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ABSTRACT 
Data-driven Natural Language Generation (NLG) systems have 
seen significant interest growth over the past decade, however, 
there is little to suggest that the benefits of using this data-driven 
model out way its costs when compared to a template-based 
system. This paper aims to provide an overview of the current 
state of template-based NLG systems in preparation for an 
investigation and comparison of their effectiveness and quality 
against data-driven models. This paper first looks at NLG and the 
overall design of such a system. It then provides an overview of 
the two approaches in question, namely template-based and data-
driven models. This is followed by an analysis of three existing 
template-based NLG systems as well as discussing methods for 
evaluating and comparing these systems against potential data-
driven ones. Finally, this paper looks at the practical application 
of developing a template-based NLG system. 

Keywords 
natural language generation; data-to-text generation; template-
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1. INTRODUCTION 
With the rise in popularity of data-to-text generation in recent 
years, so too has this field of study grown and developed. Data-
to-text techniques have also evolved, and new techniques have 
been introduced. These techniques of data-to-text generation are 
part of a computing task known as Natural Language Generation 
(NLG), which this paper defines further in the next section. 

NLG, specifically in the context of a data-to-text system, has been 
around for many years and has been researched across several 
fields, including weather forecast generation [5], journalism [17], 
medical reports [3], and sports commentary [9]. 

Most recently data-driven NLG models that use deep learning 
methods have seen significant interest growth. However, there is 
much debate as to whether these data-driven models are as 
effective as traditional models, such as template-based models. In 
fact, the E2E NLG Challenge1 was recently formed to quantify the 
differences between the various models and perhaps resolve this 
debate. 

After competing in the challenge, a pair of participants concluded 
that, “sometimes the costs of developing complex data-driven 
models are not justified and one is better off approaching the 
problem with simpler techniques [such as templates]” [20]. This, 
however, is not conclusive whether this will hold true for other 

                                                                 
1 http://www.macs.hw.ac.uk/InteractionLab/E2E/ 

NLG tasks, or outside of the specific context of the E2E NLG 
Challenge. 

This paper therefore analyses the current state of template-based 
NLG systems, in preparation for an investigation and comparison 
of their effectiveness and quality against data-driven models.  

2. NATURAL LANGUAGE GENERATION 
(NLG) 
2.1 Definition 
A widely cited definition of Natural Language Generation (NLG) 
is that NLG is “the subfield of artificial intelligence and 
computational linguistics that is concerned with the construction 
of computer systems that can produce understandable texts in 
English or other human languages from some underlying non-
linguistic representation of information.” [10] 

However, there is some concern that this definition may 
encompass too great or too small a field. In this regard Gatt and 
Kramer [2] discuss at length the various concerns, but instead of 
debating this further here, this paper, similarly to Gatt and 
Kramer’s survey, denotes NLG as having an input that is not 
linguistic. 

Thus, for this purposes of this paper, Natural Language 
Generation, and by extension NLG, will refer to the task of 
generating human-readable text from non-linguistic [10] and 
structured data [20]. 

2.2 Architecture 
Another widely debated area of Natural Language Generation is 
that of architecture. This is understandable considering the 
complexity of creating an NLG system. Many have argued that it 
is easier to build such a system when it is split up into distinct 
modules [11], however, some have said that while this modular 
approach may work conceptually, the vast array of programming 
languages and data representations makes it difficult for these 
modules to be interchangeable between systems [7], thus reducing 
the effectiveness of using a modular approach. 

In terms of architecture specifications, this paper looks briefly at 
two of the most widely used and providing a comparison between 
them. 

2.2.1 Reiter/Dale architecture 
Originally published in 1997 [10], Reiter and Dale proposed a 
modular pipeline approach to architecture, which they revised 
and published again in their textbook in 2000 [11]. This pipeline 



consisted of three separate modules (see Figure 1) where the 
output of the previous module was used as the input for the next. 

The first module, namely the Document Planner, which is 
responsible for “conceptual lexicalisation, content determination 
and document structuring” [11]. This produces a tree of packaged 
domain information known as the Document Plan which contains 
a breakdown of the input data as well as the overall structure of 
the text. This Document Plan is then passed to the Microplanner. 

