
An analysis of templates for generating text for use in
comparing with data-driven models

Matthew Poulter

University of Cape Town
Rondebosch, Cape Town

pltmat001@myuct.ac.za

ABSTRACT
Data-driven Natural Language Generation (NLG) systems have
seen significant interest growth over the past decade, however,
there is little to suggest that the benefits of using this data-driven
model out way its costs when compared to a template-based
system. This paper aims to provide an overview of the current
state of template-based NLG systems in preparation for an
investigation and comparison of their effectiveness and quality
against data-driven models. This paper first looks at NLG and the
overall design of such a system. It then provides an overview of
the two approaches in question, namely template-based and data-
driven models. This is followed by an analysis of three existing
template-based NLG systems as well as discussing methods for
evaluating and comparing these systems against potential data-
driven ones. Finally, this paper looks at the practical application
of developing a template-based NLG system.

Keywords
natural language generation; data-to-text generation; template-
based models; text analysis

1. INTRODUCTION
With the rise in popularity of data-to-text generation in recent
years, so too has this field of study grown and developed. Data-
to-text techniques have also evolved, and new techniques have
been introduced. These techniques of data-to-text generation are
part of a computing task known as Natural Language Generation
(NLG), which this paper defines further in the next section.

NLG, specifically in the context of a data-to-text system, has been
around for many years and has been researched across several
fields, including weather forecast generation [5], journalism [17],
medical reports [3], and sports commentary [9].

Most recently data-driven NLG models that use deep learning
methods have seen significant interest growth. However, there is
much debate as to whether these data-driven models are as
effective as traditional models, such as template-based models. In
fact, the E2E NLG Challenge1 was recently formed to quantify the
differences between the various models and perhaps resolve this
debate.

After competing in the challenge, a pair of participants concluded
that, “sometimes the costs of developing complex data-driven
models are not justified and one is better off approaching the
problem with simpler techniques [such as templates]” [20]. This,
however, is not conclusive whether this will hold true for other

1 http://www.macs.hw.ac.uk/InteractionLab/E2E/

NLG tasks, or outside of the specific context of the E2E NLG
Challenge.

This paper therefore analyses the current state of template-based
NLG systems, in preparation for an investigation and comparison
of their effectiveness and quality against data-driven models.

2. NATURAL LANGUAGE GENERATION
(NLG)
2.1 Definition
A widely cited definition of Natural Language Generation (NLG)
is that NLG is “the subfield of artificial intelligence and
computational linguistics that is concerned with the construction
of computer systems that can produce understandable texts in
English or other human languages from some underlying non-
linguistic representation of information.” [10]

However, there is some concern that this definition may
encompass too great or too small a field. In this regard Gatt and
Kramer [2] discuss at length the various concerns, but instead of
debating this further here, this paper, similarly to Gatt and
Kramer’s survey, denotes NLG as having an input that is not
linguistic.

Thus, for this purposes of this paper, Natural Language
Generation, and by extension NLG, will refer to the task of
generating human-readable text from non-linguistic [10] and
structured data [20].

2.2 Architecture
Another widely debated area of Natural Language Generation is
that of architecture. This is understandable considering the
complexity of creating an NLG system. Many have argued that it
is easier to build such a system when it is split up into distinct
modules [11], however, some have said that while this modular
approach may work conceptually, the vast array of programming
languages and data representations makes it difficult for these
modules to be interchangeable between systems [7], thus reducing
the effectiveness of using a modular approach.

In terms of architecture specifications, this paper looks briefly at
two of the most widely used and providing a comparison between
them.

2.2.1 Reiter/Dale architecture
Originally published in 1997 [10], Reiter and Dale proposed a
modular pipeline approach to architecture, which they revised
and published again in their textbook in 2000 [11]. This pipeline

consisted of three separate modules (see Figure 1) where the
output of the previous module was used as the input for the next.

The first module, namely the Document Planner, which is
responsible for “conceptual lexicalisation, content determination
and document structuring” [11]. This produces a tree of packaged
domain information known as the Document Plan which contains
a breakdown of the input data as well as the overall structure of
the text. This Document Plan is then passed to the Microplanner.

