UNIVERSITY OF CAPE TOWN é
DEPARTMENT OF COMPUTER SCIENCE

CS/IT Honours
Final Paper 2019

Title: Salsational: An application for dance sequence generation

Author: Alka Baijnath

Project Abbreviation: DeDance

Supervisor(s): Associate Professor Maria Keet

Category Min | Max | Chosen
Requirement Analysis and Design 0|20 13
Theoretical Analysis 0|25 9
Experiment Design and Execution 0]20 6
System Development and Implementation 0|20 12
Results, Findings and Conclusion 10 | 20 10
Aim Formulation and Background Work 10 | 15 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section 0110

allowed only with motivation letter from supervisor)

Total marks 80

Salsational: An application for dance sequence generation

Alka Baijnath
alkabaij@gmail.com
University of Cape Town
Cape Town, South Africa

ABSTRACT

Evolution Dance Company is Cape Town’s first community-based
Salsa Dance Company with a primary focus on the development
of Salsa dance. In order to accomplish their mission, a software
tool was proposed to supplement ‘in-class’ learning for beginner
dancers, by providing functionality for dance students to create
and practice dance sequences and for dance teachers to plan dance
lessons. A dance notation is used to document four-dimensional
dance choreography into two-dimensional space. Thus, in order to
utilize dance moves in the application the ideology of an existing
dance notation was computerized to compose a dictionary of dance
moves. This was designed to enable a uniform storage mechanism
for a subset of Salsa moves. The intention of the dance dictionary
was to access the stored dance moves and create dance sequences.
In order to generate dance sequences, a control mechanism was
required to apply constraints to dance sequences to dictate what
moves could be performed in succession. The construction of a
context-free grammar (CFG) was instrumental in implementing
the aforementioned functionality and was designed to interpret
the constraints that a beginner dancer would experience during a
dance sequence. This CFG was implemented in the application to
actualize the sequence generation component. A user interface was
designed to allow the users to access the application’s capabilities.
Both the interface and sequence generation component were tested
with end-users of the application. During testing, the usability of
the application was assessed in order to discover whether such
an application would enhance the learning experience of students.
Ultimately, the application met all its requirements and is agreeably
conducive to the learning process of dance. It was concluded that
this new approach to dance education is not only valuable, but has
promising prospects for the future.

CCS CONCEPTS

« Theory of computation — Grammars and context-free lan-

guages; - Software and its engineering — Designing software.

KEYWORDS

parser, grammar specification, context-free grammar, dance nota-
tion, Salsa

1 INTRODUCTION

Dance is a performance art and is considered to be an ancient, cul-
tural heritage. In addition, dance is not only a form of expression
but provides the means to improve one’s mental capacity [13]. Con-
sequently, the preservation of dance is of the utmost importance.
Oral communication is prone to error [12] and humans are circum-
scribed by memory, concerning the intricacies of past and present
dance art forms. Therefore, it is imperative to archive various perfor-
mance arts for future generations in order to facilitate the survival
of dance. Due to the lack of comprehensive dance documentation

[19], dance novices are likely to record a video of a dance lesson
with the intention of using this video to practice choreography.
This approach often proves to be futile because the video quality
may be substandard and there is no formal clarification of moves
into clear steps and positions [40].

Historically, technology has been used as an instrument to ac-
tualize innovation in choreographic support tools [17]. From the
limited amount of tools available, few of them support interactive or
generative components [17]. The current technological platforms
that are available to dance students favour live dance performances
as a means to teach dance, which suffer from the aforementioned
disadvantages [40]. Hence, there are still opportunities for superior
solutions.

The Evolution Dance Company (EDC) [1] is Cape Town’s first
community based Salsa Dance company. It is an organisation that
provides a friendly and professional environment for people to
immerse themselves in the enthrallment of dance. It provides a
creative outlet for the appreciation of this artform. The primary
focus is on the development of dance, with the vision of making
Salsa accessible to all the people of Cape Town. Therefore, the
formulation of this project is in pursuance of this establishment’s
aspirations.

We proposed the development of a tool to aid and improve the
learning process of Salsa dance, with no intent of replacing the
traditional ‘in-class’ learning, but rather to supplement it. Our aim
is to develop a user-friendly, software tool, in the form of a desktop
application, for teachers to plan lessons that will provide a different
approach to the way Salsa dance is taught. Furthermore, this tool
will allow novice dancers to develop their skills by enabling them to
analyze specific dance moves graphically, create dance sequences
and learn dance sequences defined by teachers. Thus, our goal is to
aid the dance community. The research questions we aim to answer
are:

e How effectively can the application computerize a dance
syllabus?

o How effectively can our software tool formalise a sequence
of dance steps?

e How can the use of an application impact the dance skills of
a novice Salsa dancer?

The remainder of the paper first introduces background informa-
tion and relevant papers relating to the problem domain. The ap-
plication’s requirements and design decisions follow. Thereafter,
theoretical analysis of a context-free grammar, to define a dance
language, is conducted. The development and implementation of
the system is then explained. The evaluation methods used to assess
the project’s components are analyzed to produce results before
the conclusions, that were attained, are presented along with areas
for future work.

2 BACKGROUND AND RELATED WORK

This section will present information necessary to understand the
concepts that are referred to in this paper and an overview of
research related to the project.

2.1 Introduction to Dance

Dance is a performance art and is composed of premeditated bodily
movement [36]. This movement can be characterized as selected
sequences of active steps. The acknowledgement of movement as
a dance form is a shared affiliation in a particular culture by both
performers and observers [36].

2.1.1 Salsa Dance. For this project, we opted for the Salsa dance
style. Salsa is a syncretic dance form with origins from Cuba [6]. It is
usually a partnered dance. The ‘partners’ are namely the leader and
the follower. The leader is the director and indicates the succeeding
move to the follower [4]. The leader is responsible for physically
guiding the follower through the dance sequence. Salsa music is
written with four beats per measure. The basic salsa dance step
uses eight beats, therefore it is danced over two bars of music [4, 8].
The rhythmic composition of the Salsa basic step is defined as
‘quick-quick-slow’ [8] which is performed on beats 1-2-3, 5-6-7 of
the 8 beats. Salsa as a dance style consists of many variations. The
variation we chose is the Salsa On1l. On1 salsa timing is known as
L.A style salsa. This style is distinguished by its garish, agile moves
and the ‘slow’ portion of the Salsa rhythm. The Salsa On1 timing can
be further explained according to the following guidelines: “the lead

», «

breaks forward on 1 and back on 5”; “follower breaks backwards on
1 and forwards on 5”; “the slow counts are immediately after the
break steps”[6]. Break steps are a change of direction in the salsa

basic step.

2.1.2 Dance Notation. A dance notation, similar to musical notes, is
a symbolic form of representing the movements of the dancers using
various graphical symbols such as lines, circles, rectangles, squares,
bars etc. “The primary use of a dance notation is the documen-
tation, analysis and reconstruction of choreography”[22]. Dance
notations entail expressing four-dimensional movement into two-
dimensional space [18] and provides a means to conduct theoretical
analysis on choreography [34].

2.2 Types and Applications of Dance Notations

There have been previous attempts to construct comprehensible
dance notations to model dance choreography. Feuillet’s Notation
was one of the earliest discovered types of dance notation. This
notation is able to document foot positions [32] however, his nota-
tion is limited by its inability to represent movement for the upper
part of the body [32]. Labanotation, a dance notation, was invented
in 1928 [14]. It has been described as complicated and only easily
understood by those who study it [14]. This dance notation is used
for human movement but has not been optimised for a partnered
dance. These notations focus on the more classical dance styles and
do not allow users to experiment with different sequences or clearly
see the movement of different parts of the body. Renesse and Ecke
[39] created a ‘Space of Salsa Dance’ notation using mathemati-
cal equations in the form of a text-based diagram. This method is
only implemented for arm movement and lacks notation for feet
movement which is a fundamental part of Salsa Dance. In 2002,
the “Salsa Dictionary” was created [7] as a way to learn Salsa turn
patterns displayed in a table-based notation. The basic elements of

the system are hand holds, feet movement, directions and positions.
This method however is not defined in XML or any other structured
serialisation. In the past 17 years, there has been no uptake to the
use of this notation. The aforementioned notations are paper-based
notations, which can be easily misinterpreted [16] and difficult to
conceptualize [15].

LabanWriter [27], LabanEditor[27] and DanceLaban[27, 43] are
extensions of Labanotation . LabanWriter was created as a Labanota-
tion editor. However, its usability is limited as it treats the symbols
strictly as 2D objects and it does not perform grammar checks,
thus we cannot ensure the accuracy of the elements. LabanDancer
[27, 43] does not have a feature to prepare Labanotation scores.
Preparation of scores is useful in enabling dance movements to be
accurately interpreted. MovementXML [20] was then created as
a tool that extends LabanWriter. MovementXML ensures that the
score will always be correct. It has a structured nature making it
possible to search for a pattern in the score. Despite this, the efforts
were neither aimed at describing gestural interactions nor for Salsa.

