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ABSTRACT
Computationally-generated and interlocking 3D puzzles are a 

fascinating concept—particularly in how there are various 

methods that attempt to as efficiently, accurately, and speedily as 

possible generate a variety of 3D puzzles that are not only 

challenging but incite more creation and excitement for the type 

of puzzles that are offered. 

In this paper, we detail the development process involved in 

generating computational 3D models and 3D printing them. This 

process involves merging, shrinking, and rendering mesh models, 

flowing through the system as either a triangle mesh model or a 

voxelized grid, depending on the type of functionality invoked. 

We also observe how merging and shrinking mesh models is 

necessary for 3D printed models to interconnect without locking 

together due to the compactness of the printing material. 

CCS Concepts
• Mathematics of computing ➝ Information Theory; • Theory

of computation ➝ Design and analysis of algorithms ➝

Mathematical optimization ➝ Continuous optimization;

• Theory of Computation ➝ Theory and algorithms for

application domains ➝ Algorithmic game theory and

mechanism design ➝ Algorithmic game theory

Keywords
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1. INTRODUCTION
Three–dimensional (3D) puzzles are geometric problems that 

challenge how we think and the extent of our problem-solving 

skills. These are also recreational objects and typically involve a 

certain level of dis/assembly of a 3D shape. The same applies to 

non-puzzle 3D objects that not only closely emulate puzzles but 

also real-world objects that may be intended for actual real-world 

use, such as furniture. Three-dimensional puzzles involve solving 

complex geometric problems across various axes, which involves 

some kind of transformation of the object, e.g., translation along 

one or more axes, rotation of pieces at an angle, etc. 

We focus on computationally-generated 3D puzzles and non-

puzzles. This refers to objects that are, in the general case, 

presented as input to a computational program as a 3D triangle 

mesh (a graphical model built of triangle polygons, to approximate 

the design of that model) or a voxelized representation (a blocky 

representation of the model). These objects are then processed by a 

given algorithm that determines how to split the object into pieces 

that interlock. This object is then either reconstructed using external 

materials (such as wood), or 3D printed (as in our case); after 

which, the object can be dis/assembled and is interlocking. Figure 

1 shows a representation of a standard 3D puzzle (Kong Ming Lock 

on the left) and a 3D recursive interlocking puzzle (on the right) —

which is a fair representation of our focus in this paper.   

Interlocking assemblies have a long history in the design of puzzles, 

furniture, architecture, and other complex geometric structures. The 

key defining property of interlocking assemblies is that all 

component parts are immobilized by their geometric arrangement, 

preventing the assembly from falling apart [16]. 

Contribution. Our purpose here is to record the development 

process that enabled fully graphically-rendered and ultimately 3D 

printed voxelized representations of input triangle mesh models. 

The contribution that this makes is in the rendering and 

(subsequently) the creation of various types of models that are 3D 

printed and physically dis/assembled as puzzles. 

2. RELATED WORK
We have identified several categories that 3D puzzles and non-

puzzles fall into. These are categories of algorithms based on the 

type of approach used to generate objects. 

2.1 3D Puzzles 

2.1.1 3D Jigsaw Puzzle-esque 
In the early stages (and times) of the creation of interlocking 

puzzles, computational generation was not existent, thus puzzles 

were merely produced but not yet artificially generated for editing 

on computer systems. Some earlier examples of these types of 

puzzles include 3D jigsaw-esque puzzles; these are puzzles 

composed of pieces that resemble 2D jigsaw puzzles, only they 

contain larger depths and depending on the approach, the pieces 

may be planar or non-planar, i.e., flat. One such method is one 

accomplished with two types of puzzle elements—one that can be 

folded into a corner configuration through a hinge that unites the 

planar segments of that element, and another that is generally 

planar, and (much like the first) does not have a specific design but 

rather differs per piece. The two element types interlock through a 

dovetail-type joint [2]. Taking this type of method further by using 

non-planar elements and different interlocking mechanics, this 

concept evolves further to emulate more than fundamentally flat 

structures. An example of this is one that uses a support structure 

as a basis for a known object, with the non-planar elements clipping 

onto the support structure to form a resembling outer surface of the 



known object, and held together by release pins in the interior of 

the support structure, such as in [13]. 

