in Unity. The user

interface layout and design can be seen in Figure 5. This system

has 7 core functions that work together in order to make the visual

coding user interface work (these core functions are explained in

detail below). The ‘question problem’ is the actual coding

problem that is represented in the form of scaffolding code, with

gaps where ‘drop zones’ are, in which the user will complete the

scaffolding code. ‘Instructions’ are the “answers” the student will

have to drag in order to complete the scaffolding code given for

the question problem. An ‘instruction zone’ holds all the

instructions for the level. ‘Drop zones’ are the areas in which the

user will be able to drop their instructions into the scaffolding

code. These restrict the amount of instructions in them depending

on its size, ensuring that the problem has to be solved recursively.

The ‘destroy zone’ is everywhere on the screen other than the

instruction zone and the scaffolding code with the drop zones on

them. Unwanted instructions can be dropped in the destroy zone

to delete them. The ‘proceed button’ will run their solution once it

is pressed. The ‘level manager’ controls the flow of the levels and

allows for the user to switch between levels at the start of the

game as well as when progress onto further levels.

5.2 Details of Design

5.2.1 Question Problem

This is an area on the canvas filled with text. This text is the

recursive scaffolding code, which helps guide the user’s solution.

There are gaps in the text, which are “holes” in the scaffolding

code. These gaps have drop zones in them, allowing the user to

complete the scaffolding code with the given instructions. The

question problems and their drop zones change depending on the

level that the user is on. The arrow with the label 1 in Figure 6

shows the question zones for the ‘Main’ and ‘move(n)’ functions

of the first level.

Figure 6 Drop Zones for the Main and move(n) functions of level

1.

Figure 5 Visual coding user interface displayed above the visual simulation for the first level.

Figure 9 Proceed button.

5.2.2 Instructions

Instructions are the potential answers which the user must choose

between, after which they will drag and drop the answers onto the

correct zones in order to complete their solution to the recursive

coding problem. Some of these instructions include movement

commands and number variables.

Each instruction is a game object with a script called “Draggable”

attached onto it. This script takes the mouse input, and when the

mouse clicks and drags, if it is over an instruction, then a copy of

the instruction is made if it is in an instruction zone, while the

original instruction is dragged instead if it is clicked from the drop

zone. This instruction is then moved with the mouse. When the

click and hold is released, the instruction has various interactions,

depending on the zone it is dropped in. When an instruction is

dropped in the destroy zone, the instruction is destroyed, however,

when it is dropping in a drop zone, it remains there.

Figure 7 shows the layout of the instructions, with the arrow

labelled 1 pointing to a single instruction. Figure 8 shows sample

instructions after they have been dragged and dropped in various

drop zones.

5.2.3 Instruction Zone

The initial instructions the user must choose from are stored in

this zone. The instructions here do not move when they are

dragged, but rather copies are created, and those copies are moved

instead. This allows the user to use the same instruction multiple

times. The arrow labelled 2 in Figure 7 shows the instruction zone

and its instructions (in this figure, the instructions includes the

numbers 0-9, forward, and left and right turn instructions).

5.2.4 Drop Zone

This is the areas in the scaffolding code where the user must place

their chosen instructions that completes the scaffolding code and

answer the coding problem. The sizes of these drop zones affect

how many instructions can be placed in a drop, ensuring that the

solutions can only be solved recursively. The arrows labelled 2 in

Figure 6 shows examples of drop zones.

Each of these zones has the “DropZone” script attached to it. This

script takes in the position of the mouse’s pointer and checks if

the mouse is holding an instruction. If the instruction is being held

over a drop zone, the user can move the instruction in between the

other instructions in that drop zone depending on where it is

hovering over and if there is still space in the drop zone. This

allows the user to rearrange instructions in the drop zones and

place them anywhere in the list of instructions they put there. This

is done by creating a placeholder object that is empty/ has no

image, but it is in the dimensions of an instruction.

5.2.5 Destroy Zone

This zone is all the areas of the screen other than the question

problem, with its drop zones, and the instruction zone. When an

instruction is dropped onto this zone, it is destroyed.