2.3 E-Learning in Dance

In 2018, the WebDANCE project [24] was the first of its kind to be
developed as an e-learning dance tool. This attests to the fact that
there has not been much development in the approach to teaching
dance and that there are no established tools to do so. The aim
of the WebDANCE project was to develop a 3D platform in the
interest of being able to visualize dance movements in a virtual
environment [24]. Consequently, this would exploit the concept of
e-learning by providing a more intuitive approach to learning.

Following the launch of WebDANCE, a project called Open-
DANCE [30] was created. This project used the experience and
results obtained by WebDANCE. An improvement that was made
was providing functionality for users to input dance content online,
giving rise to dance lessons [30]. This was done to enhance the
interactive component between the web-learning environment and
the user [30]. The OpenDANCE project finds application within
the industry of dance education but may not be easily adapted for
teaching Salsa, due to the absence of Salsa specific information and
expertise.

Learn Salsa[2], Salsa Anywhere[3] and Salsa Dancing[5] are among
the top rated applications with the aim of teaching its users the
Salsa dance style. All three applications do not implement heuristic
principles in furtherance of a good user interface. Learn Salsa and
Salsa Dancing resemble organized databases. They supply users
with links to YouTube videos and do not offer any original content.
Salsa Dancing also contains text-based information, but this infor-
mation is ill-formatted. Although Salsa Anywhere offers original
content, users are forced to download them in order to gain access to
the content. Furthermore, there is limited access to videos as some
require in-app purchases. Nevertheless, the videos can be broken
down according to the eight beat rhythmic composition of Salsa.
The videos can also be separated into the different dance moves
performed. All three applications rely on videos to educate their
users to help them improve their skills. This approach to learning
often proves ineffective as discussed earlier in Section 1.

2.4 Introduction to Compilers

The following information is central to the components of the
project. They give a broad sense of the technicalities and concepts
that were considered during the development process.

2.4.1 Context Free Grammar. A context-free grammar (CFG) con-
sisting of a finite set of grammar rules is a quadruple (N, T, P, S)
where

e Nis a set of non-terminal symbols

e Tis a set of terminals where N N T = NULL.

e Pisasetofrules,P: N — (N UT)* ie., the left-hand side
of the production rule P does have any right context or left
context.

e Sis the start symbol

2.4.2 Parser. A parser is a compiler or interpreter element that
separates information into smaller components for simple interpre-
tation into another dialect. Parsing involves three steps:

(1) Lexical Analysis: A stream of string characters are given as
input to a lexical analyzer. These characters are separated
into distinct elements to give rise to meaningful expression.
Tokens are the output of this stage.

(2) Syntactic Analysis: Analysis of the aforementioned tokens
are carried out using a context-free grammar. The ordering
of the tokens are checked against the grammar’s algorithmic
procedures to see if the tokens form a valid expression.

(3) Semantic Parsing: The effect and ramifications of the ap-
proved expression are resolved and the necessary actions
are performed.

2.4.3 BNF Notation. Backus-Naur Form (BNF) is a notation strat-
egy to formalize a context-free grammar. BNF can also be utilized to
define the syntactic meaning of a programming language. Extended
BNF (EBNF) is a collection of metasyntax notations. EBNF makes a
formal description of a programming language.

2.5 Parser Development

There have been previous works of generating original parsers
and parser generators. Sabo et. al [33] took a unique approach to
creating a parser generator prototype. In their work, a parser is cre-
ated from a collection of annotated classes [33]. This is in contrast
to the traditional approach of specifying a syntax or grammar in
BNF notation. Although their efforts were aimed at investigating
new approaches to generating parsers, they utilized JavaCC, an
open-source parser generator written in the Java programming
language, as a fundamental parsing technology. The difference be-
tween JavaCC and their prototype is that the prototypes’s output
can be produced for both top-down or bottom-up parsers whereas
JavaCC uses primarily a top-down approach. Sabo et. al concluded
that their approach to creating a parser generator may prove to
be more efficient than traditional methods. Aggarwal et. al [42]
also focused on improving efficiency, by constructing a context free
grammar to automate password guesses. Their grammar specifica-
tion proved insightful owing to a systematic and comprehensive
explanation for each production in their context-free grammar. In
comparison to Sabo et. al, Aggarwal et. al [42] did not utilize any
existing parsing tools. Another approach to grammar specification
was proposed by Milani et. al [22] who sought to generate a context-
free grammar for mathematical expressions. Unlike Aggarwal et.
al, they used an algorithmic approach to inspire their grammar
specification and hence, were able to support their design decisions
in the generation of their grammar.

3 REQUIREMENTS GATHERING AND
DESIGN

This section outlines the strategy adopted during the design phase
of this application. The inspiration for this project stems from the
problems faced by the dance community. An example is illustrated
by Tanya Karen [23], who wrote a blog-post about documenting her
Salsa dance lessons in notebooks and utilizing this written version
to recall dance choreography.

Existing paper-based notations are complicated for students to
record and model dance choreography. Current applications, for
teaching the Salsa dance style, rely on videos to capture dance
moves. There are tools that implement paper-based dance notations
to teach dance, however no tools of this nature exist solely for the
purpose of teaching Salsa dance style.

3.1 The Requirements

Our client is Angus Prince from EDC, discussed in Section 1. The
requirements for this software tool arose from a combination of
our client’s aspirations and our ideas to eradicate the aforemen-
tioned problems. From the client’s knowledge, there is no appli-
cation that possesses a mutual approach to dance education. As a
direct result, we attended a beginners’ Salsa dance lesson, taking
an ethnographic approach to understand our users. This firsthand
experience allowed us to consider what a user would desire or need
our application to possess that would enrich their experience. Fur-
thermore, we were able to familiarize ourselves with basic steps
and Salsa concepts. In addition to this method, we conducted a user
experiment with our client, during a second meeting we had with
him. He gave us insight into what he required from this application.
To prevent scope creep, we prioritized and selected the application’s
functionality. This ensured that our scope was focused and concise
which optimized the software development process. The resulting
requirements, pertaining to this report, are provided below.

o A dance student should be able to:
- View information on dance moves
— Have access to a beginner’s dance syllabus
— Create a valid dance sequences for a pair
— Enhance their dance skills

e A dance teacher should be able to:
- Define dance sequences for students

The objective of the design process was to gain a conceptual view
of the system in accordance with the client’s needs, to anticipate
the expected behavior of the final product and how to make this
system efficient and effective. A co-design technique was employed.
This commenced during our initial meeting with our client and
persisted with electronic communication. We regularly updated
the client on our progress and subsequently received constructive
feedback which was applied to the system. We adopted a structured
design [41] method with a top-down approach [38] which involves
the decomposition of the system as one entity. Structure design [41]
can be understood as solution design and aims to conceptualize the
problem into distinct, well-organized components. The fundamental
components chosen to deliver the requirements are:

o A dictionary of dance moves

o A user interface

e A control mechanism for sequence generation
e A sequence generator

3.2 Dance Dictionary

Our client’s expertise provided us with a beginner dance syllabus
which will be represented by the dictionary. A dictionary was re-
quired to promote a well-organized and uniform system to store
dance moves. From Section 2, dance notations are used to docu-
ment dance choreography in a logical manner. Hence, using a dance
notation was appropriate for the requirements. There were two
options for designing a dance notation for the application, namely
constructing an original notation or leveraging an existing one. We
assessed the implications of creating our own notation. We had
to consider the limitations of our Salsa knowledge and the time it
would take to create and refine an original version. We opted to use
an existing notation, specifically the Salsa Dictionary [7] referred
to in Section 2. The Salsa Dictionary’s target market is beginner
dancers. They employ a salsa method which decomposes moves
into handholds, directions, actions and positions, which provides
an intuitive separation of elements. The directions are based on
the notion of a line of dance, the dancers being either parallel or
perpendicular to this line, and on the directions of the dancers in re-
lation to each other. The Salsa dictionary includes variations of the
aforementioned elements, a written explanation of each element, a
visual example and corresponding symbol, illustrated in Appendix
F. Furthermore, this notation defines moves for a pair, a leader and
a follower, which coincides with our solution. A move is illustrated
by a matrix of salsa lines and salsa elements, illustrated by Figure
1. The columns represent four beats in salsa choreography. This
notation was modified and extended to design the dictionary for
our application. There is ambiguity in the representation of the
symbols of a normal open handhold and a normal closed handhold,
as both use N[7]. Furthermore, the same symbol, an asterisk, is
used to indicate whether the hands are held up or down on either
the left or right side, by placing it on either side of the handhold
symbol e.g. “N* denotes that both the left and right hands are held.
To compensate for the ambiguous nature of the notation, we ad-
justed the symbolic representation of the notation, but preserved
its fundamental principles. The revised notation uses a “*’ to signify
if the hands are held up and a ‘+’ is used to signify if the hands are
held down. The symbol NC is designated for normal closed hands.
The terms ‘man’ and ‘lady” has been changed to follower and leader.
The directions utilize arrows to symbolize the respective positions
of the dancers. Some variations of the directions occupy two lines.
This was altered to occupy one line, by using a ‘| to indicate the
change in line, to offer uniformity and simplicity in the symbolic
representation e.g. {}}j[}=M|L. In addition, more suitable names have
been assigned to each dance move. The dance syllabus, composed
of the symbolic representation and updated names for the dance
moves, can be found in Appendix A. The structure of a dance move
is illustrated by Figure 2.