The Microplanner concerns itself with “linguistic aggregation,
expressive lexicalisation, and referring expression generation”
[11]. In general, the purpose of the Microplanner is to refine the
Document Plan to produce a complete Text Specification. This
Text Specification still needs to be rendered to an output that is
readable, which is where the Surface Realiser takes over.

This final module, the Surface Realiser, traverses through the Text
Specification producing output text. Each node in the Text
Specification informs the Surface Realiser what it needs to do. The
Surface Realiser is therefore responsible for “linguistic realisation,
along with any necessary post-processing such as rendering the
text in some specific output format” [11].

Figure 1: Reiter and Dale's NLG system architecture [11].

2.2.2 A Reference Architecture for Natural Language
Generation Systems (RAGS)
A 2004 article, written by Mellish et al. [8] and titled the same as
this section, argues that the model put forth by Reiter and Dale is
“more constraining than it may seem at first sight” [8]. Their
argument surrounds the issue that many actual NLG systems were
not able to follow the Reiter/Dale architecture at a granular level,
and that the architecture was not necessarily practical.

Mellish et al. therefore proposed a framework titled “A Reference
Architecture for Natural Language Generation Systems” (RAGS).
The main components of this framework are:

• a high-level specification of the key data types used
within an NLG system;

• a low-level specification of flexible data model able to
handle the practicalities of an NLG system;

• an exact specification in XML for communicating
between components of an NLG system;

• a generic overview of how the modules of an NLG
system should fit together;

• sample implementations to provide demonstrations for
how the framework can be successfully used.

The overall RAGS framework (Figure 2) is structured in such a
way that the various modules can process data using native or
potentially unknown methods, but that the communication
between the modules is then controlled by the XML specification.
This minimises the compatibility issues when using different
programming languages for different modules, and therefore has
the potential for these modules to be interchanged between NLG
systems [8].

Figure 2: Structure of the RAGS framework [8].

2.2.3 Comparison of architectures
While both RAGS and the Reiter/Dale architecture attempt to
standardise the way NLG systems are designed, the core
difference between these two architectures is that RAGS was
designed to provide a more structured but also more abstract
framework for NLG systems than the Reiter/Dale architecture
offers [8].

This approach is certainly more freeing and allows for modules to
be interchangeable between systems, however, it comes with the
cost of additional layering and a learning curve in the software
design which increases the development time.

The Reiter/Dale architecture is therefore more suited to individual
or small team projects working on a tighter schedule, where
modules are not necessarily needed to be swapped with modules
from other systems.

3. NLG APPROACHES
While there are many different approaches to NLG, this paper, in
its preparation for the investigation to follow, will focus on just
two of them, namely the traditional template-based model and
relatively new data-driven model. More so, this paper will pay
particular attention to an analysis of current template-based
systems.

3.1 Template-based model
Template-based text generation is not a new concept and is also
certainly the wider used of these two models. In fact, one can even
find a simple implementation of a template-based data-to-text

model in the Mail Merge feature of the word processor, Microsoft
Word [10].

In a more general setting, this template-based model can be
applied when the domain of the application is small and the
variation expected of their output is minimal, or at least expected
to be so [19]. The following is an example of this.

<player> scored a goal for <team> in the <minute>
minute.

If the variables, player, team, and minute, are filled with
corresponding values, the output would look something like the
following.

Juan Mata scored a goal for Manchester United in the 11th
minute.

As is demonstrated by Theune et al. [18], templates do not have
to be restricted by just a single output and can instead be
automated and change depending on the circumstances. This
could be done by adding a syntactic system to the templates
themselves. An example of this is the following, where the output
changed from the previous output when Juan Mata scored his
second goal.

Juan Mata scored his second goal for Manchester United in the
28th minute.

An advantage of this template-based approach is that it allows for
complete control of output, thus also allowing control over the
quality. Adding syntactic information to the template categories,
or even including complex rules, can also allow for a more varied
and realistic output.

