
Defeasible Bayesian Reasoning

Introducing Logical Reasoning into Bayesian Networks
-

Project Proposal

Luke Neville
Computer Science Honours

University of Cape Town
Cape Town, South Africa
nvlluk001@myuct.ac.za

Elijah Roussos
Computer Science Honours

University of Cape Town
Cape Town, South Africa

elijah.rou@gmail.com

ABSTRACT
Bayesian Networks are a class of graphical models used to
represent relationships between entities and events in a sys-
tem, and can be queried for probabilistic information per-
taining to those events. This paper proposes a project that
would examine the viability of supplementing a Bayesian
Network with a non-monotonic knowledge base, that is a
collection of defeasible logical rules. The aim of this project
is to increase the expressive power of a Bayesian Network
and allow additional knowledge to be added to a model in
a straightforward manner. This will take the form of find-
ing an algorithm that attempts to draw additional relation-
ships between nodes in a Bayesian Network, according to
the propositional rules of some knowledge base, which can
then be queried. This algorithm would then be adapted
to handle defeasible information in a supplementing knowl-
edge base, and implemented in a reasoner. The paper pro-
vides background information in the relevant fields, which
includes a brief overview of implication and entailment in
propositional logic, non-monotonic reasoning and the prop-
erties thereof, as well as the foundations of Bayesian reason-
ing. Furthermore, this paper highlights the key management
strategies of the project. We address risk by categorising
the various risks associated with this project and determin-
ing the corresponding mitigation strategies. Additionally
we assess project success by outlining important milestones
over a timeline. Overall, we conclude that the basis for the
project is sound, as a Bayesian Network model that works
in conjunction with logical inferential rules would allow for
more complex reasoning and would be beneficial to many
fields in artificial intelligence.

Keywords
Bayesian Networks; Formal Logic; Knowledge Representa-
tion; Propositional Logic; Defeasible Reasoning; Non-Monotonic
Logic; Artificial Intelligence

1. PROJECT DESCRIPTION

1.1 The Problem
This project aims to introduce limited forms of logical

implication, such as those from classical and defeasible rea-
soning, between variables in a Bayesian Network. This can

be done as the nodes in a Bayesian Network can be viewed
as propositional atoms holding a true or false value, albeit
with some probability attached to the relationship.

Given some Bayesian Network, we will seek an approach
to introduce the logical statements A → B and A p∼ B into
the knowledge base, where A and B are variables in the
Bayesian Network. As variables in a Bayesian Network are
largely independent, this will produce additional dependen-
cies between variables in the Bayesian Network, or modify
already existing dependencies. We will attempt to answer
such questions has “How does this change the network and
the algorithms associated with it?”, and “How do we reason
with this network?”.

Initially, we will only attempt to introduce classical impli-
cation, (A → B). Once this is successful, we will introduce
defeasible implication (A p∼ B). This will make up the theory
portion of the project, which will look at how the Bayesian
Network algorithms need to be modified in order to accom-
modate these dependencies. The implementation of these
modified algorithms forms the other half of the project. The
goal of this implementation is to build a tool that allows
users to query a Bayesian network based on this new model,
given some classical or defeasible implication statements.

1.2 Why it is important
The addition of logical statements into a Bayesian Net-

work knowledge base would give network designers finer con-
trol over the network. It would allow additional dependen-
cies to be added to a network after construction that increase
the way dependencies between variables can be expressed.
If more knowledge becomes available over time, this can be
added to a network without the need to completely recon-
struct the network.

In addition, solving this problem is important as it has
the potential to decrease the computational complexity of
querying a Bayesian Network. This is as the network may
condense or simplify due to a reduction in the number of
nodes. This results in fewer causal dependencies between
nodes, making Bayesian Network algorithms such as variable
elimination simpler to compute.