2.1.2 Disc and Extrusion 
Similarly to the aforementioned approach, this category of 3D 

puzzles also has some roots in physically-produced objects 

composed of likewise pieces. Before computability was applied to 

this type of interlocking puzzle creation, there existed one in which 

discs were used to interlock and form larger objects. This concept 

was later adapted to computation and enhanced with the process of 

 

 

 

Figure 1: Kong Ming Lock (left), recursive interlocking puzzle 

(right) (source: [10]) 

 

extrusion. The earlier method adopted for this type of puzzle made 

use of specifically and purposefully-designed discs. The puzzle is 

considered complete/solved once the total set of pieces are joined 

to form a sphere-like structure, as shown in [9]. With the power of 

computation added, later on, a similar concept was applied using 

canonical six-piece burr puzzles (or knots) [14]. This burr puzzle 

acts as a basis for even larger puzzles composed of just of one of 

these, or a multitude. In the base case, this is achieved when the 

outer pieces of one knot are extruded using an anisotropic (axial) 

scaling until they go beyond the 3D model. The next step is to apply 

a Constructive Solid Geometry intersection between the extruded 

six pieces and the given 3D model to produce the puzzle “skeleton.” 

2.1.3 Layers 
This approach is one in which a realised object is built up layer by 

layer till completion. Each layer is built from the bottom up, as it 

would naturally be to assemble a real-world object with that type 

of layout of segments. Each layer may consist of several segments 

joined together. Each segment is composed of several pieces. The 

first type of method that implements this kind of approach is one 

that uses polyominoes as basic building blocks for constructing the 

shapes used in the puzzle assembly. A polyomino is a 

generalization of a domino constructed by connecting n squares 

edge-to-edge instead of the two squares of an ordinary domino [5]. 

Another type of method that follows this approach is one that uses 

a voxelized model, with each voxel split into 8 equal-size blocks. 

To construct the model, the method first builds long flat chains of 

the squares (named segments) by connecting joints (male and 

female connectors on the blocks that permit movement in a certain 

direction depending on the type of block) of previous squares to 

new squares. Then the next step is to build layers, where a layer is 

a set of blocks with the same z-coordinate. This process is outlined 

in [15]. 

2.1.4 Voxelisation 
This approach highlights methods that rely on the voxelization 

process in order to produce pieces that interlock when assembled. 

The first method takes in a general voxelized shape as input and 

iteratively extracts puzzle pieces from it to generate the puzzle. 

First is the key piece, then the next piece adjacent to that, and so 

on. The method ensures that every three consecutive pieces 

interlock, and therefore ensuring that the whole puzzle interlocks 

without having to exhaustively verify this. The end result is a 

voxelized interlocking puzzle that can be assembled and 

disassembled, with one piece as the key. This is detailed in [10]. 

The second method draws on concepts from the first, but still offers 

its own procedure, and outputs an object that matches the geometry 

of the input object, along with ensuring that this object can be 3D 

printed (by partitioning it into 3D parts that can be assembled) 

without concerns of its size. This method takes in a 3D watertight 

(well-defined exterior boundary and closed volume) model as 

input, converts it into a voxelized grid, followed by a shape 

connection graph; this is used to generate interlocking parts, after 

which CSG intersection is used to add back the surface of the mesh. 

This is process is detailed in [12]. The third method in this approach 

also draws on the concepts and techniques in the first method. To 

start off with, the input expected is the final shape of the assembly, 

from which the component parts are either constructed from scratch 

as in [10] or explicitly initialized. The computational process for 

creating an interlocking assembly starts with the full input model, 

then iteratively splits off successive parts for disassembly. At each 

iteration, it first identifies a set of suitable blocking relations to be 

generated between the current assembly and the new part such that 

the interlocking property is maintained. Then it searches for the part 

geometry that satisfies these blocking relations. 