On the other hand, creating templates can be a timely process if
done manually according to Gatt and Krahmer [2], however
Puzikov and Gurevych [20] have argued that an NLG task “can
also be approached with a template-based model developed in just
a few hours.” Further, templates do not offer much flexibility
when it comes to variation expected of the application’s output
[2].

3.2 Data-driven model
In contrast to a template-based model, data-driven NLG systems
do not have the same level of control over the output, and instead
opt for machine learning techniques using sample data to train the
system [13]. This relinquishing of control does, however, give
data-driven NLG systems the ability to produce a vastly greater
variation in output than template-based systems. This is because
one no longer needs to craft all the combinations of semantic
elements needed to produce output text [13].

Instead, data-driven NLG systems use techniques to learn both the
structure of the text as well as the surface realisation patterns
from an example dataset known as the corpus [20]. Generally,
here are two different approaches to using this model. The first
approach is to create the small base grammar manually and then
use data-driven methods to filter the outputs. The second
approach is to rely on data-driven methods to create the base
generator as well [2].

Regardless of the approach, using a data-driven model
significantly decreases the amount of time it takes to design and
create an NLG system [2], when compared to the traditional
template-based approach [20]. The opportunity cost of this speed
improvement is that there is less control over the outputs
produced by data-driven NLG systems, and the systems have the

potential to produce output that is less readable or understandable
than the outputs of a template-based system [2].

4. TEMPLATE-BASED NLG SYSTEMS
Focussing on template-based NLG systems, this paper presents
three recently documented systems from various papers about
Natural Language Generation. These systems vary in application
but they by no means make up an exhaustive list of possible
template-based systems or applications.

Table 1 briefly outlines the overall similarities and dissimilarities
between each of these systems, paying attention to the designs
and architectures used. Clarity refers to how understandable and
clear the output text was, and fluency refers to how easy to read
it was.

Table 1: A comparison of three template-based NLG
systems

 PASS Model-T DYD

Modular Yes No Partially

Pipeline Yes Yes No

Tailored
Output/Bias

Yes No No

Syntactic
System

No No Partially

Variance Yes Partially Yes

Clarity
Positive
response - -

Fluency Positive
response

- -

Naturalness -

Rated second
with other
data-driven

systems

-

Quality -

Rated second
with other
data-driven

systems

-

4.1 PASS
Van der Lee et al. [9] recently developed the PASS system, a “data-
to-text system for soccer, targeted towards specific audiences” [9].
As the title suggests, the template-based system was designed in
such a way that it produces output text that was identifiably
tailored for an audience. In the context of the PASS system, which
produces reports of soccer matches, one could easily identify
which team the outputted report was biased towards.

With PASS, van der Lee et al. [9] followed three steps to convert
their corpus material, a database of real match reports often
containing an emotional tone, into suitable templates for use in
the system.

Firstly, each sentence of the reports was categorised according to
the event it described. The reports were also separated according
the outcome of the match: a win, a draw, or a loss. Secondly, van
der Lee et al. [9] employed a reductive step to remove categories
for which they did not have available input data to reproduce.

Finally, each sentence was converted to a template, much like the
examples used in Section 3.1.

In fact, van der Lee et al. [9] made use of changing templates
depending on the circumstances, however unlike Theune et al.
[18], they chose to store these templates as separate categories,
thus creating a larger database than similar systems. This trade-
off did however afford them more variation in the generated
output.

Another difference between the PASS system and the system
designed by Theune et al. [18] is that PASS was designed to be
modular. This decision was made to allow for replacing certain
modules in the future if desired.

The basic outline of the modular system is that it uses a
“governing module” to traverse each topic, sending them one by
one into the pipeline. First, a collection of templates is selected
based on the determined category of the current topic. The next
module finds all the appropriate templates creating a list of
options to be passed to the following module, which in turn selects
a template in a weighted manner. [18]

At this stage, the template can be filled with the relevant
information from the input. The following module assigns the
topic an ordering based on where the topic happened within the
soccer game. Once all of this has been complete, the output text is
collected together in the correct order. Finally, the output is
passed through three further modules to increase variety in the
output text. [18]

Van der Lee et al. [18] proceeded to evaluate their system and their
results showed that the system could accurately tailor 91% of its
output reports. Further, both the clarity and fluency of the reports
were rated well above the baseline score in their tests.