HandHold

Direction

Man

Common Action

Lady

Figure 1: A matrix of elements to define a Salsa move

Dance Move

Matrix

|
|
Salsa Line |
|

Symbol

Figure 2: The structural composition of a Salsa move

3.3 User Interface

The design of the interface was influenced by the required func-
tionality and the intention to enhance the learning experience of
dance students. When designing a solution, we addressed questions
such as what are the barriers that are hindering dancers’ access
to efficient dance tools and what problems are experienced in the
dance community.

3.3.1 Design Techniques. We opted to follow the User-Centred De-
sign process (UCD), to achieve user satisfaction. Our intended users
are students and teachers of Salsa. Our attendance at a beginners’
Salsa class and regular communication with our client fueled this
process. During our meetings with our client, we collaboratively ex-
plored design ideas and discussed the implications of the design. In
addition, we gathered information from dance students to discover
their design concerns.

Personae were established to inform the ideation practices. An
example of a persona, was an elder female, who recently started
Salsa dancing. This technique encouraged us to be mindful of our
users.

Paper prototypes were developed in rapid iterations. Each itera-
tive step was an advancement using a self-assessment technique.
The iterative process of developing the interface focused on im-
provements to the usability and the possible user satisfaction. Proto-
typing allowed us to exhaust all design options. UCT students, who
were enrolled in an Human Computer Interaction (HCI) course,
were consulted to review a refined paper prototype. Design flaws
were discovered, and placement of elements and the flow were
critiqued. This feedback was used to revise the design and improve
it based on what was observed. This ensured that a refined design
was created before software development began.

3.3.2 Design Principles. User experience (UX) design targets the
users and helps to achieve the overall goal. From Section 2, one may
deduce that the existing applications for Salsa dance education lacks
in user experience, therefore we placed importance on UX design to
have a competitive edge. We were inspired by Susan Weinschenk’s
UX psychology facts [11] about the human mind, which can be
directly applied to design decisions conducive to an intuitive user
interface. Her approach encourages focus on the user throughout
the design process, which correlates to the UCD technique. Her
concept of a visual system was adopted, which guides the layout of
an interface. Another principle affecting the layout of the interface
is Fitt’s Law [29]. This law also influenced the size specifications
of the interface elements. Another fact is that people make mental
models. A mental model correlates to a person’s cognitive process
concerning how something operates in the real world. Hence, the
design was influenced by activities done by dancers. Lastly, the
user’s attention is essential, which has aesthetic implications.

Other usability heuristics adopted was to promote recognition
rather than recall [9], by partnering functions with a unique and
complementary graphic. Furthermore, we wanted to provide the
user with helpful information on how to use the application. We
hoped that the UI design would be intuitive and therefore promote
minimal use of the available support. Another important principle
is the visibility of system status [9]. The design decision to offer the
user informative feedback on the system’s current state embodied
this concept. We also had to consider the possibility of color blind
users. Thus, wherever colour is used to convey information, there is
a complementary, secondary cue for users who are unable to view
the colours presented. An additional design goal was to make the
interface easily navigable, which is a benchmark for great UX design.
Hence, access to a menu that meticulously divides the application’s
capabilities was designed to be available to the user at all times.

3.4 Sequence Generator

The core functionality of this application comprises the analysis
and generation of dance sequences. This component aids dance
instructors in planning lessons. It also allows students to create
dance sequences to improve their dance abilities. This component
utilizes the dance moves from the dance dictionary: sequences are
made by adding dance moves. In advanced Salsa dancing, any dance
move can follow any other dance move with the aid of an interme-
diate step. This intermediate step advances the dancers to a position
where they are able to perform the following step. This approach
to sequence creation is complex. It requires the end state of the
preceding move, the start state of the following move and a method
to choose an appropriate intermediate step. An exhaustive list of in-
termediate steps would be required to circumvent cases where there
is no available intermediate step for a particular sequence. Further-
more, the focus of this application is teaching introductory Salsa.

Dance Moves

Choose

All possible moves

Figure 3: The Process of Validation

Dance Sequence

create
and save

Add new move

Check to see which
moves can follow

Dance Dictionary

Consequently, an alternative approach was adopted. We opted to de-
sign a control mechanism that determines which dance moves may
be performed in succession. This control mechanism, thus governs
the validity of a sequence. This limits the structural composition of
sequences, but this approach is more suitable for beginner dancers.
The initial design for this mechanism included feedback after the
sequence was created, informing the user whether the sequence is
valid not. This design has the following shortcomings: time would
be wasted creating a sequence that could possibly be invalid and
the user may repeat an invalid sequence structure, therefore the
process would be tedious and inefficient. A more efficient design
was developed to process the sequence in real-time. This design
enforces and updates restrictions of which moves can be added to
the sequence, therefore the user is allowed to only select moves
that can follow the preceding one. This process of validation is
illustrated by Figure 3.

An option to design this functionality was to utilize Bean Valida-
tion [10]. This framework would require the design of annotations

and validator classes. Although this framework is widely adopted
for designing constraints, it was not an optimal method for this
problem domain. It would require explicitly stating every constraint
for every move. A more appropriate approach was to design a parser
to check the validity of dance sequences. A parser would be able
to analyse the sequence against a set of rules to detect it’s validity.
A grammar specification was required to design and control the
constraints of dance moves.

4 THEORETICAL ANALYSIS OF GRAMMAR
SPECIFICATION

The analysis of dance sequences enforces constraints of dance
moves to determine the sequence’s validity. This equates to the
notion of whether or not a dance sequence is possible to perform.
This functionality was implemented by means of a context-free
grammar, whose precise structure investigates if it compiles with
the defined rules thereby facilitating error detection.

4.1 Constraints and The Dance Language

The limitations of which dance moves are possible to do in suc-
cession is dependent on the state of the dancers at the end of a
dance move. Our client offered his expertise that informed us that
variations of handholds are the most affecting element on what
moves can be performed. From a technical perspective, the posi-
tion of the dancers in relation to the line of dance and each other
also has implications on which moves may be possible. Thus, these
elemental properties administer the constraints. The notion of a
dancer’s state required application to the unfamiliar problem of
computerizing a dance sequence. In conclusion, the language for
generating a dance sequence, to be implemented by the CFG, can
be defined according to the following two elemental properties:

o The type of handhold for a sequence must persist unless
otherwise altered during a dance move.

o The positions of the dancers in relation to one another dictate
how the next dance move should start.

Once the requirements for the grammar were established, develop-
ment of the grammar commenced to apply the constraints.

4.2 Grammar Development

The CFG was developed in iterations until the desired outcome
was reached. Each iterative step comprised the design of produc-
tion rules to enforce the constraints of the two element properties,
namely the handholds and directions. This was followed with paper-
based testing.

4.2.1 lIteration 1. The initial approach involved creating unique
terminals to represent the constraints of the elemental properties.
The resulting complexity of an original symbolic representation
was unnecessary and therefore, we opted to use the symbolic rep-
resentation offered by the Salsa Dictionary [9].

From Figure 2, the elemental properties affecting the grammar
are Handhold and Direction. The variations of handholds that were
included were:

e normal open holds, denoted by n, where dancers hold left to
right and/or right to left either up, denoted by +, or down,
denoted by *.

o crossed holds, denoted by c, where dancers hold left to left
and/or right to right either up, denoted by +, or down, de-
noted by *.