2.2 3D Non-Puzzles 

2.2.1 Furniture 
Furniture typically consists of assemblies of elongated and planar 

parts that are connected together by glue, nails, hinges, screws, or 

other means that do not encourage disassembly and re-assembly 

[3], so new approaches were developed that would rid the process 

of these additional means. The first method presents a 

computational solution to support the design of a network of 

interlocking joints that form a globally-interlocking furniture 

assembly. The key idea is to break the furniture complex into an 

overlapping set of small groups, where the parts in each group are 

immobilized by a local key, and adjacent groups are further locked 

with dependencies. The dependency among the groups saves the 

effort of exploring the immobilization of every subset of parts in 

the assembly, thus allowing the intensive interlocking computation 

to be localized within each small group [3]. The second method 

presents an interactive tool for designing intrinsic joints. Users 

draw the visual appearance of the joints on the surface of an input 

furniture model as groups of two-dimensional regions that must 

belong to the same part. The method automatically partitions the 

furniture model into a set of solid 3D parts that conform to the user-

specified 2D regions and assemble into the furniture. This is 

outlined in [4]. The third method presents computational methods 

as tools to assist the design and construction of reconfigurable 

assemblies (i.e., consists of a common set of parts that can be 

assembled into different forms for use in different situations), 

typically for furniture, as shown in [11]. 

2.2.2 General 
Unlike the previous approach (to a certain extent) there are 

approaches that were designed to be generally applicable, i.e., 

generate or guide in creating a variety of different objects. The first 



method is one that presents a software environment intended to 

support the fluid interactive design of reconfigurables, featuring 

tools that identify, visualize, monitor and resolve infeasible 

configurations [1]. The second method one that allows the 

computation of aesthetically pleasing structures that are structurally 

stable, efficiently fabricatable with a 2D wire bending machine, and 

assemblable without the need of additional connectors [8]. 

2.2.3 Novelty 
In addition to the specialized and purposed approaches stated 

earlier, there also exist approaches that merely facilitate in 

creating/designing novelty objects, i.e., cheap or unusual objects. 

One such method in this approach is one that presents a 

computational system to design an interlocking structure of a 

partitioned shell model, which uses only male and female 

connectors to lock shell pieces in the assembled configuration 

[7].The second method is one that presents an interactive tool for 

designing physical surfaces made from flexible interlocking 

quadrilateral elements of a single size and shape. With the element 

shape fixed, the design task becomes one of finding a discrete 

structure—i.e., element connectivity and binary orientations—that 

leads to the desired geometry. Paralleling principles from 

conventional modeling software, this approach leverages a library 

of base shapes that can be instantiated, combined, and extended 

using two fundamental operations: merging and extrusion [6]. 

 

3. SYSTEM FRAMEWORK 

3.1 Overall system 
The project consists of a contiguous system that works dependently 

(each part relies on another) and, in the ideal scenario, works 

autonomously from beginning to end. Refer to Figure 2 for a visual 

representation of this entire system from 3D triangle mesh model 

input to 3D printed recursive interlocking puzzle.   

 

The system initially takes in a 3D triangle mesh model as input; the 

mesh must be watertight, i.e., it must consist of one closed surface, 

without any holes, and the insides must be clearly defined. This 

property is a requirement for the next part of the system. The next 

part is the voxelisation process that is applied to the mesh; This 

essentially means the system takes in the mesh, then places it in a 

virtual 3D grid (blocks in virtual space), and then iterates through 

all the blocks and for each block that touches (similar coordinates 

in 3D space) the mesh, it becomes part of the grid representing the 

triangle mesh. When the iteration is done, what is identified is a set 

of blocks that approximate the shape of the original triangle mesh 

model, which is then fed into the next part of the system. Figure 2 

shows a blocky approximation (on the right) of a bunny model fed 

in as input (on the left).   