Bayesian Networks find their primary application in arti-
ficial intelligence, and as such, any technique that reduces
the amount of computational resources needed to process
Bayesian Network queries would be greatly beneficial to the
field. In addition, the theory underlying our proposed model



has ramifications about the way we treat causality in logical
systems. Specifically, the results of our project may provide
a way representing causality in knowledge bases, which is
more expressive than the current model which only consid-
ers the notion of implication.

1.3 Possible issues and difficulties

1.3.1 Theory

• There is no previous literature detailing implementing
logical implication in Bayesian Networks. Thus, there
is no clear method of determining these algorithms.

• It is difficult to estimate the time required to form an
algorithm and prove its correctness.

• Introducing classical implication into Bayesian Net-
works turns out to be non-trivial, and there is little
time left to introduce defeasible reasoning.

1.3.2 Implementation

• A suitable Bayesian Network framework that a wrap-
per can be built around to implement the logical im-
plication is not found.

• Building a completely new tool from scratch could in-
volve a lot of work and would present additional errors
and complications on top of the implementation of the
algorithms.

2. BACKGROUND

2.1 Classical Reasoning

2.1.1 Logical Implication
Logical implication represents the if-then operation, and

is denoted with the symbol →. This connective describes
the relationship of logical consequence. That is, given two
atoms A and B, if A implies B then whenever A is known to
be true, B will also be true [2]. The truth table for A→ B
is given by:

world A B A→ B
w1 true true true
w2 true false false
w3 false true true
w4 false false true

Table 1: Truth Table depicting A→ B

2.1.2 Logical Entailment
A Propositional logic knowledge base is comprised of a

finite set of logical rules, in the form of propositional state-
ments. The rules of a knowledge base can be interpreted as
a large conjunction [2]. An inference φ can be entailed from
some knowledge base K if φ is known to be true in every
world. Entailment is denoted by �, such that if K entails φ
it is represented as:.

K � φ

2.2 Non-Monotonic Reasoning

2.2.1 Defeasible Entailment
The work of Kraus, Lehman and Magidor (KLM) in [1]

proposed a set of natural properties of non-monotonic rea-
soning. Conditional entailment, denoted with the symbol
p∼, was introduced to describe plausible inferences. For in-
stance, if atom A typically implies another atom B, it is
given by:

A p∼ B
2.2.2 Rational Consequence and the R Logic

KLM organised the essential characteristics of non-monotonic
reasoning into a hierarchy of systems. KLM rational logic R
[3], is the logic system used to define the p∼ operator in this
problem. For R, authors Lehmann and Magidor outlined 7
key properties of conditional entailment sets, presented in
the form of inference rules:

Reflexivity:
Conditional inference should imply itself

A p∼ A
Left Logical Equivalence (LLE):

Logically equivalent formulas should entail exactly the same
consequences

� A↔ B then (A p∼ C)→ (B p∼ C)

Right Weakening (RW):
All plausible consequences that potentially exist should be

accepted
� A→ B then (C p∼ A)→ (C p∼ B)

Cautious Monotonicity (CM):
Learning a new fact, the truth of which can be plausibly

concluded, should not nullify previous inferences
[(A p∼ B) ∧ (A p∼ C)]→ (A ∧B p∼ C)

Conjunction (And):
Conditional inference should obey propositional conjunction

[(A p∼ B) ∧ (A p∼ C)]→ (A p∼ B ∧ C)

Disjunction (Or):
Conditional inference should obey propositional disjunction

[(A p∼ C) ∧ (B p∼ C)]→ (A ∨B p∼ C)

Rational Monotonicity (RM):
Only additional information, the negation of which was

expected, should force us to withdraw plausible conclusions
previously inferred

[(A p∼ B) ∧ ¬(A p∼ ¬C)]→ [(A ∧ C) p∼ B]

2.2.3 Rational Closure
The Rational closure of R is an algorithm allows us to

perform entailment over defeasible knowledge bases. From
a high-level view, the algorithm works as follows. All defea-
sible statements in a knowledge base K are converted into
their corresponding classical implication forms. The knowl-
edge base now contains only classical propositional state-
ments. These statements are then ranked by initially as-
suming all statements are equally valid in any given world.
Then, each statement is checked to ensure that it does not



cause conflict within the knowledge base. If it does, it is
pushed ‘up’ into a new rank of exceptionality. This process
is repeated until a ranked interpretation is formed - a ranked
list of propositional statements where a higher rank indicates
that the sentence is deemed to be more exceptional in the
context of the knowledge base [4]. This ranked interpreta-
tion can then be queried for entailment as per a standard
classical propositional knowledge base.