If the hands are held up or down on either the left or right side, the
+or *will be placed on the respective sides of the nor ce.g. +n*
denotes that the dancers’ handhold is a normal open hold where
the left hand of the leader and right hand of follower is held up
while the right hand of the leader and left hand of the follower are
held down. The + or the *is omitted if the dancers’ hands are not
held. Since it takes one beat, in the rhythmic composition of Salsa,
to either leave or hold a hand, variations of the hand positions may
follow one another. Conversely, variations of handhold types may
not follow one another, considering it traditionally takes four beats
to shift between handholds types. The variations of directions that
were included is when both dancers, the follower, denoted by f, and

the leader, denoted by [, are facing the line of dance:
e Facing each other, denoted by either f— «lorl— «f
o Facing the same direction with the follower in front, denoted
by either f «—«lorl—>—f
o Facing the same direction with the leader in front, denoted
by either f > — lorl « «f
o Facing opposite directions, denoted by either f «—— lor1 «
—f
As a result the terminals for the following grammar specifications
are: T{ n; ¢; +; *; f; 1; << — } where n = normal open hold, ¢ =
crossed hold, + = up hold, * = down hold, f = follower, | = leader and
combinations of the arrows determine the directions of the dancers.
An initial string, “n*n**n*n*f— «1lf5 «1lf - «If - «1” was
chosen to serve as regulatory test case for a dance sequence. The
string comprises four dance moves where the follower and leader
are facing each other and have a normal open handhold occasionally
leaving either the right or left handhold. The input string would
be in the form Move 1: <handhold element> <direction element>;
Move 2... The dance sequence representation was a sequence learnt
during the introductory Salsa lesson we attended. A X symbolizes
the grammar’s failed attempt to generate the test case.
4.2.2 lteration 2. Ga:: P1: S — BE P2: B — BJK]J|e
P3:E — EGHHG|e Ps: G — f]l P5s: H — — |«
Ps:K— cln P7:] — +||e

Expansion:S = BE = BJKJE = BJKJJKJE = BJKJJKJJKJE = BJKJJKJJKJE

= BJKJJKJJKJJKJE = JKJJKJJKJJKJE = *cJJKJJKJE x

The aim of this grammar was to validate an unlimited amount
of moves. This grammar experienced several shortcomings. During
the expansion it was possible to access both a crossed and open
hold, thus not conforming to the test input string. In addition,
it was possible to have more handhold elements than direction
elements making the format incorrect. It was possible to have zero
handholds which does not correspond to an accurate representation
of a dance move. Thus, the desired outcome was not attained and
the constraints were not represented correctly.

4.2.3 lIteration 3. G3:: P1:S— A Py: A—> BC
P3: B —> ADED|DED P4: C — CGFFG P5: D —> +[*|e
Pg:E—cn P;: F— -] P3: G —> 1]l
Expansion: S = A = BC = ADEDC = ADEDDEDC = ADED-
DEDDEDC = DEDDEDDEDDEDC = *c x
This grammar sought to rectify the format issue experienced by
the grammar before. It was successful in this attempt, but assorted
combinations of handhold types and directions were possible, thus

disregarding all the constraints. Furthermore, during the expansion
it suffered the same shortcoming as the grammar in Section 4.2.2.

4.24 lteration 4. G4:: P1: S — A|H Py: A— BC

P3:B — ADED|DED P4: C — CfFI|CIFf|fF1]IFf

Ps:D — +[*le Po:E— ¢ P7: F — — | |«

Pg:H — IC Py9:1 — HDLDDLD Pjp: L —n

Expansion: S = H = IC = HDLDC = HDLDDLDC = HDLD-
DLDDLDC = DLDDLDDLDDLDC = *n*n**nC = *n*n**n*n*CIFf
X

This grammar intended to fix the recurring problem experienced
by the two previous grammars, by isolating the handhold type.
Thus, during the expansion the handhold property of the dance
sequence was accounted for, however the direction constraint was
not represented correctly.

4.2.5 lteration 5. During this iteration, the design decision to check
the dance sequence at every step of adding a new move was em-
ployed . Thus, the grammar was designed to account for only two
moves. The new test case was a subset of the previous test case:
“n**n*f— —1lf - 1"

Gs:: P1:S — YYA|YYB|ZZA|ZZB P;: Z — XnX P3: Y — XcX

Py: X —> +[*|e Ps: A —> CKDCDK|CLDCLD|CODCOD|CPDCPD

Ps: B— DKCDKC|DLCDLC|DOCDOC|DPCDPC

P;:C—f Pg:D—1 Py: K— MM Pyp: L — MN

P11: O — NM P12: P— NNP13: M—— P14: N — «

Expansion: S = ZZA = XnXZA = "'n"ZA = "n"XnXA =
*n**n*CLDCLD = *n**n*fLDCLD = *n**n*fMNICLD = *n**n*f—
«—ICLD = *n**n*f— «If> «] = test case reached v/

The above grammar is context-free because it is of the form

A— fand A € Vi and f§ € VT where Vj represents nonterminals
and Vr represents terminals.

In order to ensure the grammar’s competency, several test cases
were performed to ensure if implemented the constraints and satis-
fied the dance language. The test cases were designed to explore
all possible combinations of terminals, thus providing a thorough
analysis of the CFG. The test cases are evidence to a successful
design of the grammar.

Test | String Expected | Actual
Case | Input Outcome | Outcome
1 “n*nf— —lf—> —1” v v

2 “n*cfo —lf—» -1” X X

3 ‘cefe——lf——1” v v

4 “cef——ll——f X X

5 “‘n*n+fo Hf5 <7 | v

6 “n*nf— f» «” | x X

7 “‘nin+le— Hfl— " | V v

8 “ne+fo -l —f X X

Table 1: Testing the context-free grammar

5 SYSTEM DEVELOPMENT AND
IMPLEMENTATION

This section outlines the development strategies and the imple-
mentation process for the system creation. The system was built
in accordance with the requirements specification. This project
was developed using the iterative waterfall method. The iterative
approach to the classical waterfall method has feedback paths from
every phase to its preceding phase. To elaborate, once we received

the requirements for the software project we conducted analy-
sis and designed the respective components. This was followed
by the implementation of the components which were tested to
see if the expected behaviour was accomplished. The testing and
monitoring of the component’s outputs allowed us to discover the
underlying problems and contemplate possible enhancements. A
feasibility demonstration was performed in the initial iteration.
The purpose of the demonstration was to evaluate the project’s
feasibility and to provide us with feedback to cont before devel-
opment commenced. Activities were planned for each respective
system components. Each sub-component was built parallel to each
other and was later integrated into the system. Implementation
commenced with choosing an appropriate programming language.
The chosen programming language was Java because it automates
memory management[35], the build process is quicker and run-
time error detection is the system’s responsibility[35]. In addition,
Java generates bytecode after the compilation of a program which
is platform independent and thus, portable. Java supports Object
Oriented Programming (OOP). This style of programming is easy
to conceptualize and ensures that the system is flexible, extensible
and modular. Java also has a rich API and supports many additional
libraries that offer high-level services [35]. Furthermore, the deci-
sion for the programming language was based on the possibility of
easier integration with the components of the application discussed
in this paper.

Our team had regular weekly meetings in order to brief each
other on the progress of our respective components and dwell on in-
tegration strategies to ensure that we all shared a common end goal.
During the project life-cycle, we communicated with our project
supervisor through email and met for regular meetings to discuss
progress and strategies to move forward. This was advantageous to
us as we received critical help and criticism on the development thus
far. These meetings were a reminder of the project requirements
which ensured we stayed on track. In addition, we communicated
with our client via e-mail and had a WhatsApp group for constant
communication and feedback, which supplemented the five meet-
ings we had.

Thorough testing and maintenance, described later, was done
throughout the project life-cycle to ensure the components were
always in a releasable state. The requirements helped to design
the testing framework. Constructive and thorough documentation
was recorded in the project code. This was done to ensure that,
in an open source environment, all users would understand the
code and its functionality. A GitHub repository was created to store
the remote code and commits were made throughout the project
life-cycle. This application is able to run on any operating system,
but requires external installations of Java[35], JavaFX[31], JFoenix
and JavaCC[26].

5.1 Dance Dictionary

A subset of steps to define the different moves associated with the
Salsa On1 dance style were implemented. The Salsa steps were im-
plemented using the design of the dance notation discussed in Sec-
tion 4. and an OOP model. The notation is primarily for the backend
functionality, therefore each move contains a human-recognisable
dance term for users as opposed to complicated symbols to repre-
sent a dance schema. The class structure is illustrated by Figure
5.

An Element is a symbolic representation of one of the four com-
ponents which comprise a dance move. This will either define the
handhold, direction, position action for a Salsa move. The Step class
defines movement for four beats in the rhythmic composition of a
Salsa move. The addition of this class is due to the variations that
may occur in Salsa moves. A Salsa move may comprise of more
than one four-beat movement, therefore, a single move can be made
of one or more steps. The reason to substantiate the use of an array
in the Step class is that each matrix must contain five entries for
the handhold, direction, leader, common action and follower. An
ArrayList was used in both the Move and DanceDictionary class.
This data structure was chosen because it is possible to know the
maximum capacity for the ArrayList which ensures optimal per-
formance [21] . Furthermore, there are no intensive functions that
would jeopardize the performance of the application by not utilizing
a more computationally efficient data structure. The data for dance
moves are stored in a YAML file. The file specification is included
in Appendix B. YAML is a "human-readable data-serialization lan-
guage" [37]. It allows the data to be stored in a formatted way. The
loadMoves() method uses the YAML file to initialize the dictionary,
load the moves and create move objects according to the class struc-
ture above. The attributes separate the information for a dance
move into coherent components. These components are used in
the user interface to display information in a way that is useful to
users. During the implementation phase we had a meeting with our
client, during which he provided clarification of the dance moves
we had selected to utilize.