The full representative voxel grid is then processed through a 

fragmentation program (with the algorithm detailed in [10]). This 

algorithm subdivides the grid into various pieces, which have 

certain properties, e.g., the pieces must interlock with each other, 

one piece must immobilize its adjacent pieces, etc. The 

fragmentation program outputs a series of separate pieces generated 

from the input grid. Each of these pieces is then fed into the next 

part of the system (as voxel grids). 

Since each input piece is still represented as a voxel grid, the next 

part of the system generates meshes for each grid point that is 

enabled, and then merges, shrinks, and renders them. This part of 

the system is the primary focus of this paper and detailed below. 

The last part of the system, after each puzzle piece is ultimately 

rendered, is to save each piece as a triangle mesh, and 3D print 

them; the physically-realised pieces can then be dis/assembled into 

one interlocking puzzle. 

 

3.2 Rendering framework 
The framework used was developed by Professor James Gain from 

the University of Cape Town. The framework’s visual layout was 

created with the Qt5 package, with the entirety of the framework 

written in the C++ programming language.  

The processes to follow in the next sections are implementations 

that are added onto this existing framework, with some of the 

functionality required for the focal points of this paper already 

implemented. 

The rendering framework already consists of a graphical user 

interface for viewing/rendering 3D models (with additional 

functionality, such as zoom and rotate), along with functionality for 

voxelising, extracting an isosurface (a 3D surface representation of 

Figure 2: Overall system 



points with equal values in a 3D data distribution), smoothing, and 

deforming. The framework also has the ability to save meshes that 

are rendered. 

We added the functionality to load in specific (.stl) mesh models at 

runtime from local resources that are then rendered on the screen, 

along with the functionality of loading in a voxel grid from local 

resources, which then puts it through the cuboid merging process, 

and renders it to the screen. The last added functionality applies the 

cuboid shrinking process to the model on display.    

 

4. MESH RENDERING 
Although the rendering framework was already able to render 3D 

triangle meshes loaded from file, it did not have the functionality 

of loading in either another triangle mesh or a grid representation 

and rendering it to the screen. A part of the task was adding this 

functionality and ensuring that the correct model is displayed.  

The framework is modeled such that each rendered model is 

represented by a ‘scene’ method within the code, where each scene 

is configured for the kind of model it is purposed to display, e.g., a 

voxel scene—for rendering a voxel grid. Such an approach 

provided the opportunity to simply adopt one of the sample scenes 

to render a model loaded from file instead. This essentially became 

a template for other scenes that were added. Rendering a voxel grid 

required a different strategy, i.e., in addition to using the template 

scene structure, the idea with this type of scene was to use one cube 

mesh loaded in from file as a basis for constructing a voxel grid 

representation. The process continues by loading in a new cube 

mesh for each voxel grid element (i.e., a value set to 1, meaning a 

voxel exists at those coordinates) and merging it with the existing 

mesh, i.e., initially, translate the new cube relative to the grid 

element’s coordinates, and then change the new cube’s vertex 

indices so they’re unique relative to the previous, and finally copy 

over the new cube’s vertices and triangles to the respective data 

structures of the accumulating mesh (initially one cube, as a basis 

model) and discard the new mesh. Algorithm 1 provides 

pseudocode for this process. Line 15 is where the bulk of the 

process takes place and a variation of this method will be explored 

in the next section. 

One of the main challenges with creating both the default and voxel 

scenes was loading in models from file rather than through pop-up 

dialogs (as done through the aforementioned loading buttons on the 

graphical user interface), as the framework has a layered directory 

structure.  

 

5. CUBOID MERGING 
As shown in Algorithm 1, merging various cube meshes is one way 

to obain a fully-connected mesh. The process of merging includes 

copying vertices and triangles of a particular secondary mesh to a 

primary one, but goes beyond the level of detail highlighted above. 

To explain further, some fundamentals are required. 