Given this, a defeasible formula φ = A p∼ B is said to be
in the rational closure of K should the ranked interpretation
of A be strictly less than the ranked interpretation of A∧¬B
or where A has no rank [5] [6].

2.3 Bayesian Reasoning

2.3.1 Bayes Theorem
Bayesian Networks rely on Bayes Rule, which describes

the notion of conditional probability [7].

Let A and B be two events in some sample space S. Then,
the conditional probability of event B given that event A

has occurred is denoted with P (B|A), and is given by:

P (B|A) =
P (A,B)

P (A)
=
P (A|B) · P (B)

P (A)

Using this formula, we can calculate the probability of any
event A given any number of conditions Bi as :

P (B|A1, A2, ..., An)

2.3.2 Bayesian Inference
Without a method of evaluating, or reasoning with, a

Bayesian network the formalism would be useless. There
needs to exist a way of querying the network about the state
of its variables and getting some accurate knowledge in re-
turn. There are many types of queries that can be used to
reason with a Bayesian network. These are outlined by Dar-
wiche in Modelling and Reasoning with Bayesian Networks,
from where the following work is taken [2].

The simplest and most intuitive query that can be made
on a network is the probability-of-evidence query. This al-
lows us to query the network for the probability that certain
events occurred in the system, i.e. to ask P (a), where A is
some variable in the network. We could also query for a
subset of variables in the network, P (a, b). Given some sub-
set of variables, the evidence variables X1...Xi, the query
P (x1...xi) will return the probability associated with events
X1...Xi taking place. This query is computed using a rela-
tively simple algorithm known as Variable Elimination.

Variable Elimination is the process of sequentially remov-
ing variables from the network that are not associated with
the query, while still maintaining the ability to answer queries
on the remaining variables. This elimination removes the
need to calculate the probability of all variables in the net-
work. Given a query, P (a, b), variable elimination removes
all other variables from the network while embedding the
probabilities associated with those variables in the remain-
ing variables, A and B.

3. PROBLEM STATEMENT

3.1 Aims
This project aims to:

• define a suitable meaning for propositional implication
between two variables in Bayesian Network

• describe an algorithm for reasoning with a Bayesian
Network that contains logical implication in its knowl-
edge base.

• define what defeasible implication between two vari-
ables in a Bayesian Network means.

• find an algorithm that allows for defeasible reasoning
to be added to a Bayesian Network.

• prove the correctness of all algorithms.

• implement a standalone Bayesian reasoner which al-
lows users to add logical implication statements to the
network and reason with it

3.2 Research Questions
The following questions summarize what the project aims

to answer:

• Can a provably correct algorithm be defined that al-
lows classical and defeasible implication to be added to
a Bayesian Network knowledge base and still be rea-
soned with?

• How can this algorithm be implemented in a tool that,
by making calls to a Bayesian reasoner, allows a user to
add classical and defeasible implication to a Bayesian
Network?

4. PROCEDURES AND METHODS
The problem is divided into two logical sections - a the-

oretical component and an implementational component.
Most sections in this proposal are split up into these two
sections in order to highlight the separation of work.

4.1 Approach
The project can be broken into two distinct components:

theory and implementation.

4.1.1 Theory
In researching the relationship between casual links in a

Bayesian Network and logical implication, we seek to create
an algorithm that will effectively lower the complexity of
a Bayesian Network if the network is supplemented with a
logical knowledge base. We will then attempt to adapt this
algorithm to handle defeasibility.