5.2.6 Proceed Button

The proceed button is represented as a big tick in the bottom right

of the screen. The purpose of this button is for the user to press it

once they have finished filling in the scaffolding code with the

appropriate answers. This then generates a .txt file with a series of

movement commands created using the user’s solution. If any of

the scaffolding code has incomplete or incompatible instructions,

then a message is displayed for the user to use to alter their

solution. This .txt file is read by the visual simulation approach of

this project, which then simulates and tests the user’s solution.

The arrow labelled 1 in Figure 9 shows the proceed button. This

button is controlled by the “OutputGenerator” script.

Figure 7 Instructions layout in the instruction zone.

Figure 8 Instructions dropped in drop zones.

5.2.7 Levels

There are seven levels used in this game. They are basic

navigation maze-like problems in which the user will have to

navigate from one end to the other by filling in recursive code.

These problems range in difficulty, with it getting increasingly

difficult with each level. Level 1, which is the easiest level, can be

seen in Figure 5. The most complex level, level 8, can be seen in

Figure 10. For the full list of all the levels, refer to this project’s

website [14]. These levels are designed in a way in which they

can only be solved recursively due to restrictions in the drop zone

sizes.

5.2.8 Level Management

This serious game used multiple levels of increasing difficulty.

This requires a level management system, which keeps track of

the different levels, as well as giving an option to choose which

level you want to play. This allows more advanced users to skip

ahead in levels.

The levels are managed via two scripts, the “ModeSwitcher” and

“Level Manager” scripts. The “ModeSwitcher” script has the

function to load between given levels, depending on the

interaction in the game. This will be called when proceeding to

the next level as well as when selecting levels. The

“LevelManager” script updates the “ModeSwitcher” script with

the right values for a level, and then calls the “ModeSwitcher”

method to load in that level.

5.2.9 Integration

The visual coding user interface must only be integrated with the

visual simulation part of this project as it was decided from the

user requirements that the system should transition from visual

coding to text only coding, which is how the stack simulation gets

its input. The way that this is integrated is by having the visual

coding user interface displayed on the screen in front of the visual

simulation. There is a free-roam state, in which the user can free

move the character, however once they walk on the start block,

they will the coding mode, displaying the visual coding user

interface.

5.2.10 Assets

All assets used are picked in theme with this serious game and are

free to use and royalty free.

5.3 Class Interaction

Figure 11 shows the class diagram of the visual coding user

interface, where the circles represent various game objects in the

project.

Figure 10 The visual coding user interface for the seventh, and final level.

Figure 12 shows an activity Diagram of when an instruction gets

dragged from, the instruction zone and dropped on the various

zones.

5.4 Design Process

The visual coding user interface was developed in five core

iterations: early envisioning, increased specification, output and

assets, integration and user feedback.

5.4.1 Iteration 1: Early Envisioning

In this iteration we discussed our ideas for what we thought the

users would want out of our system. We then created paper

prototypes of what we thought the system layout would look like

and how the users would interact with them. A very rough version

of the system was created on Unity with these specifications. The

build at this stage included the instructions dragging from an

instruction zone into basic drop and destroy zones.

5.4.2 Iteration 2: Increased Specifications

 Here we arranged with the course convener for the CS1016

Computer Science course at UCT to hold interviews with some of

their students to ask about what they would want out of this

project (see requirements specifications above).

These new specifications from the users were taken as our focus,

so we tailored the build from iteration 1 as well as what was still

to be made further according to these new user requirements.

In this iteration, the instructions, instruction zone and drop zones

had the more complicated functionality described above

Figure 11 UML class diagram of visual coding user interface.

 Figure 12 Activity diagram of an instruction

dragged from the instruction zone and dropped in

various zones.

implemented. Tweaks to this functionality and layout were made

according to the new user requirements. The scripts involved with

level switching were also created here

5.4.3 Iteration 3: Output and Assets

In this iteration, since the functionality of the user interface

instructions were working correctly, recursive problems were

decided on in this iteration. The proceed button was created as

well as the basic text output that would be used later with the

Visual Simulation.

The assets that would be used were chosen during this iteration.

These assets must be royalty free as well as free of charge. These

assets had to be initiative for users to use as well as fitting in with

the overall theme of the project that is shared among all the parts.