4.2 Model-T
For their submission to the E2E NLG Challenge, Puzikov and
Gurevych [20] developed a template-based NLG system which
they called Model-T. In comparison to PASS, the system is far
more primitive, favouring efficiency over naturalness. This was
because Puzikov and Gurevych [20] were attempting to show that
this template-based system would hold its own against complex
data-driven systems, while remaining less costly, particularly in
time, than the other systems.

Like the examples used in Section 3.1, the Model-T system uses
templates where values can be entered in based on the input data.
The system is designed to output restaurant descriptions, and the
following is an example of the type of template that is used, where
each <tag> represents a different type of input datum.

<name> is a <type> which serves <food> food in the
<price> price range.

Some variations are included in the templates to allow for more
fluent and natural language depending on the actual input.
Further, the system employs a set of rules which split the
templates into separate components and allow for components to
be activated and deactivated depending on the availability of the
input data [20]. Modifying the previous example, if the input did
not include price data, the system would use the following
template instead.

<name> is a <type> which serves <food> food.

The Model-T system also included a post-processing step which
added and corrected the punctuation and grammar of the output
[20].

Puzikov and Gurevych [20] first performed five metric
evaluations on the Model-T system and compared them to the
data-driven system they had developed too, as well as another
data-driven system as a baseline. Model-T scored below the other
two systems in all the tests, however, Puzikov and Gurevych [20]
surmised that this might be due to it not being data-driven and
hence generating different outputs to the other two systems.

Upon submitting the Model-T system, the official evaluation
results showed similar findings when it came to the metric scores,
however in both human evaluation markers, quality and
naturalness, the Model-T system performed on par with data-
driven systems ranked second in the challenge.

Puzikov and Gurevych [20] therefore concluded from this that
“sometimes the costs of developing complex data-driven models
are not justified and one is better off approaching the problem
with simpler techniques.”

4.3 DYD
Created by van Deemter and Odijk [15], Dial-Your-Disc (DYD) is
in fact a data-to-speech NLG system, however the system is
conveniently split into two models, namely a language generation
module and a speech generation module [14]. This paper
exclusively refers to DYD in the context of its language generation
module.

Within this module, the DYD system contains four submodules,
however these submodules serve to augment the language
generation module in its task, and much of the processing of the
system is done in the main module itself [15]. This makes the DYD
system only partially modular for the purposes of this paper.

From an overall design point of view, and unlike many other NLG
systems which use sentence and paragraph planning to create
suitable output text, the DYD system makes use of a “generate-
and-test” strategy to build up its output. Adapting the example
van Deemter and Odijk [15] give for this, if the system were to
generate a sentence which contained a grammatical error, the
testing stage of the DYD approach would simply discard the
sentence and the system would attempt another sentence.

To generate sentences, the DYD system uses the notion of
syntactic trees which contain variable parts which can themselves
be filled with other syntactic trees recursively. This ultimately
creates a template to be used for the sentence [15]. This template
follows the same pattern as the previous two systems as well as
the examples in Section 3.1.

Once these sentence templates have been generated, the system
then attempts to create a coherent paragraph using them. It does
this by determining what data is to be presented by the user, as
well as keeping track of what has already been presented. Using
the same “generate-and-test” strategy, the DYD system does not
contain its own explicit text grammar. Instead it continually tests
whether the sentence to be added makes sense within the current
context, and only adds it to the text if this is the case. [15]

Further, the template sentence itself must satisfy four conditions
before it is considered applicable for the context. These conditions
are that the template must:

1. present the required information;

2. present only new information;

3. express the correct topic; and

4. be stylistically appropriate. [15]

Once these conditions have been met, the template can then be
used to generate an actual sentence and be added to the output
text paragraph being built. The paragraph is considered complete
once all the input data needed to be conveyed has been compiled
into sentences. [15]

5. EVALUATION OF TEMPLATE-BASED
NLG SYSTEMS
This section looks at possible ways to evaluate template-based
NLG systems with the view to being able to compare real systems
based on the output they produce. Further, discussions are made
on the suitability and appropriateness of using each of these
methods to evaluate and compare data-driven NLG systems too
and provide a useful comparison between these two types of NLG
systems.