 

 

Figure 3: Cube A (left) and Cube B (right). Blue faces will be 

merged 

 

Fundamentally, and in the general case, triangle meshes are 

composed of triangles; these are themselves constructed from the 

indices used to identify the unique vertices of a mesh. In the case 

of Cube A and Cube B in Figure 3 respectively, there are vertices 

at the corner of each cube, but for the purpose of our explanation 

we will only focus on the vertices coloured yellow (Y), green (G), 

pink (P), and orange (O)—which occur on both cubes. Unless 

otherwise stated, the right-hand rule will apply in terms of 

determining the winding of each triangle along the cubes’ surfaces, 

i.e., for the normal vector of a given face of a cube to point to the 

outside and perpendicular to the face of the cube, the right hand will 

be wound in a counterclockwise direction along each of the 

vertices, and the thumb will point in the direction of the normal 

vector. For instance, one triangle along the vertices of Cube A could 

be G-Y-O or O-P-G forming the blue face of Cube A, and similarly 

for Cube B, you could have G-P-O or O-Y-G forming its blue face. 

Each face of a cube has exactly two triangles, with a total of eight 

vertices and twelve triangles in one cube. 

When Cube A and Cube B merge (join vertices and triangles), the 

two blue faces join together and are then removed (Cube A on its 

right and Cube B on its left) along the adjacent vertices, i.e., green 

to green, yellow to yellow, etc., from Cube A to B. Since Cube A 

and B share the same vertices along Y, G, P, and O, the duplicate 

vertices would have to be removed from the collective set; a similar 

concept applies with the triangles as well. When the cubes merge, 

the two faces between them must be removed since they longer 

form part of the exterior of a fully-connected mesh (the resulting 

cuboid), and so the four triangles (two from each face) must be 

removed from the collective set. The total number of vertices is 

reduced from sixteen to twelve. 

In the general case, each new cube that is merged into an existing 

accumulative mesh requires that the two relevant faces are 

removed. For each new cube that is read in, an entry count property 

is maintained; the property is used in calculating the indices of the 

four triangles to be removed. The framework now includes the 

functionality to read in a grid, iterate through it along the three axes, 

and for each true value in the grid, a new cube is added, merged, 

and the two merging cubes’ faces are removed. Since the axis 

iterations are incremental, each new cube (apart from the first) need 

only consider any pre-existing cubes on its left, bottom, and back 

for face removal. The merging operation only happens once the 

entire grid is checked; this helps maintain a consistent data structure 

when triangles have to be systematically removed with each new 

cube read in. 

A notable challenge with this implementation lies in determining 

how to pinpoint the specific indices of the triangles to remove, 



depending on the new cube’s position, its faces, and the faces of 

adjacent pre-existing cubes, taking into account the adjusting 

triangle collection at each iteration when a true grid value is found. 

Algorithm 1 provides pseudocode for this and the rendering process 

shown above:   

Algorithm 1 Cuboid Merging algorithm  

1: procedure MERGE SCENE (filename) 

2:       voxels←readGrid(filename) 

3:       accCube←readSTL('cube.stl') 

4:       entryCount←0 

5:       for {nested loop in z, y, x} do 

6:               if voxels[x][y][z]==1 then 

7:                      if entryCount==0 then          

8:                            accCube←setPosition(x,y,z)         

9:                      else 

10:                           newCube←readSTL('cube.stl')         

11:                           newCube←setPosition(x,y,z)         

12:                           newCube←setNewVertices()         

13:                           newCube←setNewTriangleIndices()         

14:                           accCube.vertices←accumulateFrom(newCube.vertices)         

15:                           accCube.triangles←accumulateFrom(newCube.triangles)         
16:                           if cube found on left then remLeftFace(newCube), 
remRightFace(accCube) end if       
17:                           if cube found behind then remBackFace(newCube), 
remFrontFace(accCube) end if       
18:                           if cube found below then remBottomFace(newCube), 
remTopFace(accCube) end if       