5.4.4 Iteration 4: Integration

In this iteration the focus was on getting the visual coding user

interface to work with the visual simulation section, including the

level switching and when the visual coding user interface would

appear and disappear in the game.

5.4.5 Iteration 5: User Feedback

In this iteration user testing occurred. The system requirements

were updated after this, and tweaks to the system according to the

user feedback and requirements was added.

6. TESTING AND EVALUATION

We tested the systems we developed in Unity’s play mode. We

also had students who are the target users of our system evaluate

whether our system achieves its goal of aiding the teaching of

recursion and its usability.

6.1 Procedure

Extensive playtesting in Unity’s play mode allowed us to ensure

that there were not any bugs in the system and that all the features

and functions worked as intended.

All possible solutions that would solve each level was thought of

and tested. This ensured that the only working solutions to each

level had to be coded recursively as the drop zone restrictions

were adjusted and limited, preventing iterative solutions to the

levels.

It was decided to get the first year CS1016S students as was done

when getting the user requirements, since this is a user-centered

system. To do this, we underwent the same process of contacting

the course convener of the course to get permission to send an

announcement out to the students requesting for them to sign up

for 30-minute evaluation slots.

In the evaluation slots, the students were presented with a laptop,

on which they ran our software. After they completed playing the

serious game, they were given 3 questionnaires, one for each of

the parts of this project respectively.

In order to evaluate the user experience and usability of this

system, the Game Experience Questionnaire [15] was used. The

Game Experience Questionnaire is a standardized questionnaire

that was created to ask the user questions pertaining to their

experience when playing a game. These questions are answered

on a scale of 1 to 5 with a total of 30 questions. These questions

were very general questions that do not refer to the visual coding

user interface specifically, but rather the user’s experience with

playing the game. Examples of these questions are whether they

enjoyed playing it and if they found it challenging. The full list of

these questions as well as their answers can be found at this

project’s website [14].

Three additional questions were asked regarding the visual coding

user interfacing particularly. These questions included: whether

they found the visual coding user interface intuitive and easy to

use and what they would change about it; whether they liked the

way it looked and why they felt that way; and finally, whether

they would have found it easier than solving the problem using a

standard text-based alternative with reasoning.

6.2 Results

6.2.1 Game Use Experience

The results of the Game Experience Questionnaire’s 30 questions

were all constant responses with occasional outliers from the

general opinion. The averages of all the results for each major

category are shown in Figure 13. All the individual results can be

found on this projects website [14]. The general results all point

towards a positive game experience. There is one question with

notable results however. This was question 19, which asked

whether the user was fast at reaching the game’s targets. The

result of this question had an even amount of people that finished

at a fast time as those that found they went at a relatively slow

speed, with the majority of the students finding that they took a

moderate time, as Figure 14 shows.

Component Average Score(see key)

Competence 3.64

Sensory and Imaginative

Immersion

4.11

Flow 3.65

Tension/ Annoyance 1.3

Challenge 2.01

Negative Affect 1.29

Positive Affect 4.52

Key:

1 – not at all 2 – slightly 3 – moderately 4 – fairly 5 – extremely

Figure 13 Game Experience Questionnaire results.

For the visual coding questions, all the responses can be found on

the website [14]. The question about whether they found the

visual coding user interface intuitive and easy to use had 95% of

the users finding it easy and intuitive. The 5% who answered no

to this question said they felt this way as they would have

preferred to type the symbols instead of dragging and dropping

them. For the second part of this question, which was what they

would change about the system, most of the students found that

they would not change anything other than adding clearer

instructions on its use at the start. This result was taken into

consideration after the test and the instructions at the beginning

were expanded upon during the 5th development iteration. As for

whether they liked the way the visual coding user interface

looked, they were all content. For the final question -whether they

would find it easier than text-based coding- 85% of the students

said that they would have found this easier than text-based coding,

with 15% of the students stating that they would have found it

harder. For those who found it would be harder than text-based

coding, they said it was because the visual coding added to the

amount of effort that they would need to solve the problem, with

responses saying that they would have found writing code

themselves easier to learn and master recursion.