The Microplanner concerns itself with “linguistic aggregation, 
expressive lexicalisation, and referring expression generation” 
[11]. In general, the purpose of the Microplanner is to refine the 
Document Plan to produce a complete Text Specification. This 
Text Specification still needs to be rendered to an output that is 
readable, which is where the Surface Realiser takes over. 

This final module, the Surface Realiser, traverses through the Text 
Specification producing output text. Each node in the Text 
Specification informs the Surface Realiser what it needs to do. The 
Surface Realiser is therefore responsible for “linguistic realisation, 
along with any necessary post-processing such as rendering the 
text in some specific output format” [11]. 

 

Figure 1: Reiter and Dale's NLG system architecture [11]. 
 

2.2.2 A Reference Architecture for Natural Language 
Generation Systems (RAGS) 
A 2004 article, written by Mellish et al. [8] and titled the same as 
this section, argues that the model put forth by Reiter and Dale is 
“more constraining than it may seem at first sight” [8]. Their 
argument surrounds the issue that many actual NLG systems were 
not able to follow the Reiter/Dale architecture at a granular level, 
and that the architecture was not necessarily practical. 

Mellish et al. therefore proposed a framework titled “A Reference 
Architecture for Natural Language Generation Systems” (RAGS). 
The main components of this framework are: 

• a high-level specification of the key data types used 
within an NLG system; 

• a low-level specification of flexible data model able to 
handle the practicalities of an NLG system; 

• an exact specification in XML for communicating 
between components of an NLG system; 

• a generic overview of how the modules of an NLG 
system should fit together; 

• sample implementations to provide demonstrations for 
how the framework can be successfully used. 

The overall RAGS framework (Figure 2) is structured in such a 
way that the various modules can process data using native or 
potentially unknown methods, but that the communication 
between the modules is then controlled by the XML specification. 
This minimises the compatibility issues when using different 
programming languages for different modules, and therefore has 
the potential for these modules to be interchanged between NLG 
systems [8]. 

 

 

Figure 2: Structure of the RAGS framework [8]. 
 

2.2.3 Comparison of architectures 
While both RAGS and the Reiter/Dale architecture attempt to 
standardise the way NLG systems are designed, the core 
difference between these two architectures is that RAGS was 
designed to provide a more structured but also more abstract 
framework for NLG systems than the Reiter/Dale architecture 
offers [8]. 

This approach is certainly more freeing and allows for modules to 
be interchangeable between systems, however, it comes with the 
cost of additional layering and a learning curve in the software 
design which increases the development time. 

The Reiter/Dale architecture is therefore more suited to individual 
or small team projects working on a tighter schedule, where 
modules are not necessarily needed to be swapped with modules 
from other systems. 

3. NLG APPROACHES 
While there are many different approaches to NLG, this paper, in 
its preparation for the investigation to follow, will focus on just 
two of them, namely the traditional template-based model and 
relatively new data-driven model. More so, this paper will pay 
particular attention to an analysis of current template-based 
systems. 

3.1 Template-based model 
Template-based text generation is not a new concept and is also 
certainly the wider used of these two models. In fact, one can even 
find a simple implementation of a template-based data-to-text 



model in the Mail Merge feature of the word processor, Microsoft 
Word [10]. 

In a more general setting, this template-based model can be 
applied when the domain of the application is small and the 
variation expected of their output is minimal, or at least expected 
to be so [19]. The following is an example of this. 

<player> scored a goal for <team> in the <minute> 
minute. 

If the variables, player, team, and minute, are filled with 
corresponding values, the output would look something like the 
following. 

Juan Mata scored a goal for Manchester United in the 11th 
minute. 

As is demonstrated by Theune et al. [18], templates do not have 
to be restricted by just a single output and can instead be 
automated and change depending on the circumstances. This 
could be done by adding a syntactic system to the templates 
themselves. An example of this is the following, where the output 
changed from the previous output when Juan Mata scored his 
second goal. 