We conjecture that the addition of logical rules on top of a
Bayesian Network will shrink the network by concatenating
various nodes, and therefore it must be shown that if such
a concatenation occurs that the probabilities of events in
the network are preserved. Furthermore, it must be shown
that if this is the case, then defeasibility may also be intro-
duced into the network. In particular, we must show that
if rational closure is used to determine the ranking of non-
monotonic statements in the accompanying knowledge base,
a Bayesian Network can be created for each ranking using
the aforementioned algorithm.

Once proven, both algorithms will analysed according to
their computational complexity.



4.1.2 Implementation
The aim of the implementation component of the project

is to build a tool that allows a user to input a Bayesian Net-
work, and then make queries on the network (such as “What
is the probability of variable A?”) given some classical or de-
feasible inference statements added to the knowledge base.
This will allow the user to make simple queries on the net-
work, as well as specifying additional dependencies between
the variables in the network and still maintaining the ability
to query the network. The tool will be an implementation
of the algorithm defined in the theoretical section of the
project.

Ideally, the tool will be built as a wrapper around an al-
ready existing Bayesian reasoner. This wrapper will apply
the theoretical knowledge gained in the theory component,
and then make calls to the Bayesian reasoner. Thus, the
wrapper will involve simplifying the given Bayesian Network
in the case of classical implication, and applying the defea-
sible reasoning algorithm in order to simplify the network in
the case of defeasible implication.

Failing the implementation of a tool that acts as a wrapper
around a pre-existing Bayesian reasoner, a stand alone tool
will be built that performs the execution of the algorithm
as well as the Bayesian reasoning. The implementation of
a wrapper may fail if no suitable Bayesian reasoner can be
found. This is a less desirable approach, as time would be
spent unnecessarily building a tool for a solved problem.
This is however not seen as a major issue as there are many
Bayesian Network libraries and packages which can be used.

An example ’test-case’ Bayesian Network will be designed
and used on the the wrapper which will be used to demon-
strate that the wrapper functions correctly. It will also be
used to test the theoretical algorithms developed in the the-
ory section of this project. The Asia Network is a likely
candidate of this test-case Bayesian Network [18]. Once the
application of the algorithm is complete, the additional task
of building a user interface and performing some basic user
testing will be undertaken. This is not a main goal of the
project however, and will only be taken on if the underlying
wrapper is complete.

4.2 Testing Results

4.2.1 Theory
There is no explicit testing methodology for the theoret-

ical component of the project. Rather, the correctness of
any algorithm developed will be given by formal proof, and
independently verified. The results pertaining the computa-
tional complexity of the algorithm are analytical in nature,
and will also be verified.

4.2.2 Implementation
In order to ensure the software tool works as expected

unit and integration tests will be written. These will test
each component of the software, as well as ensure that each
component works in conjunction with the others.

As this is new work in this field, there is little data to test
the software against. Throughout development we will have
to design tests that accurately and suitably test the software
to ensure that it is producing the correct results.

If the user interface is developed as main feature of the
software, user tests will be conducted to ensure that the
user interface works as expected and is intuitive to use.

4.3 Measurements of Success
In each section of the project - theory and implementation

- specific successes will be measured as follows:

4.3.1 Theory
Any theorem resulting from our research should satisfy

the following properties:

1. Bayes theorem must hold under concatenation.

2. any concatenation of a Bayesian Network should main-
tain previous probabilities.

3. propositional implication must hold when concatenat-
ing nodes.

4. the properties of KLM logic R must hold.

5. rational closure must be satisfied in Bayesian Networks
supplemented with a defeasible knowledge base.

Any reasoning algorithm created should satisfy the following
criteria:

1. the algorithm is complies with the outlined theory.

2. the algorithm works.

3. the algorithm successfully concatenates a Bayesian Net-
work and/or reduces its complexity.