5.2 Sequence Generator

The context-free grammar, which is theoretically analysed in Sec-
tion 4, imposes constraints on which moves can be performed in a
sequence. Thus, the context-free grammar had to be implemented
to form the parser.

5.2.1 Frameworks. The framework employed for the parser cre-
ation was JavaCC [26]. JavaCC is a lexer and parser generation
tool for LL(k) grammars. JavaCC also supports other capabilities
associated with tree building and debugging. A parser generation
tool that processes a grammar specification. The grammar speci-
fication of Section 4.2.5 is converted into a Java program that can
observe matches to the specified grammar. The lexical and syntactic
description of the grammar must be specified in a JJ file. This JJ file
is then compiled using javacc to generate the lexer and a recursive
descent parser. The JavaCC parser generator tool produced java
code which made it easy to integrate with our other components,
as the programming language chosen was Java.

5.2.2 Grammar Implementation. The grammar had to be specified
in EBNF form during implementation. In addition to this, JavaCC
cannot compile the parser successfully if choicepoints in a pro-
duction exist [4]. Choicepoints occur when the productions con-
tain more than one option for expansion. Thus, the implications
were that two nonterminals, for different choicepoints, in the same
production on the right hand side may not begin with the same
terminal/nonterminal. This affected productions 2,3,5,6 and 9-12
from the grammar specified in Section 4.2.5. Consequently, neces-
sary alterations to the productions’ structure were made, while still
maintaining the fundamental interpretation. This was tested using
the test cases in Section 4.2.5 which is presented later. The gram-
mar’s tokens had to be explicitly listed. The productions resembled

Move

Step

Element

+ id: String

+ matrix: Element []

+ symbol: String
+ explanation: String

+ name: String
+ explanation: String
+ danceMove: ArrayList<Step>

C + getMatrix(): Element []

+ setMatrix(Element []): void

+ getSymbol(): String

+ getExplanation(): String

+ getld(): String
+ getName(): String
+ getExplanation(): String

+ setSymbol(String): void
+ setExplanation(String): void

+ getDanceMove(): ArrayList<Step>

DanceDictionary

+ setld(String): void

+ dictionay: ArrayList<Move> H

+ setName(String): void
+ setExplanation(String): void
+ setDanceMove(ArrayList<Step): void

+ getDictionary(): ArrayList<Move>
+ setDictionary(ArrayList<Move>): void

| CreatDictionary |
| + LoadMoves: void |

Figure 4: UML Diagram for the Dance Dictionary

the structure of a function. The implemented grammar can be found
in Appendix C. The code was created to do a syntax check only. It
was not necessary to develop an interpreter because the desired
functionality was to check the input and determine the validity
of the syntax. Hence, syntactic analysis is carried out. During this
process, the parser receives a string as input. This input symbolizes

the dance moves that have been chosen to create a dance sequence.

The parser will inspect this string in relation to the rules specified
by the grammar during sequence generation.

5.2.3 Sequence Generation. During sequence generation, moves
are added sequentially. During each sequential step each dance
move from the dictionary is checked to determine whether it may
follow the last move added to the sequence. This process involves
extracting the symbols necessary for the syntactic analysis. The end
states of the handholds and directions of the last move is combined
with the start states of the handholds and directions of every move
to create an input string. This is done in iterations. During each
iteration, the input string, which is the symbolic representation for
two moves, is passed to the parser. Due to the restrictions of the
implemented grammar, the input string is formatted before it is
given as input. If the input string is valid, the dance move is added
to a group of valid dance moves which are made available to the
user. This iterative approach was implemented to make the process
optimal for the user. A graphical representation of this process is
included in Appendix D.

Sequence
+ name: String
+ danceSeq: ArrayList<Move>

+ getNamel(): String

+ getDanceSeq(): ArrayList<Move>

+ setName(String): void

+ setDanceSeq(ArrayList<Move>): void
+ checker(String): boolean

+ converter(String): String

Figure 5: Class structure for Sequence Generation

From Figure 5, the checker method is called in every iteration.

This method invokes the parser’s main method. Thus, if the syntax
is valid the checker method returns true to indicate that the dance
move being checked should be made available to the user. The
converter method converts the string before it is given as input to

the parser. Once a sequence is stored it is written to a YAML file.

There exists one YAML file for each user. The YAML file contains a
sequence name and the respective moves which can be identified

by their ID and filepath. The file specifications can be found in the
Appendix B.

5.2.4 Testing. For testing purposes, the complementary input string
from the test cases in Section 4.2.5 were supplied to the parser. The
parser processed the string and provided output in the form of a
message specifying if the string has the correct syntax or not. Below
are the converted test cases to determine if the implementation
of the context-free grammar was correct. The output was either
"The syntax is not good" implying an error or "The syntax is good"
implying a valid string. From Table 2, it is apparent that the parser
behaves in the expected manner.

Test | String Expected | Actual
Case | Input Outcome | Outcome
1 “n*nfl((1((” v v

2 “n*cfl((fl((” X X

3 “cefl)(f)(” v v

4 “cetl)(If)(” X X

5 “‘n*n+l0fl()" | vV v

6 “n*nfl))fl()” | X X

7 “n+n+1N))If))” | v v

8 “ne+I((I((” X X

Table 2: Testing the grammar implementation

5.3 User Interface

During implementation, UCT students, who had been previously
enrolled in the HCI course offered by the Computer Science Depart-
ment at UCT, were consulted to analyse the user experience of the
interface. They were supplied with a list of five tasks to perform,
included in Appendix D, and expressed their view on the usability.
This process allowed us to receive constructive feedback and im-
plement improvements. We received suggestions pertaining to the
size of interface elements and to provide easier navigation for the
user.

5.3.1 Frameworks. The platforms used to create the interface was
JavaFX [31] and SceneBuilder. The choice of platform was influ-
enced by an advanced aesthetic experience that is achievable using
these frameworks. It also allows for fast Ul development with Scene
Builder to ensure that less time is spent on trivial activities, hence it
simplifies development. It also has a rich toolkit and is friendly with
the MVC pattern [28]. Additionally, one may use CSS [25] with
JavaFX which enhances the application’s appearance and format-
ting is easier. CSS contains ‘style rules’. These rules are enforced

by the program and applied to the respective interface elements.
Furthermore, applications made using JavaFX are compatible with
many devices, like mobile phones, TVs, desktop computers and
tablets. This means that this application can be launched to any of
the above devices.

5.3.2 Functionality. The login process provides a personalized ex-
perience for users and differentiates dance instructors and dance
students. Users may navigate to the homepage. The following fea-
tures are implemented in a concise menu: access information on
Salsa; view information on beginner dance moves; create and save
dance sequences; view, edit or delete stored sequences. This menu
is always available to the user for easy navigation. The interface
for viewing information on dance moves, arranges the moves into
a simple list. A user may click on a move in the list-view to dis-
play information pertaining to that move. The sequence generation
interface displays a list of dance moves and an empty list for the se-
quence. These are clearly defined. When a user begins the sequence
creation process, invalid moves are disabled to signal to the user
that they may not be used. Feedback is supplied to the user when
actions are made using alert dialogs. There is a consistent theme
and aesthetic appeal. The user interface is simple and intuitive and
encompasses good UX design. Images of the Ul can be found in
Appendix E.

5.4 Ethical, Professional and Legal Issues

In order to conduct evaluation testing to discuss the outcomes of
our design and implementation, we received ethical clearance from
the Faculty of Science Research Ethics Committee. We will also
comply with the ethical principles from the Belmont Report [44]
relating to the participants.

As developers, we hold the intellectual property rights of this
project that has been developed in the university environment. We
will open-source our project in order to promote external improve-
ments and encourage innovative ideas to the problem. Furthermore,
the outputs of this project may be released to the community and,
as such, there is a professional responsibility to ensure that the
output is of a high standard.

6 EVALUATION METHODS AND RESULTS

6.1 Grammar Implementation Testing

6.1.1 Aim. To determine the robustness of the constraint system
in identifying incorrect configurations of dance sequences.

6.1.2 Participants. Two dance teachers from EDC, who possess
the expertise suitable for evaluating this component. They were
recruited based on our ongoing communication with EDC.

6.1.3 Procedure. This process was conducted at the EDC studio.
The teachers were introduced to the problem domain, the sequence
generation component and aim of this process. Full consent was
obtained from the participants and they were informed that they
could stop participation at any point during the evaluation. Each
participant was handed a form containing a list of the implemented
dance moves identified by a number and four empty tables. They
were asked to create two valid and two invalid dance sequences in
the provided tables using the unique numbers assigned to dance
moves. They were also requested to provide a reason for the se-
quences validity or invalidity. They were able to ask questions

for clarification. Approximately fifteen minutes were occupied for
this process. The eight formulated sequences served as test cases
to be tested in the application to determine the accuracy of the
implemented grammar.

6.2 Results of Grammar Implementation

Below is a table representing the dance moves that were used by
the dance teachers to create their valid and invalid sequences. Some
dance moves have variations dependent on the directional element.
Below this, is a table displaying the test cases that were captured
during testing.