Juan Mata scored his second goal for Manchester United in the 
28th minute. 

An advantage of this template-based approach is that it allows for 
complete control of output, thus also allowing control over the 
quality. Adding syntactic information to the template categories, 
or even including complex rules, can also allow for a more varied 
and realistic output. 

On the other hand, creating templates can be a timely process if 
done manually according to Gatt and Krahmer [2], however 
Puzikov and Gurevych [20] have argued that an NLG task “can 
also be approached with a template-based model developed in just 
a few hours.” Further, templates do not offer much flexibility 
when it comes to variation expected of the application’s output 
[2]. 

3.2 Data-driven model 
In contrast to a template-based model, data-driven NLG systems 
do not have the same level of control over the output, and instead 
opt for machine learning techniques using sample data to train the 
system [13]. This relinquishing of control does, however, give 
data-driven NLG systems the ability to produce a vastly greater 
variation in output than template-based systems. This is because 
one no longer needs to craft all the combinations of semantic 
elements needed to produce output text [13]. 

Instead, data-driven NLG systems use techniques to learn both the 
structure of the text as well as the surface realisation patterns 
from an example dataset known as the corpus [20]. Generally, 
here are two different approaches to using this model. The first 
approach is to create the small base grammar manually and then 
use data-driven methods to filter the outputs. The second 
approach is to rely on data-driven methods to create the base 
generator as well [2]. 

Regardless of the approach, using a data-driven model 
significantly decreases the amount of time it takes to design and 
create an NLG system [2], when compared to the traditional 
template-based approach [20]. The opportunity cost of this speed 
improvement is that there is less control over the outputs 
produced by data-driven NLG systems, and the systems have the 

potential to produce output that is less readable or understandable 
than the outputs of a template-based system [2]. 

4. TEMPLATE-BASED NLG SYSTEMS 
Focussing on template-based NLG systems, this paper presents 
three recently documented systems from various papers about 
Natural Language Generation. These systems vary in application 
but they by no means make up an exhaustive list of possible 
template-based systems or applications. 

Table 1 briefly outlines the overall similarities and dissimilarities 
between each of these systems, paying attention to the designs 
and architectures used. Clarity refers to how understandable and 
clear the output text was, and fluency refers to how easy to read 
it was. 

Table 1: A comparison of three template-based NLG 
systems 

 PASS Model-T DYD 

Modular Yes No Partially 

Pipeline Yes Yes No 

Tailored 
Output/Bias 

Yes No No 

Syntactic 
System 

No No Partially 

Variance Yes Partially Yes 

Clarity 
Positive 
response - - 

Fluency Positive 
response 

- - 

Naturalness - 

Rated second 
with other 
data-driven 

systems 

- 

Quality - 

Rated second 
with other 
data-driven 

systems 

- 

 

4.1 PASS 
Van der Lee et al. [9] recently developed the PASS system, a “data-
to-text system for soccer, targeted towards specific audiences” [9]. 
As the title suggests, the template-based system was designed in 
such a way that it produces output text that was identifiably 
tailored for an audience. In the context of the PASS system, which 
produces reports of soccer matches, one could easily identify 
which team the outputted report was biased towards. 

With PASS, van der Lee et al. [9] followed three steps to convert 
their corpus material, a database of real match reports often 
containing an emotional tone, into suitable templates for use in 
the system.  

Firstly, each sentence of the reports was categorised according to 
the event it described. The reports were also separated according 
the outcome of the match: a win, a draw, or a loss. Secondly, van 
der Lee et al. [9] employed a reductive step to remove categories 
for which they did not have available input data to reproduce. 



Finally, each sentence was converted to a template, much like the 
examples used in Section 3.1. 

In fact, van der Lee et al. [9] made use of changing templates 
depending on the circumstances, however unlike Theune et al. 
[18], they chose to store these templates as separate categories, 
thus creating a larger database than similar systems.  This trade-
off did however afford them more variation in the generated 
output. 

Another difference between the PASS system and the system 
designed by Theune et al. [18] is that PASS was designed to be 
modular. This decision was made to allow for replacing certain 
modules in the future if desired. 