4. the computational complexity of the algorithm has
been determined.

5. the defeasible version of the algorithm complies with
rational closure.

4.3.2 Implementation
Successful completion of the implementation of the defea-

sible Bayesian reasoner will include a software package that:

1. has all tests - both unit and integration - passed suc-
cessfully.

2. has the ability to import and export Bayesian net-
works.

3. allows the user to easily query the Bayesian network
and receive accurate results.

4. allows the user to add classical and defeasible infer-
ence statements to a knowledge base, and still receive
accurate results to queries.

5. has at least a partially complete and user friendly user
interface.

5. ETHICAL, LEGAL AND PROFESSIONAL
ISSUES

5.1 Ethical Issues
There are no foreseeable ethical issues with the project.

The project does not involve strict user testing where ethical
treatment of users would need to be taken into account.



5.2 Legal Issues
All software and packages used in the project will be open-

source to prevent any legal copy-write infringements. Soft-
ware produced will be open-source and will take on the li-
cences of any packages used.

5.3 Professional Issues
This project poses no professional issues. The work con-

ducted in the project provides a basis for further research
and does not aim to discredit any prior research.

6. RELATED WORK

6.1 Theory
Existing methods that integrate propositional logic into

Bayesian networks are well established. The work of Pearl
describes various mechanisms for probabilistic reasoning in
intelligent systems [14]. Apart from propositional logic, Coz-
man and Mauá et al 2016 [15] describe how description logics
can be used to represent Bayesian Networks.

Furthermore, there may be other ways to deal with de-
feasibility in a Bayesian Network. Most notably is the con-
struct of fuzzy sets and degrees of truth in Fuzzy Logic (a
logic in which logical sentences are assigned probabilities of
occurring), which may aid in determining the degree of typi-
cality implied by a non-monotonic statement such as A p∼ B
[16]. Non-monotonicity can then also be introduced in fuzzy
logic, as described by Castro, Trillas and Zurita et al 1995
[17], which can be used to deal with exceptions in much the
same way as propositional non-monotonic logic.

6.2 Implementation
The work of Costa, et al. [12], describes the implemen-

tation of an open-source tool, UmBBayes-MEMB, that can
be used for modeling, learning and reasoning upon proba-
bilistic networks [13]. The application allows users to model
probabilistic ontologies by implementing the PR-OWL prob-
abilistic ontology language, which is a probabilistic exten-
sion of the OWL based on Multi-Entity Bayesian Networks
[12]. This results in a combination of First-Order logic and
Bayesian Networks, that can be used for probabilistic ontolo-
gies. This is closely related to what we are seeking to im-
plement, however looks at another field in Knowledge Rep-
resentation.

7. ANTICIPATED OUTCOME

7.1 Theory
We conjecture that a Bayesian Network supplemented with

a propositional logic base will have its complexity reduced.
This is may be in the form of node concatenation in the
Bayesian Network, where any number of subsets of nodes in
the network will each reduce to one. However, the introduc-
tion of logical rules to the network is likely to affect actual
probabilities of events, even if node concatenation does not
hold. Should these properties hold, an algorithm could be
created with the ability to query the new model.

We further conjecture that if such a model is viable, it may
be possible to introduce defeasibility into the knowledge base
of the Bayesian Network. This may done trivially by creat-
ing multiple propositional Bayesian Networks using the new

model, each corresponding to a rank in a minimal ranked in-
terpretation of the knowledge base in question. Any query
posed to this model must contain the level of typicality de-
sired, most likely in the form of a logical statement.

It may also be done in a non-trivial manner by modifying
the existing query algorithm of a Bayesian Network to in-
corporate a form of rational closure, though it is less obvious
what the outcome of this method would be.

7.2 Implementation
We expect the completed tool be used as a basis for fur-

ther practical implementations of introducing formal logic
to Bayesian networks. The system should be able to pro-
vide insight into how this works for implication, potentially
paving the way for further expansion of the tool.