19:                     end if 

20:                     entryCount←entryCount+1 

21:              end if 

22:      end for 

23:      accCube←identifyDuplicateVertices()         

24:      accCube←reIndexTriangles()         

25: end procedure 

 

Lines 14-15 transfer the vertices and triangles of the new cube to 

the accumulating mesh of cuboids after the new cube’s vertices are 

translated relative the position of the valid grid element and its 

triangles are uniquely re-indexed relative to the exisiting set of 

accumulating triangles in Lines 12-13. Lines 16-18 are triggered 

when a pre-existing cubes are identified on the respective sides of 

the new cube, which then means the adjoining faces of the new cube 

and the identified cube must be removed through erasing the 

triangles representing those faces. Lines 23-24 activate the last 

merging process which identifies and removes duplicate vertices 

(i.e., vertices shared by two or more cubes) and re-indexes the 

accumulated triangles to compensate for the change in vertex 

assignment. 

 

6. CUBOID SHRINKING 
This next part of the process comes after the merging is complete 

and the full voxel grid representation exists. Simply put, cuboid 

shrinking is the process of translating all vertices such that each 

vertex moves towards the interior of the mesh, at an angle that is 

determined by the average of the unique inward-facing normals of 

the triangles connected to that particular vertex, and by a magnitude 

determined by the user. This process is necessary in order to cater 

for the 3D printing of pieces. For the physical puzzle pieces to 

properly interlock without forced dis/assembly due to incompatible 

sizes among the pieces and an overtight fit when joined, the pieces 

must all shrink inward. Figure 4 illustrates how the shrinking 

process would work and why it is a viable approach for this type of 

operation. Suppose the two pieces in the figure (black and grey, 

respectively) can join together prior to shrinking (vertically as they 

are now); it is reasonable to assume that on a computational display 

this is no cause for concern, except that for 3D printing, the physical 

material must be taken into consideration; that extra bit of depth is 

enough to prevent the connectivity of these two pieces. With the 

cuboid shrinking process applied, each piece would shrink inward 

and effectively be represented by the black pieces in Figure 4b and 

Figure 4c. Figure 4a represents two pieces in their default 

(unshrunken) state, Figure 4b represents the resulting pieces of the 

shrinking process, and Figure 4c shows how the former is 

transformed into the latter.  

In addition to this shrinking algorithm, two alternatives were 

considered; the first was affine scaling, which would essentially 

have all of the vertices translate towards a central point. A caveat 

with this approach is that the central point would have to be 

determined, but the main one is that there would be no net change 

in the spacing of components of the piece. Another approach was 

to have a smaller sized grid and then map each new cube to that 

smaller grid. The caveat with this approach is that the overall grid 

would misalign with other pieces, and would cause chaos if the grid 

size varied per piece, i.e., each piece would have to be 

comparatively evaluated with other pieces in order to determine its 

grid size factor. Our chosen approach offers no such caveats and 

does not suffer from any known vulnerabilities. 

 

Figure 4: (a) Non-modified shapes, (b) shrunken shapes, (c) 

shape (b) superimposed onto (a) 

 

 

 

 

 

 

 

 

 

 



 

 

Algorithm 2 Cuboid Shrinking algorithm  

1: procedure SHRINK SCENE (filename) 

2:       for each vertex in vertexList do 

3:               adjTris←findAdjacentTriangles() 

4:               for each triangle in adjTris do          

5:                      normalVec←deriveAndCrossVectors()      

6:                      normalVec←invert() 

7:                      normalVec←normalize()       

8:                      vertextNormals←addFrom(normalVec)     

9:                end for        

10:              avgNormal←avgVertNormals(vertexNormals)         

11:              avgNormal←normalize()        

12:              netVectors←addFrom(avgNormal)   

13:      end for     

14:      shrinkBy←0.5      

15:      vertex←nextItem(vertexList)              

16:      for each vec in netVectors do              

17:              vec←snapVector()   