The basic outline of the modular system is that it uses a 
“governing module” to traverse each topic, sending them one by 
one into the pipeline. First, a collection of templates is selected 
based on the determined category of the current topic. The next 
module finds all the appropriate templates creating a list of 
options to be passed to the following module, which in turn selects 
a template in a weighted manner. [18] 

At this stage, the template can be filled with the relevant 
information from the input. The following module assigns the 
topic an ordering based on where the topic happened within the 
soccer game. Once all of this has been complete, the output text is 
collected together in the correct order. Finally, the output is 
passed through three further modules to increase variety in the 
output text. [18] 

Van der Lee et al. [18] proceeded to evaluate their system and their 
results showed that the system could accurately tailor 91% of its 
output reports. Further, both the clarity and fluency of the reports 
were rated well above the baseline score in their tests. 

4.2 Model-T 
For their submission to the E2E NLG Challenge, Puzikov and 
Gurevych [20] developed a template-based NLG system which 
they called Model-T. In comparison to PASS, the system is far 
more primitive, favouring efficiency over naturalness. This was 
because Puzikov and Gurevych [20] were attempting to show that 
this template-based system would hold its own against complex 
data-driven systems, while remaining less costly, particularly in 
time, than the other systems. 

Like the examples used in Section 3.1, the Model-T system uses 
templates where values can be entered in based on the input data. 
The system is designed to output restaurant descriptions, and the 
following is an example of the type of template that is used, where 
each <tag> represents a different type of input datum. 

<name> is a <type> which serves <food> food in the 
<price> price range. 

Some variations are included in the templates to allow for more 
fluent and natural language depending on the actual input. 
Further, the system employs a set of rules which split the 
templates into separate components and allow for components to 
be activated and deactivated depending on the availability of the 
input data [20]. Modifying the previous example, if the input did 
not include price data, the system would use the following 
template instead. 

<name> is a <type> which serves <food> food. 

The Model-T system also included a post-processing step which 
added and corrected the punctuation and grammar of the output 
[20]. 

Puzikov and Gurevych [20] first performed five metric 
evaluations on the Model-T system and compared them to the 
data-driven system they had developed too, as well as another 
data-driven system as a baseline. Model-T scored below the other 
two systems in all the tests, however, Puzikov and Gurevych [20] 
surmised that this might be due to it not being data-driven and 
hence generating different outputs to the other two systems. 

Upon submitting the Model-T system, the official evaluation 
results showed similar findings when it came to the metric scores, 
however in both human evaluation markers, quality and 
naturalness, the Model-T system performed on par with data-
driven systems ranked second in the challenge. 

Puzikov and Gurevych [20] therefore concluded from this that 
“sometimes the costs of developing complex data-driven models 
are not justified and one is better off approaching the problem 
with simpler techniques.” 

4.3 DYD 
Created by van Deemter and Odijk [15], Dial-Your-Disc (DYD) is 
in fact a data-to-speech NLG system, however the system is 
conveniently split into two models, namely a language generation 
module and a speech generation module [14]. This paper 
exclusively refers to DYD in the context of its language generation 
module. 

Within this module, the DYD system contains four submodules, 
however these submodules serve to augment the language 
generation module in its task, and much of the processing of the 
system is done in the main module itself [15]. This makes the DYD 
system only partially modular for the purposes of this paper. 

From an overall design point of view, and unlike many other NLG 
systems which use sentence and paragraph planning to create 
suitable output text, the DYD system makes use of a “generate-
and-test” strategy to build up its output. Adapting the example 
van Deemter and Odijk [15] give for this, if the system were to 
generate a sentence which contained a grammatical error, the 
testing stage of the DYD approach would simply discard the 
sentence and the system would attempt another sentence. 

To generate sentences, the DYD system uses the notion of 
syntactic trees which contain variable parts which can themselves 
be filled with other syntactic trees recursively. This ultimately 
creates a template to be used for the sentence [15]. This template 
follows the same pattern as the previous two systems as well as 
the examples in Section 3.1. 