This project will be deemed a success if at least some form
of implication logic is introduced into a Bayesian network
successfully, and the implemented tool allows for this to be
used in an easy to use, practical manner.

8. PROJECT PLAN

8.1 Risks
Table 2 in Appendix A shows a risk matrix detailing po-

tential risks that could arise through the course of the project.
We detail each risk and the associated probability and im-
pact of the risk taking place. The risk factor is the product of
the probability and the Impact. The higher the risk factor,
the threat the risk poses to the project. This shows that
not completing the theoretical component of the project,
and missing deadlines pose the highest risk to the project.
However, the biggest risk to this project is that the depen-
dency between the theoretical and practical components of
the project. Ensuring this does not cause the project will
be a focal point of risk mitigation. Specific emphasis will
be placed on mitigating and monitoring the highest impact
risks.

The mitigation column shows steps that will be put in
place to reduce the likely-hood and impact of the risk hap-
pening. The monitoring step details how we will keep track
of how probable a risk is, while the management step ex-
plains how we will deal with the risk should it take place.

8.2 Timeline
As previously stated, the project is split between two main

components, a theory deliverable and an implementation
deliverable. Milestones for both components are given in
section 9.5 . There are two dependencies in the project.
Namely, the implementation of both the classical and defea-
sible algorithm is critically dependent on their completion.
The project timeline is given by the Gantt chart in Appendix
B.

8.3 Resources required
For the implementation component of the project, the fol-

lowing will be required:

• A Bayesian Reasoner will be required for use by
the tool to make calls to compute any given query.
This should be open source to allow for direct access
to the code in order for the tool to plug directly into
the software. It should also be licensed to allow for free
use of the software. There are a number of potential



options that will be explored as a first step in this
project. Some examples of FOSS Bayesian Network
Software include Banjo [8], Bayesian Network tools in
Java (BNJ) [9] and JavaBayes [10].

• A programming language and compiler will be
needed to produce the tool. The majority of open
source Bayesian Network tools are produced in Java,
and such such this is the most likely choice of language
for construction of the tool. This would include the use
of the JDK [11]. If the Bayesian reasoner that is chosen
is not produced in Java however, the tool will be built
the same language as that of the Bayesian reasoner.

• The ontology editing software Protégé will be used as
reference in production of the tool. The interface will
be used as inspiration in development of the tool. The
source code will be used as a guide in development of
a tool that can accept and manipulate propositional
statements.

8.4 Deliverables
The theoretical side of the project will only yield one de-

liverable - the algorithm for condensing a Bayesian Network
given some classical or defeasible inference statements. The
implementation aspect of the project will produce a number
iterations on the tool as deliverables. Initially, a working
prototype of the tool will be produced, followed by any po-
tential iterative steps in the tool, and finally the completed
tool. As a final deliverable, the project final paper will be
completed detailing the complete process - theoretical and
practical - of the project.

8.5 Milestones
The milestones for the theoretical component of the project

are:

1. Define the difference between implication and causal-
ity.

2. Determine the effect of logical implication within a
Bayesian Network with regards to probability prop-
agation in the network.

3. Investigate the effect of node concatenation within a
Bayesian Network.

4. Attempt to concatenate the Bayesian Network using
logical rules and prove that such a concatenation holds.

5. Should concatenation hold, determine the algorithm
for concatenation and calculate its computational com-
plexity.

6. Determine the algorithm for querying the new model
and calculate its computational complexity.

7. Investigate the effect of introducing defeasibility into
the new model.

8. Prove that any defeasible modification to the algo-
rithm satisfies the KLM R properties.

9. Calculate the computational complexity for the defea-
sible version of the algorithm.

The milestones for the implementation component of the
project are:

1. Experiment with and get to know the existing Bayesian
reasoner.

2. Implement a basic prototype wrapper around the Bayesian
reasoner that can communicate with and query the
Bayesian network.