7. CONCLUSION

This project sought to create three different game-styled

approaches to aid the teaching of recursion for first year Computer

Science students, with the approach of this paper being on a visual

coding user interface. This system had to be able to aid the

students in their understanding and solving of recursive problems

without having to worry about syntax, but rather focusing on

understanding and visualizing the problem.

It can be shown from the results that the users found the visual

coding user interface better than the current text-based coding

alternatives when it comes to visualizing and solving the problem

of recursion. The usability of the system is also shown to be

effective due to the responses of the user experiences being

mostly positive and with the students finding it easy and intuitive

to use as well as liking how it looked. The results also show that

the increasing difficulty of the levels are of the right level for first

year students to learn recursion. Therefore, the system that was

developed was a success and will be able to use this program to

aid their visualizing and learning of recursion, which will help

them in their computer science careers.

8. LIMITATIONS AND FUTURE WORKS

This system was limited to 20 students who evaluated the system.

This is an area that could be expanded on in future work on this

system. 7 levels were created for this system; however, it has been

developed in such a way that future levels could be easily created

and added to this system, allowing for versatility for future

endeavors.

7. REFERENCES

[1] Wu, C. C., Dale, N. B., & Bethel, L. J. (1998, March). Conceptual models and

cognitive learning styles in teaching recursion. In ACM SIGCSE Bulletin (Vol. 30,

No. 1, pp. 292-296).

[2] Milne, I., & Rowe, G. (2002). Education and Information Technologies, 7(1), 55–

66. doi:10.1023/a:1015362608943

[3] Eagle, M., & Barnes, T. (2009). Experimental evaluation of an educational game

for improved learning in introductory computing. ACM SIGCSE Bulletin, 2009,

321-325.

[4] Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist

learning? Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems - CHI ’93. doi:10.1145/169059.169078

[5] Wu, C.-C., Dale, N. B., & Bethel, L. J. (1998). Conceptual models and cognitive

learning styles in teaching recursion. Proceedings of the TwentyNinth SIGCSE

Technical Symposium on Computer Science Education - SIGCSE ’98.

doi:10.1145/273133.274315

[6] Kirchgessner, M., & Ketelhut, D. J. (2012). Video games and learning: Teaching

and participatory culture in the digital age. Science Education, 96(5), 963–965.

doi:10.1002/sce.21020

[7] Milne, I., & Rowe, G. (2002). Education and Information Technologies, 7(1), 55–

66. doi:10.1023/a:1015362608943

[8] Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013, July). Computational

thinking in educational activities: an evaluation of the educational game light-bot.

In Proceedings of the 18th ACM conference on Innovation and technology in

computer science education (pp. 10-15).

Figure 14 Question 19 Answers from Game Experience.

Questionnaire

[9] Chaffin, A., Doran, K., Hicks, D., & Barnes, T. (2009). Experimental Evaluation

of Teaching Recursion in a Video Game (pp. 79-86).

[10] Milne, I., & Rowe, G. (2002). Education and Information Technologies, 7(1),

55–66. doi:10.1023/a:1015362608943

[11] Milne, I., & Rowe, G. (2002). Education and Information Technologies, 7(1),

55–66. doi:10.1023/a:1015362608943

[12] Wu, C. C., Dale, N. B., & Bethel, L. J. (1998, March). Conceptual models and

cognitive learning styles in teaching recursion. In ACM SIGCSE Bulletin (Vol. 30,

No. 1, pp. 292-296).

[13] Götschi, T., Sanders, I., & Galpin, V. (2003). Mental models of recursion (Vol.

35, No. 1, pp. 346-350).

[14] Honours Project Website: http://projects.cs.uct.ac.za/honsproj/cgi-

bin/view/2019/tony_shak_raeez.zip/csa/index.html

[15] IJsselsteijn, W. A., De Kort, Y. A. W., & Poels, K. (2013). The game

experience questionnaire. Eindhoven: Technische Universiteit Eindhoven.

http://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2019/tony_shak_raeez.zip/csa/index.html
http://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2019/tony_shak_raeez.zip/csa/index.html
http://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2019/tony_shak_raeez.zip/csa/index.html
http://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2019/tony_shak_raeez.zip/csa/index.html