ID |Dance Move Dancer Orientation
1.1 |Basic with open hands, lead front f— 1
1.2 |Basic with open hands, lead front 1> «f
2.1 |Basic with open hands, lead back f— 1
2.2 |Basic with open hands, lead back 1> «f
3.1 |Basic with crossed hands, lead front f— 1
3.2 |Basic with crossed hands, lead front - «f
4.1 |Basic with crossed hands, lead back f— 1
4.2 |Basic with crossed hands, lead back - «f
5.1 |Basic with handhold change, leader back |f— «1
6.1 |Cross Body lead f— 1
7.2 |Double turn, right hands held 1> «f
8.2 |Spot turn, left hand to right hand 1> «f
9.2 |Lead comb 11— «f
10.1 | CBL right turn, right hands held f— 1

Table 3: Dance moves utilized during testing

Valid Sequences | Invalid Sequences
VS1|VS2|VS3|VS4|IS1|IS2 |IS3 |IS4
1.1 |11 |32 |12 |1.1(3.2 |11 |1.2
2.1 |51 (42 (2.2 |41 |42 (21 |21
1.1 3.1 |32 |12 |6.1 (3.2 (1.2 |1.2
6.1 (41 (7.2 (9.2 |3.1|8.2(10.1|2.2

Table 4: Invalid and valid dance sequence test cases

These test cases were used to generate sequences in the appli-
cation. Sequences VS1 - VS4 (valid sequences) were successfully
generated. The teachers’ reasoning to why these sequences were
valid were that the type of handholds in a particular sequence per-
sisted through the entire sequence, unless a move was utilized to
alter the handhold type in the case of sequence VS2. In addition,
the orientation of the dancers remained constant which indicates
the validity of a dance sequence. Thus, the implemented CFG from
Section 4.2.5 successfully interpreted the constraints according to
the expertise of the dance teachers involved in the testing.

The reason for IS1 (invalid sequence) not being valid is that the
handhold property does not remain constant, therefore the imple-
mented CFG was able to distinguish the different types of handholds.
IS2 was not possible considering that the last move, which was a
spot turn with a normal hold, followed a move which utilized a
crossed hold. Both IS3 and IS4 are invalid due to the inconsistent
orientation of the dancers’ directions. Usually, one dance move is
required to alter the direction of the dancers and no such move is
present in these cases. From the test cases utilized, the application
conformed to the intended behaviour, thus the implementation of
the CFG met the requirements of the problem domain.

6.3 Usability Test

6.3.1 Aim. To determine the application’s usability for dance stu-
dents and dance teachers.

6.3.2 Participants. Four dance students and two teachers from
EDC. They were recruited with aid from our client and received
muffins to convey our gratitude for their participation.

6.3.3 Procedure. This usability test was conducted at the EDT
space. Before the test commenced, the participants were introduced
to the problem domain, what the aim of the test was and the pro-
cedural structure. Full consent was obtained from the participants
after the introduction and they were informed that they could stop
participation at any point during the evaluation. The participants
were prompted to gather in a group formation to conduct the us-
ability test in a workshop style. A laptop was placed before them
and the application was loaded. We conducted a simple demonstra-
tion of the application and explained the desired functionality. The
participants had a chance to individually navigate the application
themselves.

This guide was followed by a constructive discussion between
the participants, during which their discussed common and unique
opinions. During the discussion, the participants were prompted to
stay on track and be honest in their communication. Questions were
allowed during the procedure with regards to the intended usability
or clarification of the application. After the discussion, each partic-
ipant was handed a questionnaire which can be found in Appendix
F. The questionnaire consisted of questions concerning the main
factors affecting the usability of the application. The deductions
of this experiment were based on participants’ questionnaires and
points considered during the discussion.

6.4 System Usability and User Satisfaction

The experimental method used to conduct the usability testing
proved insightful. It was advantageous to evaluate the applica-
tion with the selected participant group because we were able to
receive direct feedback that was both constructive and complimen-
tary. The workshop approach to the testing was chosen due to the
participants’ time restrictions. The workshop style, although lack-
ing the personal experience of individual testing, was an effective
method. The request that the participants individually navigate the
application was beneficial to the process and allowed them to gain
perspective into when and how they would utilize this application.
The participants were able to express their views, listen to others
and discuss amongst themselves. The discussion ran smoothly, with
little need for us to interject. Although, participants were prompted
to share their views, it was possible for others to influence their
opinions. Another drawback was that the discussion would occa-
sionally focus on future aspirations of the application and had to
be directed back to the aim of the investigation. As a precautionary
measure, the participants completed the questionnaires individually
and unattended to receive their honest opinions.

The overall feedback on the application was positive, with all the
criticism being constructive and leading to enhancements to the
final design of the interface. Participants valued the simplicity and
consistency, with praise being given to the final Ul theme and de-
sign. The navigation, a property that was meticulously deliberated,
was agreeably well-implemented. All the interface’s elements had
good affordances, since there was no confusion on how to interact

with them. The participants’ described the interface as easy to use
and understandable. The introductory information that the applica-
tion provides to the user was appreciated. The participants were
able to recognize the beginner dance moves that were implemented
and thought the layout of information was clear and concise. In
addition, the shared opinion was that the sequence generation pro-
cess was efficient and easy, but that it could be enhanced with
a horizontal view of the moves distributed over the Salsa rhyth-
mic composition of eight beats. This feature was not added to the
application because it would be most helpful with a visual repre-
sentation of the sequence, to determine and view what step occurs
at each respective beat. A suggestion to have a clearer division to
the sequences created by the teacher and the sequences created
by the user was proposed and implemented. A point was raised,
by a teacher, to limit the amount of moves that can be added to a
dance sequence to four. The reason for this is that beginner dance
sequences are usually composed of four dance moves. A decision
was made to provide the user with a warning message once four
moves were added to a sequence, rather than restrict the user’s
control over the application. Other suggestions that were raised
were to add background music and add a feature to allow users
to write notes for a sequence. These ideas were implemented to
enhance the user experience. Overall, five out of six participants
confirmed that they would utilize this application to either plan a
lesson or practice their dance skills.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a design solution for an application
to provide a dynamic approach to teach Salsa. A user centered
design approach was adopted and a final product was evaluated
with dance students and dance teachers. Ultimately, the application
met all the requirements. The implementation of a dance dictio-
nary attained a uniform and coherent storage mechanism for Salsa
dance moves. An iterative approach to design a context free gram-
mar was used, which was implemented as a mechanism to validate
dance sequences. The iterative process was insightful as context-
free grammars for this problem domain are novel. The option to
design the grammar to iteratively check two moves, instead of an
unlimited amount, proved to be a better user experience. The parser
was thoroughly tested, using personal and external test cases, to en-
sure that nearly all sequence options were analysed. The grammar’s
aim, to control the sequence generation process, was accomplished,
but whether or not the context-free grammar had the optimum
grammar specification cannot be confirmed. Unfortunately, the
grammar was limited to a subset of moves of this dance style and
hence, is specified to the problem domain and not extensible. Given
the end-users’ positive feedback and enthusiasm from the usability
test, we can deduce that because there is a scrupulous represen-
tation of dance moves and efficient sequence generation method,
this application may be a useful and impactful tool for the dance
community.

It would be advantageous to track the progress of a learner’s
dance skills over a chosen duration whilst they are using the Salsa-
tional application. This can be compared to the progress of a learner
who is using videos to develop their skills. Hence, the overall effect
of the application, on a user’s learning experience, can be closely
controlled to deem accurate results. In addition, a feature to allow
teachers to define their own moves can initiate a personal dance
syllabus.

Further research can be conducted into the grammar specifica-
tion for the parser. Currently, the grammar is designated for the
Salsa Dictionary notation. A generic grammar may be developed to
allow different dance notations to be utilized by a parser for dance
sequence generation, given their constraints.

The application could have a network server implemented, which
would allow teachers to upload predefined dance sequences, to be
practiced by their students, as well as additional resources. This
feature would also allow teachers to notify their students when
lessons and events are scheduled for. It also offers a more personal-
ized approach to dance education. This application can be deployed
to dance schools throughout Cape Town, to facilitate resource shar-
ing, uniformity and a cooperative dance community.

With the advancement of technology and its increasing use,
it has become apparent how it can be used to enhance the daily
activities in many industries, such as education. The utilization
of technologies has given rise to momentous effects for both stu-
dents and teachers. These effects have induced the development
of various online platforms to motivate and support learners. This
notion can be extended to other fields of education besides the
traditional educational system, like dance. Therefore, the continual
advancement of the Salsational application is urged. We hope that
this application may be the foundation for a new generation of
e-learning to exploit technology to change educational practices,
the way students learn and to empower them at each stage of dance
education.