3. Implement the algorithm for introducing classical im-
plication into a Bayesian network into the software.

4. Implement the algorithm for introducing defeasible rea-
soning into the Bayesian network.

5. Complete a working wrapper program around the Bayesian
reasoner that allows queries to be made that include
classical and defeasible implication between variables.

8.6 Work Allocation
As mentioned previously, the project can be separated

into two defined sections - theory and implementation. Eli-
jah Roussos will complete the theoretical component of the
project, which involves determining the relationship between
logical entailment and causality, attempting Bayesian Net-
work concatenation using logical rules and developing an
algorithm for any model that is created and determining its
complexity. The correctness of the aforementioned will also
be verified via formal proof.

Luke Neville will complete the implementation section of
the project. This includes the designing, implementing and
testing the software package. This is heavily based on im-
plementing the algorithm Elijah defines on top of a Bayesian
reasoner, allowing a user to reason with a Bayesian network
given some classical and defeasible implication statements.

9. CONCLUSIONS
Both classical and non-monotonic logic are well estab-

lished logic formalisms for reasoning. Specifically, they are
able to represent casual and typical relationships between
variables, and do so in an efficient manner. We are inter-
ested in limited forms of implication in propositional logic
and defeasible reasoning. That is, how can classical (P→ Q)
and defeasible (P p∼ implication be introduced into another
knowledge representation system.

Bayesian Networks have been extensively researched - many
practical uses and methods for constructing and evaluating
queries can be found in literature [2]. The key insight into
their value and performance is due to the assumption of
independence between variables that are not directly con-
nected in the network. This greatly simplifies the process of
evaluating probabilistic relationships and makes this sort of
reasoning feasible in a fast and efficient manner.

We propose that the union of these two reasoning mecha-
nisms would result in more expressive, and potentially more
compact, model of reasoning. This would be done by view-
ing the variables in the network as propositional atoms, and
then using the knowledge base to draw causality between
these atoms. We conjecture that in drawing logical implica-
tion between these variables, they may combine into a single
variable with a single probability.

This proposal has outlined the plan for a project which
seeks to define an algorithm for introducing classical and



defeasible implication into a Bayesian Network, and the con-
struction of a tool which allows a user to reason with such a
model. Overall, we conclude that the project would impact
the work of Bayesian Networks by increasing the number
of ways relationships between variables in the network can
be expressed. It would allow for network size to potentially
be reduced, resulting in improvements in processing time in
reasoning with a Bayesian network. This could have impacts
into the field of Artificial Intelligence as Bayesian networks
are increasingly used to model real-world scenarios in this
field.

10. REFERENCES
[1] Kraus, S., Lehmann, D., & Magidor, M. (1990).

Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial intelligence, 44(1-2), 167-207.

[2] Darwiche, A. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, Cambridge,
2009.

[3] Lehmann, D., & Magidor, M. (1992). What does a
conditional knowledge base entail?. Artificial
intelligence, 55(1), 1-60.

[4] Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L.
(2013). A Semantics for Rational Closure: Preliminary
Results. In CILC (pp. 99-113).

[5] Strasser, Christian & Antonelli, G. Aldo, (2001)
Non-monotonic Logic, The Stanford Encyclopedia of
Philosophy (Summer 2018 Edition), Edward N. Zalta
(ed.)

[6] Booth, R., Casini, G., Meyer, T. A., & Varzinczak, I. J.
(2015, June). On the Entailment Problem for a Logic of
Typicality. In IJCAI (pp. 2805-2811).

[7] Underhill, L., Bradfield D. (2014). INTROSTAT,
Department of Statistical Sciences, University of Cape
Town

[8] Hartemink, A. (2018). Banjo: Bayesian Network
Inference with Java Objects. [online] Users.cs.duke.edu.
Available at:
https://users.cs.duke.edu/ amink/software/banjo/
[Accessed 19 May 2018].