18:              vec←normalize()   

19:              vec←specificSnap() 

20:              translateBy←multiply(netVectors, shrinkBy)        

21:              vertex←add(translateBy)        

22:              vertex←nextItem(vertexList)   

23:      end for 

24: end procedure 

 

 

For each vertex represented by its index in the vertetx list, the set 

of adjactent triangles is determined; these are triangles with a vertex 

element that is equal to the vertex list index. This is shown on Lines 

2-3 of Algorithm 2. Then for each adjacent triangle of a vertex, we 

derive its vectors and cross them. The resulting vector is then 

inverted (components multiplied by -1), normalized, and then 

added to a list of vector normals of the vertex. After the vertex 

normals are calculated, an average normal is calculated from that, 

and is then normalized. The resulting vector is added to a list of net 

vectors, which represents the overall movement (-1, 1, or 0) in each 

component of the vertex. This is done on Lines 10-12.  

For each vector in the net vectors list, the vector is first snapped, 

i.e., each component is evaluated against and is, if approximately 

equal to, set to the value 0, 1, -1. This is so the net vector can be 

normalized with a set of components in the set {0, 1, -1}, and is 

then specific snapped, i.e., for each component, if the value is 

positive (greater than 0) then it’s set to 1, or -1 if negative, or it 

remains as 0 if previously so. Each net vector is multiplied by a 

shrinking factor; this is a value that determines how much each 

component of a vertex should translate by. The vertex is then 

translated inward according to the resulting product of the net 

vector. This process is represented on Lines 16-23.  

 

7. RESULTS 
 

 

Figure 6: Exterior piece (left), interior piece (right) 

 

As previously mentioned, triangle meshes used as input into the 

system must be watertight; examples of these are Figures 5a-d. The 

exception to this is Figure 5e, which was used to confirm that the 

Figure 5: (a) Cube, (b) sphere, (c) hygrometer, (d) barrel, (e) bunny 



process of converting the mesh to its voxelized representation 

results in an inaccurate representation of the original mesh. Figure 

1a (the cube) was predominantly used throughout the development 

process. A set of merged cubes is used to represent a voxel grid, 

where a cube is rendered for each valid element of a voxel grid. 

Cuboids (two or more cubes joined together) are used to illustrate 

merging (including removal of faces) and the shrinking process 

(although an individual cube can be used for this purpose). 

Figure 6a shows graphical models used to demonstrate all of the 

core principles highlighted in this paper, i.e., voxelisation, merging, 

shrinking, and overall rendering. The models shown are the 

shrunken versions, compensating for the size of 3D printing 

materials. Figure 6b shows the 3D printed version of Figure 6a. The 

two pieces interconnect without obstruction, and affirm the 

viability of generating more complex pieces.  

 

8. CONCLUSIONS 
Algorithm design. Each of the algoritms highlighted above are 

well designed and perform as intended. Algorithm 1 is designed to 

iteratively merge new cubes to an accumulating mesh composed of 

previously-rendered cubes. The algorithm takes into account that a 

new cube will have to merge with at least one other cube in the 

accumulating mesh and, therefore, adjoining triangles have  to be 

rremoved and duplicate vertices must be removed. Algorithm 2 is 

designed to iteratively translate each of the vertices of the 

accumulating mesh. The algorithm covers the whole process from 

identifying surrounding triangles, to normalizing, snapping, and 

finally translating the vertex. 

 

Implementation. The implementation of each algorithm is 

relatively straightforward. The difficulty lies in checking for 

accuracy in each of the intermediary phases of the implementation 

of each functionality. The primary method of testing is tracing, 

which involves standard output error printing of the relevant 

information required for verifying the accuracy of a particular 

process. This method is coupled with a paper-written set of tests 

used to visually confirm the tracing outputs.  

 

9. ACKNOWLEDGMENTS 
We would like to thank Prof. James Gain and Dr. Josiah Chavula 

for their contributions and guidance as supervisor and second 

reader, respectively. 