Once these sentence templates have been generated, the system 
then attempts to create a coherent paragraph using them. It does 
this by determining what data is to be presented by the user, as 
well as keeping track of what has already been presented. Using 
the same “generate-and-test” strategy, the DYD system does not 
contain its own explicit text grammar. Instead it continually tests 
whether the sentence to be added makes sense within the current 
context, and only adds it to the text if this is the case. [15] 

Further, the template sentence itself must satisfy four conditions 
before it is considered applicable for the context. These conditions 
are that the template must: 

1. present the required information; 

2. present only new information; 



3. express the correct topic; and 

4. be stylistically appropriate. [15] 

Once these conditions have been met, the template can then be 
used to generate an actual sentence and be added to the output 
text paragraph being built. The paragraph is considered complete 
once all the input data needed to be conveyed has been compiled 
into sentences. [15] 

5. EVALUATION OF TEMPLATE-BASED 
NLG SYSTEMS 
This section looks at possible ways to evaluate template-based 
NLG systems with the view to being able to compare real systems 
based on the output they produce. Further, discussions are made 
on the suitability and appropriateness of using each of these 
methods to evaluate and compare data-driven NLG systems too 
and provide a useful comparison between these two types of NLG 
systems. 

The evaluation methods have been categorised into three sections, 
namely Metric Evaluation, Error Analysis, and Human Indicators. 
The first two categories both involve automated testing of the 
systems, while the final category, somewhat obviously, requires 
human assessment. 

5.1 Metric evaluation 
The E2E NLG Challenge currently uses five metrics to evaluate 
the submitted NLG systems with [20]. This paper looks at two of 
these, namely Bilingual Evaluation Understudy (BLEU) and Recall 
Oriented Understudy for Gisting Evaluation (ROUGE). 

5.1.1 Bilingual Evaluation Understudy (BLEU) 
Bilingual Evaluation Understudy (BLEU) [16] is one of the most 
popular metrics when it comes to evaluating NLG systems. BLEU 
uses two tools to create its final score. 

The first is called “modified n-gram precision” [16] and judges the 
output text of the system based on how similar it is to the 
reference texts which are inputted. It does this by first calculating 
the fraction of sequential words found when comparing to the 
reference texts. Secondly, it “modifies” this score by only 
matching a sequence as many times as it is found in the reference 
texts, to avoid unnecessarily long outputs. These scores are then 
summarised using a geometric mean to determine the final 
precision value. [16] 

The second tool the BLEU metric uses is called the “sentence 
brevity penalty” [16] and, as the name suggests, simply penalises 
output text which is too concise. This value and the final precision 
value are then used to calculate the system’s BLEU score. 

5.1.2 Recall Oriented Understudy for Gisting 
Evaluation (ROUGE) 
There are four types of ROUGE metrics, however, the E2E NLG 
Challenge uses the ROUGE-L type for their comparisons [20]. This 
paper will therefore only look at the ROUGE-L metric, where “L” 
stands for “Longest Common Subsequence” [6]. 

The name explains much of how the metric works by finding the 
longest subsequence in common between the system output and 
the reference texts. It then calculates an F-score based on the and 
weightings assigned to each text by their lengths [6]. 

5.1.3 Suitability for use with template-based systems 
Reiter [12] concluded that, at least in terms of BLEU, using the 
metric to evaluate non-data-driven systems is not supported. 

Further, he concluded that the metric should not be used to 
evaluate individual texts as opposed to systems. 

As mentioned previously, Puzikov and Gurevych [20] came to the 
same conclusion when testing their Model-T system against data-
driven systems. They state that this is expected since the output 
text a template-based system produces might be different to the 
reference texts. They further concluded that this was an issue with 
all the metrics used by the E2E NLG Challenge [20]. 

This is a notable issue considering Gatt and Krahmer’s [2] 
observation that template-based NLG systems do not produce a 
substantial variance in output. If the templates of the NLG system 
are similar to the reference texts, the metric will return a very high 
result, but if they are not, it will consistently return a very low 
result [20]. 