The evaluation methods have been categorised into three sections,
namely Metric Evaluation, Error Analysis, and Human Indicators.
The first two categories both involve automated testing of the
systems, while the final category, somewhat obviously, requires
human assessment.

5.1 Metric evaluation
The E2E NLG Challenge currently uses five metrics to evaluate
the submitted NLG systems with [20]. This paper looks at two of
these, namely Bilingual Evaluation Understudy (BLEU) and Recall
Oriented Understudy for Gisting Evaluation (ROUGE).

5.1.1 Bilingual Evaluation Understudy (BLEU)
Bilingual Evaluation Understudy (BLEU) [16] is one of the most
popular metrics when it comes to evaluating NLG systems. BLEU
uses two tools to create its final score.

The first is called “modified n-gram precision” [16] and judges the
output text of the system based on how similar it is to the
reference texts which are inputted. It does this by first calculating
the fraction of sequential words found when comparing to the
reference texts. Secondly, it “modifies” this score by only
matching a sequence as many times as it is found in the reference
texts, to avoid unnecessarily long outputs. These scores are then
summarised using a geometric mean to determine the final
precision value. [16]

The second tool the BLEU metric uses is called the “sentence
brevity penalty” [16] and, as the name suggests, simply penalises
output text which is too concise. This value and the final precision
value are then used to calculate the system’s BLEU score.

5.1.2 Recall Oriented Understudy for Gisting
Evaluation (ROUGE)
There are four types of ROUGE metrics, however, the E2E NLG
Challenge uses the ROUGE-L type for their comparisons [20]. This
paper will therefore only look at the ROUGE-L metric, where “L”
stands for “Longest Common Subsequence” [6].

The name explains much of how the metric works by finding the
longest subsequence in common between the system output and
the reference texts. It then calculates an F-score based on the and
weightings assigned to each text by their lengths [6].

5.1.3 Suitability for use with template-based systems
Reiter [12] concluded that, at least in terms of BLEU, using the
metric to evaluate non-data-driven systems is not supported.

Further, he concluded that the metric should not be used to
evaluate individual texts as opposed to systems.

As mentioned previously, Puzikov and Gurevych [20] came to the
same conclusion when testing their Model-T system against data-
driven systems. They state that this is expected since the output
text a template-based system produces might be different to the
reference texts. They further concluded that this was an issue with
all the metrics used by the E2E NLG Challenge [20].

This is a notable issue considering Gatt and Krahmer’s [2]
observation that template-based NLG systems do not produce a
substantial variance in output. If the templates of the NLG system
are similar to the reference texts, the metric will return a very high
result, but if they are not, it will consistently return a very low
result [20].

5.2 Error analysis
Puzikov and Gurevych [20] used a second test to compare their
two systems. This test was based on the number of common errors
made by each of the systems. The error types that were assessed
can be seen in Table 2, which has been modified from Puzikov and
Gurevych’s paper [20].

Table 2: The types of errors detected by Puzikov and
Gurevych’s paper [20] in their comparison of their NLG

systems

Error type Description

Bad grammar
Failure if the output text contains any bad
grammar.

Modified
contents

Failure if the output text alters a value
provided in the input dataset.

Dropped
contents

Failure if the output text leaves out a value
provided in the input dataset.

Punctuation
errors

Failure if the output text has punctuation
errors.

Puzikov and Gurevych [20] observed that the template-based
system returned scores of zero for all the error types, while the
data-driven system was predominantly altering or dropping
contents from the input dataset. This was the first sign in their
research that the template-based system may outperform the
data-driven one.