[9] Bnj.sourceforge.net. (2018). Bayesian Network tools in
Java (BNJ) - Kansas State University Lab for
Knowledge Discovery in Databases. [online] Available at:
http://bnj.sourceforge.net/ [Accessed 19 May 2018].

[10] Cs.cmu.edu. (2018). JavaBayes 0.346. [online]
Available at: http://www.cs.cmu.edu/ javabayes/Home/
[Accessed 19 May 2018].

[11] Oracle.com. (2018). Java SE |
Oracle Technology Network | Oracle. [online] Available at:
http://www.oracle.com/technetwork/java/javase/overview/index.html
[Accessed 19 May 2018].

[12] Costa, P.C., Ladeira, M., Carvalho, R.N., Laskey,
K.B., Santos, L.L. and Matsumoto, S., 2008, May. A
first-order Bayesian tool for probabilistic ontologies. In
Proceedings of the Twenty-First International Florida
Artificial Intelligence Research Society Conference (pp.
631-636).

[13] Unbbayes.sourceforge.net. (2018). UnBBayes - The
UnBBayes Site. [online] Available at:
http://unbbayes.sourceforge.net/index.html [Accessed 20
May 2018].

[14] Pearl, J. (2014). Probabilistic reasoning in intelligent
systems: networks of plausible inference. Elsevier.

[15] Cozman, F., & Mauá, D. (2016). The Complexity of
Bayesian Networks Specified by Propositional and
Relational Languages.

[16] Bergmann, M. (2008). An introduction to
many-valued and fuzzy logic: semantics, algebras, and
derivation systems. Cambridge University Press.

[17] Castro, J. L., Trillas, E., & Zurita, J. M. (1998).
Non-monotonic fuzzy reasoning. Fuzzy Sets and
Systems, 94(2), 217-225.

[18] Lauritzen, S., & Spiegelhalter, D. (1988). Local
Computations with Probabilities on Graphical
Structures and Their Application to Expert Systems.
Journal of the Royal Statistical Society. Series B
(Methodological), 50(2), 157–224.



APPENDIX
Appendix A

Table 2: Risk matrix including mitigation, monitor-
ing and management of each risk

Risk
Proba-
bility*

Impa-
ct*

Risk
Factor

Mitigation Monitoring Management

Inability to find an
algorithm for introducing
logical statements into a
Bayesian Network -
Theory section
uncompleted

3 9 36

Actively find
resources and
plan meetings
with supervisor
to ensure
progress is made

Stick to project
timeline and
check progress
regularly

Work with
supervisor to
find a solution for
implementation

Implementation section
uncompleted

3 2 5

Begin prototyping
early and plan
regular meetings
with supervisor
to ensure progress
is made

Stick to project
timeline and
check progress
regularly

Attempt at least
a basic prototype
implementation
to show proof of
concept

Partner dropping out 2 6 12
Separate work
out as much as
possible

Check on partners
status often

Work with
supervisor to
fill in missing
information

Poor time management
leading to not meeting
project deadline

4 7 28

Stick to strict
project deadlines
and work actively
throughout project

Check progress
against project
timeline

Hand in basic
prototypes and any
work completed

Not finding a suitable
Bayesian Reasoner to
use as a framework on
which to build the
wrapper

5 5 25

Start early and
experiment with
many Bayesian
Reasoners in
order to find
a suitable
candidate

Check progress
against project
timeline and
decide early if
a Bayesian
Reasoner
cannot be found.

Begin
implementing
custom Bayesian
Reasoner

Conflict/ disagreement
on path forward within
group

3 7 21

Put in place
strict conduct
rules, and foster
an environment
where group
members can
approach
each other to
discuss issues

Be open and
willing to discuss
issues and
progress made in
the group

Attempt to resolve
conflict, bringing
in supervisor if
necessary.

* rated on a scale of 1 - 10; 1 being low and 10 being high.



Appendix B

Figure 1: Proposed Gantt Chart for the project