5.2 Error analysis 
Puzikov and Gurevych [20] used a second test to compare their 
two systems. This test was based on the number of common errors 
made by each of the systems. The error types that were assessed 
can be seen in Table 2, which has been modified from Puzikov and 
Gurevych’s paper [20]. 

Table 2: The types of errors detected by Puzikov and 
Gurevych’s paper [20] in their comparison of their NLG 

systems 

Error type Description 

Bad grammar 
Failure if the output text contains any bad 
grammar. 

Modified 
contents 

Failure if the output text alters a value 
provided in the input dataset. 

Dropped 
contents 

Failure if the output text leaves out a value 
provided in the input dataset. 

Punctuation 
errors 

Failure if the output text has punctuation 
errors. 

 

Puzikov and Gurevych [20] observed that the template-based 
system returned scores of zero for all the error types, while the 
data-driven system was predominantly altering or dropping 
contents from the input dataset. This was the first sign in their 
research that the template-based system may outperform the 
data-driven one. 

5.3 Human indicators 
Both van der Lee et al. [9] and the E2E NLG Challenge used human 
indicators to evaluate their systems. These indicators have been 
summarised in Table 3, where the first two correspond to those 
used by van der Lee et al. [9] and the last two were used by the 
E2E NLG Challenge [20]. 

Their findings in this regard have already been discussed in this 
paper, so won’t be repeated here, however, an important 
observation by Puzikov and Gurevych [20] should be noted here. 
Specifically, while their Model-T system performed relatively 
poorly in actual the actual score of the two indicators used, it was 
ranked in the second top cluster of systems, where systems within 
the same cluster are tied. 

Further, both Lee et al. [9] and Puzikov and Gurevych [20] 
considered these indicators to be sufficient in comparing systems 
and evaluating their effectiveness and quality. 



Table 3: A summary of human indicators used in the 
works analysed in this paper 

Indicator Description 

Clarity A rating based on ow understandable and 
clear the output text is. 

Fluency A rating based on how easy to read the output 
text is. 

Quality A rating based on the overall quality of the 
text, when looking at grammar and format. 

Naturalness 
A rating based on how natural the output text 
felt to the reader. 

 

6. APPLICATION OF TEMPLATES 
This paper has analysed many template-based systems in terms of 
both architecture and design choices. However, it has not yet 
discussed in depth the practicalities of developing a new template-
based NLG system, and how this could be done at the present. In 
this section, this paper looks at Gatt and Reiter’s [1] SimpleNLG, 
a “realisation engine” for Natural Language Generation. It further 
compares it to the methods employed by the van der Lee et al. [9] 
PASS system. 

SimpleNLG is a Java library designed to perform tasks relating to 
the construction of grammatically correct and fluent sentences. It 
performs these tasks by receiving input in the form of English 
words and phrases including the desired role they should have 
within the sentence. [1] 

In terms of Reiter and Dale's NLG pipeline [11], SimpleNLG would 
take the place of the Surface Realiser. The modular PASS system 
also contains a set of modules dedicated to constructing sentences 
and ensuring correctness of grammar. Once could therefore use 
the template approach employed by van der Lee et al. [9] to 
generate textual data to be inputted into the SimpleNLG library. 
This would be a very practical way to create a template-based 
NLG system. 

7. SUMMARY 
This paper has provided an overview of Natural Language 
Generation, showing the various architectures available when 
designing an NLG system. It has further given breakdowns of two 
models of NLG systems, namely template-based systems and data-
driven systems. The findings of this comparison were that while 
template-based systems can produce more rigid output than data-
driven systems, templates offer the reliability of complete control 
over the output. 

An analysis of three existing template-based NLG systems showed 
that there is a wide spectrum of design decisions which can be 
made when developing these systems. Further, the analysis 
showed that variability of output was possible to a certain extent, 
and that these systems do not need to be grossly large and time-
consuming to produce this variability and naturalness. 

This paper then provided a summary of current evaluation 
methods used to evaluate NLG systems, as well as presenting the 
various arguments for and against each of them with regards to 
their use with template-based systems. Finally, a brief description 
of the practical aspects of designing such a template-based NLG 
system was presented. 
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