5.3 Human indicators
Both van der Lee et al. [9] and the E2E NLG Challenge used human
indicators to evaluate their systems. These indicators have been
summarised in Table 3, where the first two correspond to those
used by van der Lee et al. [9] and the last two were used by the
E2E NLG Challenge [20].

Their findings in this regard have already been discussed in this
paper, so won’t be repeated here, however, an important
observation by Puzikov and Gurevych [20] should be noted here.
Specifically, while their Model-T system performed relatively
poorly in actual the actual score of the two indicators used, it was
ranked in the second top cluster of systems, where systems within
the same cluster are tied.

Further, both Lee et al. [9] and Puzikov and Gurevych [20]
considered these indicators to be sufficient in comparing systems
and evaluating their effectiveness and quality.

Table 3: A summary of human indicators used in the
works analysed in this paper

Indicator Description

Clarity A rating based on ow understandable and
clear the output text is.

Fluency A rating based on how easy to read the output
text is.

Quality A rating based on the overall quality of the
text, when looking at grammar and format.

Naturalness
A rating based on how natural the output text
felt to the reader.

6. APPLICATION OF TEMPLATES
This paper has analysed many template-based systems in terms of
both architecture and design choices. However, it has not yet
discussed in depth the practicalities of developing a new template-
based NLG system, and how this could be done at the present. In
this section, this paper looks at Gatt and Reiter’s [1] SimpleNLG,
a “realisation engine” for Natural Language Generation. It further
compares it to the methods employed by the van der Lee et al. [9]
PASS system.

SimpleNLG is a Java library designed to perform tasks relating to
the construction of grammatically correct and fluent sentences. It
performs these tasks by receiving input in the form of English
words and phrases including the desired role they should have
within the sentence. [1]

In terms of Reiter and Dale's NLG pipeline [11], SimpleNLG would
take the place of the Surface Realiser. The modular PASS system
also contains a set of modules dedicated to constructing sentences
and ensuring correctness of grammar. Once could therefore use
the template approach employed by van der Lee et al. [9] to
generate textual data to be inputted into the SimpleNLG library.
This would be a very practical way to create a template-based
NLG system.

7. SUMMARY
This paper has provided an overview of Natural Language
Generation, showing the various architectures available when
designing an NLG system. It has further given breakdowns of two
models of NLG systems, namely template-based systems and data-
driven systems. The findings of this comparison were that while
template-based systems can produce more rigid output than data-
driven systems, templates offer the reliability of complete control
over the output.

An analysis of three existing template-based NLG systems showed
that there is a wide spectrum of design decisions which can be
made when developing these systems. Further, the analysis
showed that variability of output was possible to a certain extent,
and that these systems do not need to be grossly large and time-
consuming to produce this variability and naturalness.

This paper then provided a summary of current evaluation
methods used to evaluate NLG systems, as well as presenting the
various arguments for and against each of them with regards to
their use with template-based systems. Finally, a brief description
of the practical aspects of designing such a template-based NLG
system was presented.

8. REFERENCES
[1] Albert Gatt and Ehud Reiter. 2009. SimpleNLG: a realisation

engine for practical applications. In Proceedings of the 12th
European Workshop on Natural Language Generation (ENLG
'09). Association for Computational Linguistics,
Stroudsburg, PA, USA, 90-93.

[2] Albert Gatt and Emiel Krahmer. 2018. Survey of the state of
the art in natural language generation: core tasks,
applications and evaluation. J. Artif. Int. Res. 61, 1 (January
2018), 65-170.

[3] Albert Gatt, Ielka van der Sluis, and Kees van Deemter.
2007. Evaluating algorithms for the generation of referring
expressions using a balanced corpus. In Proceedings of the
Eleventh European Workshop on Natural Language
Generation (ENLG '07). Association for Computational
Linguistics, Stroudsburg, PA, USA, 49-56.