ACKNOWLEDGMENTS

I would like to thank my project partners, Jordy Chetty and Micara
Marajh, for their dedication, advice and co-operation throughout
the project duration. Without their guidance and good-natured
amiability I would have not been able to complete the project. My
sincere thanks and appreciation are extended to my project supervi-
sor, Professor Maria Keet, for her constant support, valuable input
and encouragement. I would also like to extend this appreciation to
the second reader, Professor Deshen Moodley, for his time and feed-
back. Thanks goes to Tracey Cable, a Salsa dance teacher at EDC,
for participating in my evaluation. Finally, I would like to express
my gratitude towards our external expert, Angus Prince, for being
so gracious and eager to participate in our study and collaborate
with us and for allowing us to use the Evolution Dance Company
space and to gain access to his students for the evaluation.

REFERENCES
[1] [n.d.]. Evolution Dance Company. https://www.evolutiondance.co.za/. Accessed:
2019-08-30.
[2] [n. d]. Learn Salsa. https:/play.google.com/store/apps/details?id=top.

appslaborator.learn.salsa&hl=en/. Accessed: 2019-08-18.
[3] [n.d.]. Salsa Anywhere. http://salsa-anywhere.com//. Accessed: 2019-08-17.
[4] [n.d.]. Salsa Dance: Origin, History Steps. https://study.com/academy/lesson/
salsa-dance-origin-history-steps.html. Accessed: 2019-08-11.
[5] [n.d.]. Salsa Dancing. https://pocket-salsa.soft112.com//. Accessed: 2019-08-19.
[6] [n. d]. SalsaGente: Cuban Style Salsa. https://www.salsagente.com/
history-of-salsa-music-dance/. Accessed: 2019-08-15.
[7] [n.d.]. SalsalsGood. http://www.salsaisgood.com/dictionary/dictionary_Comb.
htm. Accessed: 2019-08-30.
[8] 2012. Incognito Dance. https://www.incognitodance.com/what-is-salsa/. Ac-
cessed: 2019-08-11.
[9] Beth Adelson, Susan Dumais, and Judith Olson (Eds.). 1994. CHI '94: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New
York, NY, USA. 608940.
AR Al-Ali and M AL-Rousan. 2004-05. Java-based home automation system. IEEE
transactions on consumer electronics 50, 2 (2004-05), 498,504.

[11

[12

(13

=
22,

[21

[22

[24

[25

[26

[27

[28

[29

(30]

(32]

[33

[34]

(35]

[36

[37

[38]

%
20,

[40]

Thomas Bohm. 2014. 100 things every designer needs to know about people
by Susan Weinschenk. Information Design Journal 21, 1 (2014), 67-71. https:
//doi.org/10.1075/idj.21.1.08boh

Huang Chiu-Ping. 2010. Exploring factors affecting the user of oral communica-
tion. LongHua Technology University Journal 30 (2010), 85-104.

Trevarthen Colwyn and N. Malloch Stephen. 2000. The Dance of Wellbeing:
Defining the Musical Therapeutic Effect. Nordisk Tidsskrift for Musikkterapi 9, 2
(2000), 73-88.

M Franko. 2005. Labanotation for Design of Movement-based Interaction. In
Proceedings of the Second Australian Conference on Interactive Entertainment 5
(2005), 113-120.

M Franko. 2005. Writing for the body: Notation, Reconstruction and Reinvention
in Dance. Common Knowledge 28 (2005), 301-309.

M Franko. 2007. Modeling the Dance Video Annotations. International conference
of Digtial Information Management 1 (2007).

M Franko. 2011. Writing for the body: Notation, Reconstruction and Reinvention
in Dance. Common Knowledge 17,2 (2011), 321-334.

AH Guest. 1990. Dance Notation. Perspecta 26 (1990), 203.

Hao Guo, Miao Zhenjiang, Feiiyue ZHu, Gang Zhang, and Song Li. 2014. Au-
tomatic Labanotation Generation Based on Human Motion Capture Data. In
Pattern Recognition (2014), 426-435.

Jonathan Hatol. 2006. MovementXML: A representation of semantics of human
movement based on Labanotaiton. Ph.D. Dissertation, School of Interactive Arts
and Technology (2006).

Michael T. Helmick. 2007. Interface-based Programming Assignments and
Automatic Grading of Java Programs. SIGCSE Bull. 39, 3 (June 2007), 63-67.
https://doi.org/10.1145/1269900.1268805

Sahereh Hosseinpour, Mir Mohammad Reza Milani, and Huseyin Pehlivan. 2018.
A Step-by-Step Solution Methodology for Mathematical Expressions. Symmetry
10,7 (2018), 285.

Tanya Karen. [n. d.]. Could taking notes improve your dance
move recall and creativity? http://socialdancecommunity.com/
could- taking-notes-improve-your-dance-move-recall-creativity/. Accessed:
2019-08-20.

Vicky Karkou, Sophia Bakogianni, and Evageline Kavkli. 2008. Traditional dance,
pedagogy and technology: an overview of the WebDANCE project. Research in
Dance Education 9,2 (2008), 163-186.

Matthias Keller and Martin Nussbaumer. 2009. Cascading Style Sheets: A Novel
Approach Towards Productive Styling with Today’s Standards. In Proceedings of
the 18th International Conference on World Wide Web (WWW °09). ACM, 1161-
1162. https://doi.org/10.1145/1526709.1526907

V Kodaganallur. 2004-07. Incorporating language processing into Java applica-
tions: a JavaCC tutorial. IEEE software. 21, 4 (2004-07), 70,77.

K Kojima, K Hachimura, and M Nakamura. 2002. LabanEditor: Graphical editor
for dance notation. In Proceedings of International Workshop on Robot and Human
Interactive Communication 11 (2002), 59-64.

E. V. Kortright. 1997. Modeling and simulation with UML and Java. In Proceedings
of 1997 SCS Simulation Multiconference. 43-48. https://doi.org/10.1109/SIMSYM.
1997.586477

I Scott MacKenzie. 1992-03. Fitts’ Law as a Research and Design Tool in Human-
Computer Interaction. Human-computer interaction 7, 1 (1992-03), 91,139.

N Magnenat-Thalmann, D Protopsaltou, and E Kavakli. 2007. Learning How to
Dance using a Web 3D Platform. Lecture notes in Computer Science advances in
Web Based learning (2007), 1-12.

Simon Morris. 2009. JavaFX in Action (1st ed.). Manning Publications Co.,
Greenwich, CT, USA.

Ken Pierce. 2002. Choreographic Structure in Dances by Feuillet. In Proceedings
of the Twenty-Fifth Annual Conference of the Society of Dance History Scholars
(2002), 96-106.

J. PorubAdn, M. ForgAaAl), and M. Sabo. 2009. Annotation based parser genera-
tor. In 2009 International Multiconference on Computer Science and Information
Technology. 707-714. https://doi.org/10.1109/IMCSIT.2009.5352763

K.E Raheb and Y Ioannidis. 2012. A Labanotation Based Ontology for Representing
Dance Movement. Gesture and Sign Language in Human-Computer Interaction
and Embodied Communication Lecture Notes in Computer Science (2012), 106-117.
Kirk Reinholtz. 2000. Java Will Be Faster Than C++. SIGPLAN Not. 35, 2 (Feb.
2000), 25-28. https://doi.org/10.1145/345105.352548

Meredith Ritter and Kathryn Graff. 1996. Effects of dance/movement therapy: A
meta-analysis. The Arts in Psychotherapy 23,3 (1996), 249-260.

Vivek Sinha, Frederic Doucet, Chuck Siska, Rajesh Gupta, Stan Liao, and Abhijit
Ghosh. 2000. YAML: A Tool for Hardware Design Visualization and Capture. In
Proceedings of the 13th International Symposium on System Synthesis (ISSS "00).
IEEE Computer Society, 9-14. http://dl.acm.org/citation.cfm?id=501790.501793
M. Thomas and F. McGarry. 1994. Top-down vs. bottom-up process improvement.
IEEE Software 11, 4 (July 1994), 12-13. https://doi.org/10.1109/52.300121
Christine von Renesse and Volker Ecke. 2011. Mathematics and Salsa Dancing.
Journal of Mathematics and the Arts 5,1 (2011), 17-28.