We’d also like to thank Sea Monster for providing us with working 

space, project focus, and some guidance. 

 

 

10. REFERENCES 
[1] Akash, G., Alec, J., And Eitan, G. 2016. Computational 

Design of Reconfigurables. ACM Trans. on Graph. 

(SIGGRAPH) 35, 4 (2016). Article No. 90.   

[2] Benoit, P. And Gareau, D. (2000). Three-dimensional Puzzle. 

US 6,086,067, United States Patent and Trademark Office, 11 

July 2000. 

[3] Fu, C.W., Song, P., Yan, X., Yang, L.W., Jarayaman, P.K., 

And Cohen-Or, D. 2015. Computational interlocking furniture 

assembly. ACM Trans. Graph. 34, 4, Article 91 (July 2015), 

11 pages. 

[4] Jiaxian, Y., Danny, K., Yotam, G., And Maneesh, A. 2017. 

Interactive Design and Stability Analysis of Decorative 

Joinery for Furniture. ACM Trans. on Graph. 36, 2 (2017). 

Article No. 20. 

[5] Lo, K.-Y., Fu, C.-W., And Li, H. 2009. 3D Polyomino puzzle. 

ACM Tran. on Graphics (SIGGRAPH Asia) 28, 5. Article 

157. 

[6] Mélina, S., Stelian, C., Eitan, G., And Berhnhard, T. 2015. 

Interactive Surface Design with Interlocking Elements. ACM 

Trans. Graph. (SIGGRAPH Asia) 34, 6 (2015). Article No. 

224. 

[7] Miaojun, Y., Zhili, C., Weiwei, X., And Huamin, W. 2017a. 

Modeling, Evaluation and Optimization of Interlocking Shell 

Pieces. Comp. Graph. Forum 36, 7 (2017), 1–13. 

[8] Miguel E., Lepoutre M., Bickel B.: Computational design of 

stable planar-rod structures. ACM Transactions on Graphics 

35, 4 (July 2016), 86:1–86:11. 

[9] Miller, Jr., J. (1998). Three Dimensional Interlocking Puzzle. 

US 5,762,336, United States Patent and Trademark Office, 9 

June 1998.  

[10] Peng, S., Chi-Wing, F., And Daniel, C. 2012. Recursive 

Interlocking Puzzles. ACM Trans. on Graph. (SIGGRAPH 

Asia) 31, 6 (2012). Article No. 128. 

[11] Peng, S., Chi-Wing, F., Yueming, J., Hongfei, X., Ligang, L., 

Pheng-Ann, H., And Daniel, C. 2017. Reconfigurable 

Interlocking Furniture. ACM Trans. On Graph. (SIGGRAPH 

Asia) 36, 6 (2017). Article No. 174.  

[12] Peng, S., Zhongqi, F., Ligang, L., And Chi-Wing, F. 2015. 

Printing 3D Objects with Interlocking Parts. Comp. Aided 

Geom. Des. 35-36 (2015), 137–148. 

[13] Simmons, T. (2006). Three-dimensional Puzzle. US 7,021,625 

B2, United States Patent and Trademark Office, 4 April 2006. 

[14] Xin, S.-Q., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., And 

Cohen-Or, D. 2011. Making burr puzzles from 3D models. 

ACM Tran. on Graphics (SIGGRAPH) 30, 4. Article 97. 

[15] Yinan, Z., And Devin, B. 2016. Interlocking Structure 

Assembly with Voxels. In IEEE/RSJ Intl. Conf. on Intelligent 

Robots and Systems. 2173–2180. 

[16] Ziqi, W., Peng, S., And Mark, P. “DESIA: A General 

Framework for Designing Interlocking Assemblies”. In: ACM 

Transactions on Graphics (SIGGRAPH Asia) 37.6 (2018). 

Article No. 191. 

 

 


	2019PaperCoverSheet
	PUZLOK_Final_Paper