[4] Anja Belz and Eric Kow. 2010. Comparing rating scales and
preference judgements in language evaluation. In
Proceedings of the 6th International Natural Language
Generation Conference (INLG '10). Association for
Computational Linguistics, Stroudsburg, PA, USA, 7-15.

[5] Anja Belz. 2008. Automatic generation of weather forecast
texts using comprehensive probabilistic generation-space
models. Nat. Lang. Eng. 14, 4 (October 2008), 431-455. DOI:
http://dx.doi.org/10.1017/S1351324907004664

[6] Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Proceedings of the Workshop on
Text Summarization Branches Out (ACL-2004). Association
for Computational Linguistics, Barcelona, Spain, 74-81.

[7] Chris Mellish and Roger Evans. 2004. Implementation
architectures for natural language generation. Nat. Lang.
Eng. 10, 3-4 (September 2004), 261-282. DOI:
http://dx.doi.org/10.1017/S1351324904003511

[8] Chris Mellish, Donia Scott, Lynne Cahill, Daniel Paiva,
Roger Evans, and Mike Reape. 2006. A Reference
Architecture for Natural Language Generation Systems.
Nat. Lang. Eng. 12, 1 (March 2006), 1-34. DOI:
http://dx.doi.org/10.1017/S1351324906004104

[9] Chris van der Lee, Emiel Krahmer and Sander Wubben.
PASS: A Dutch data-to-text system for soccer, targeted
towards specific audiences. In Proceedings of the 10th
International Conference On Natural Language Generation
(INLG17). Santiago de Compostela, Spain, 95-104. DOI:
https://doi.org/10.18653/v1/w17-3513

[10] Ehud Reiter and Robert Dale. 1997. Building applied natural
language generation systems. Nat. Lang. Eng. 3, 1 (March
1997), 57-87. DOI:
http://dx.doi.org/10.1017/S1351324997001502

[11] Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge University Press,
New York, NY, USA.

[12] Ehud Reiter. 2018. A structured review of the validity of
BLEU. Comput. Linguist. 44, 3 (September 2018), 393-401.
DOI: https://doi.org/10.1162/coli_a_00322

[13] Elena Manishina. 2016. Data-driven natural language
generation using statistical machine translation and
discriminative learning (Computation and Language). Ph.D.
Dissertation. Université d’Avignon, Avignon, France.

[14] Kees Van Deemter, Emiel Krahmer, and Mariët Theune.
2005. Real versus Template-Based Natural Language
Generation: A False Opposition?. Comput. Linguist. 31, 1
(March 2005), 15-24. DOI:
http://dx.doi.org/10.1162/0891201053630291

[15] Kees van Deemter. 1997. Context modeling for language
and speech generation. In Interactive Spoken Dialog Systems
on Bringing Speech and NLP Together in Real Applications
(ISDS '97). Association for Computational Linguistics,
Stroudsburg, PA, USA, 48-52.

[16] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics (ACL
'02). Association for Computational Linguistics,
Stroudsburg, PA, USA, 311-318. DOI:
https://doi.org/10.3115/1073083.1073135

[17] Leo Leppanen, Myriam Munezero, Mark Granroth-Wilding
and Hannu Toivonen. Data-Driven News Generation for
Automated Journalism. In Proceedings of the 10th
International Conference On Natural Language Generation
(INLG17). Santiago de Compostela, Spain, 188-197. DOI:
http://dx.doi.org/10.18653/v1/W17-3528

[18] Mariet Theune, Esther Klabbers, J. R. De Pijper, Emiel
Krahmer, and Jan Odijk. 2001. From data to speech: a
general approach. Nat. Lang. Eng. 7, 1 (March 2001), 47-86.

[19] Susan W. Mcroy, Songsak Channarukul, and Syed S. Ali.
2003. An augmented template-based approach to text
realization. Nat. Lang. Eng. 9, 4 (December 2003), 381-420.
DOI: http://dx.doi.org/10.1017/S1351324903003188

[20] Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E NLG
Challenge: Neural Models vs. Templates. In Proceedings of
The 11th International Natural Language Generation
Conference (INLG18). Tilburg, The Netherlands, 463-471.