E.C Warburton. 2000. The Dance on Paper: The effect of notation-use on learning
and development in dance. Research in Dance Education 1,2 (2000), 193-213.

https://www.evolutiondance.co.za/
https://play.google.com/store/apps/details?id=top.appslaborator.learn.salsa&hl=en/
https://play.google.com/store/apps/details?id=top.appslaborator.learn.salsa&hl=en/
http://salsa-anywhere.com//
https://study.com/academy/lesson/salsa-dance-origin-history-steps.html
https://study.com/academy/lesson/salsa-dance-origin-history-steps.html
https://pocket-salsa.soft112.com//
https://www.salsagente.com/history-of-salsa-music-dance/
https://www.salsagente.com/history-of-salsa-music-dance/
http://www.salsaisgood.com/dictionary/dictionary_Comb.htm
http://www.salsaisgood.com/dictionary/dictionary_Comb.htm
https://www.incognitodance.com/what-is-salsa/
https://doi.org/10.1075/idj.21.1.08boh
https://doi.org/10.1075/idj.21.1.08boh
https://doi.org/10.1145/1269900.1268805
http://socialdancecommunity.com/could-taking-notes-improve-your-dance-move-recall-creativity/
http://socialdancecommunity.com/could-taking-notes-improve-your-dance-move-recall-creativity/
https://doi.org/10.1145/1526709.1526907
https://doi.org/10.1109/SIMSYM.1997.586477
https://doi.org/10.1109/SIMSYM.1997.586477
https://doi.org/10.1109/IMCSIT.2009.5352763
https://doi.org/10.1145/345105.352548
http://dl.acm.org/citation.cfm?id=501790.501793
https://doi.org/10.1109/52.300121

[41] A. 1 Wasserman, P. A. Pircher, and R. J. Muller. 1990. The object-oriented
structured design notation for software design representation. Computer 23, 3
(March 1990), 50-63. https://doi.org/10.1109/2.50272

[42] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek. 2009. Password Cracking
Using Probabilistic Context-Free Grammars. In 2009 30th IEEE Symposium on
Security and Privacy. 391-405. https://doi.org/10.1109/SP.2009.8

[43] Lars Wilke, Thomas Clavert W., Ronda Ryman, and Illene Fox. 2005. From dance
notation to human animation: The LabanDance Project. Journal of Visualization
and Computer Animation 16 (2005), 201-2011.

[44] Deborah Zucker. 2013. The Belmont Report. (2013), 1-3. https://doi.org/10.1002/
0471667196.ess7160

A DANCE SYLLABUS

The Salsa Dictionary’s representation, dance moves and variations
are presented below. The new names for the dance moves are given
and the old moves can be accessed from the Salsa Dictionary. All
moves are presented in the format according to the matrix in Figure
2.

Term Definition Symbol Thumbnail

Click to enlarge

Normal closed hold Dancers are facing each other: the man positions his N

right hand on the lady's left shoulder blade and holds
her right with his left with his arm bent. The lady places
her left hand on the man's right shoulder.

Figure 6: Salsa Dictionary’s representation of an element

A.1 Basic Step

* * * %

c c
f— 1 f— 1
Basic back Basic back

Table 5: Variation 1 Table 6: Variation 2

* Kk * %

c c
11— «f

l— «f
Basic back

Basic front

Table 7: Variation 3 Table 8: Variation 4

A.1.1 Basic Step with crossed hold.
n 'kn'k
f— «1 f— «1
Basic back Basic back

Table 9: Variation 1 Table 10: Variation 2

_ * _k

n n
1> «f

> «f

Basic back

Basic front

Table 11: Variation 3 Table 12: Variation 4

A.1.2 Basic Step with normal open hold.

n *C*
fo 1| fo 1
XHands

Table 13: Variation 1

C *n*
> —f | 1> «f
XHands

Table 15: Variation 3

n (¢
fo 1| f— 1
XHands

Table 14: Variation 2

'kn'k *C*
l» f | l> «f
XHands

Table 16: Variation 4

A.1.3 Basic Step with change in hand hold.

A.2 Crossed body lead

n *n*
fo 1|1l «f
XBL

Table 17: Variation 1

C *C*
> f | f> f
XBL

Table 19: Variation 3

A.2.1 Standard cross body lead.
n *n*
fo el |l-of
XBL
1@

Table 21: Variation 1

o o
> —f | f> f
XBL
1@

Table 23: Variation 3

A.2.2 Cross body leads with turns.

n *n*
l» f | f> «1
XBL

Table 18: Variation 2

f— «1

> «f

XBL

Table 20: Variation 4

n n
l» f | f> «1
XBL
@1

Table 22: Variation 2

C *C*
fo el |1l f

XBL

@1

Table 24: Variation 4

https://doi.org/10.1109/2.50272
https://doi.org/10.1109/SP.2009.8
https://doi.org/10.1002/0471667196.ess7160
https://doi.org/10.1002/0471667196.ess7160

A.3 Spot turn

o o
f— 1 f— «1
1@ @1
Table 25: Variation 1 Table 26: Variation 2
C *C*
1> «f > «f
1@ @1

Table 27: Variation 3 Table 28: Variation 4

A.3.1 Turns with crossed hands.

n 'kn'k
f— «1 f— «1
1@ @1
Table 29: Variation 1 Table 30: Variation 2
n *n*
1> «f > «f
1@ @1

Table 31: Variation 3 Table 32: Variation 4

A.3.2 Turns with normal open hands.

A.4 Comb

Table

f— «1

E*

33: Variation 1

f— «1

E*

Table

35: Variation 3

- «f

“E

Table

37: Variation 5

- «f

*E

Table

A.4.1 Comb with crossed hands.

39: Variation 7

Table

Table

Table

Table

f— «1

“E

34: Variation 2

f— «1

“E

36: Variation 4

> «f

E*

38: Variation 6

|- «f

E*

40: Variation 8

n n
f— «1 f— «1
E* E

Table 41: Variation 1 Table 42: Variation 2

n 'kn'k
f— «1 f— «1
E* “E

Table 43: Variation 3 Table 44: Variation 4

n 'kn'k
1> «f - «f
E E

Table 45: Variation 5 Table 46: Variation 6

n *n*
1> «f l— «f
E E

Table 47: Variation 7 Table 48: Variation 8

A.4.2 Comb with normal open hands.

B FILE SPECIFICATIONS
B.1 Dance Move File

This file is loaded when the application starts in order to instantiate
the dance move objects.The YAML file for the dance moves are
specified as follows:

o id: the identification of the move type

e name: the name of the dance move

e explanation: a description about the technicalities of the
move

e danceMove: an arraylist of step objects, which are an ar-
raylist of element objects
- symbol: a symbol denoting an element property of a dance

move object

- explanation: a description of the elemental property

B.2 Sequence File

The sequence file stores instances of sequences in the following
format:

e name: the name of the sequence
e dance sequence: an arraylist of dance move objects as speci-
ficied above

C IMPLEMENTED GRAMMAR

Below is a segment of code from the .jj file where the CFG was
implemented.

TOKEN: { (" |"0"|")"|)" | "+"| ™" | FOLLOWER: (['f"])+> |
<LEADER: (["'])+> | <CROSSED: (["c"])+> | <OPEN: (['n"])+>}

void SO (YOY(0IZOZ() (AQB()) <EOF>

void Z(): <OPEN> X()

void Y(): <CROSSED> X()

void X(): "+"|""

void A(): - C() (KOCOKOILOCOLOIOOCHOOIPOCOP()

void B(): D() (KODOK(OILODOLOIOODOO(PODOP()

void C(): <FOLLOWER> <LEADER>
void D(): <LEADER> <FOLLOWER>
void K(): "(("
void L(): "()"
void O(): ")("
void P(): "))"

D SEQUENCE GENERATION COMPONENT

Y Move 1 Move 2 Move 3
----- Handhold and i
"-:‘,.a,?_dhold and direction elements;
Handnaicrand direction.eler ..-'
direction elemen"{s-.,,_.
add T
SEQUENCE @ IF INVALID
Move 1 »
.. @ PARSER

IF VALID

Allow user to
hoose move

Figure 7: Process for Sequence Generation

E USER INTERFACE

Create A
Sequence

Dance Moves My Dance Sequence

oo W W oo

Figure 8: Interface for creating a sequence

Salsational

\

Welcome to

Salsational
Username: Name: [Labe] Description: ~ Label
Label

P word: Label
Name
Surmame v {

N
E-mail ‘}

Follower (& Leader
Line of Dance

Figure 10: Dashboard interface with the view moves options

w Already a member? dlsplayed

Figure 9: Interface for creating a new user

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Introduction to Dance
	2.2 Types and Applications of Dance Notations
	2.3 E-Learning in Dance
	2.4 Introduction to Compilers
	2.5 Parser Development

	3 Requirements Gathering and Design
	3.1 The Requirements
	3.2 Dance Dictionary
	3.3 User Interface
	3.4 Sequence Generator

	4 Theoretical Analysis of Grammar Specification
	4.1 Constraints and The Dance Language
	4.2 Grammar Development

	5 System Development and Implementation
	5.1 Dance Dictionary
	5.2 Sequence Generator
	5.3 User Interface
	5.4 Ethical, Professional and Legal Issues

	6 Evaluation Methods and Results
	6.1 Grammar Implementation Testing
	6.2 Results of Grammar Implementation
	6.3 Usability Test
	6.4 System Usability and User Satisfaction

	7 Conclusions and Future work
	Acknowledgments
	References
	A Dance syllabus
	A.1 Basic Step
	A.2 Crossed body lead
	A.3 Spot turn
	A.4 Comb

	B File Specifications
	B.1 Dance Move File
	B.2 Sequence File

	C Implemented Grammar
	D Sequence Generation Component
	E User Interface

