
Implicative Bayesian Reasoner for Java

Implementing a Bayesian Reasoning tool to support Classical Implication
statements

Luke Neville
Computer Science Honours

University of Cape Town
Cape Town, South Africa
nvlluk001@myuct.ac.za

ABSTRACT
Implicative Bayesian Networks (IBNs) allow classical and
defeasible implication statements to be added to a Bayesian
Network. This allows additional dependencies to be added
between variables in the network, increasing its expressivity
[1]. A software tool, the Implicative Bayesian Reasoner for
Java (IBRJ) partially implements the theory of IBNs, giving
researchers the ability to use and understand how these mod-
ified networks function. IRBJ allows for classical implication
statements to be added to the network while maintaining
the ability to draw inference. A Graphical User Interface is
also provided that shows how the network changes given the
additional information. An extension of the BayesNets In-
terchange Format is proposed that allows IBNs to be saved
in a standard format. This paper details the development
of the IBRJ tool, and explains the implementation process
followed. A background on IBNs is also given as an expla-
nation of what is being implemented, including algorithms
that define how the network reacts to the introduction of
implication statements.

Keywords
Bayesian Networks; Formal Logic; Knowledge Representa-
tion; Propositional Logic; Java

1. INTRODUCTION
Both Bayesian Networks and Formal Logic have been suc-

cessfully used to model and come to conclusions about a wide
variety of domains. However, the union of these two fields
has been overlooked. Introducing logic statements into a
Bayesian network increases the expressiveness and thus use-
fulness of the network. This allows a richer model to be
constructed that more accurately reflects any given input
domain.

This paper details the construction of a tool, the Implica-
tive Bayesian Reasoner for Java (IBRJ), which allows a user
to supplement a Bayesian Network with limited forms of
logical implication. This follows from the theoretical in-
sight into Implicative Bayesian Networks (IBN) presented
by Roussos [1]. The tool is aimed at researchers in the fields
of Bayesian networks and formal logic, and demonstrates
how IBNs function.

The tool allows for classical implication statements to be
added to the network. The results of the addition of these
new dependencies are shown by the tool. Inference can still

be drawn on the network, demonstrating how the new net-
work dependencies effect the conclusions that can be drawn
on the network. Due to the nature of Bayesian Networks,
variables in the network are largely independent. Supple-
menting the network with classical implication produces ad-
ditional dependencies between variables or modifies exist-
ing dependencies. This allows the network user to intro-
duce stronger dependencies between network variables than
the typical causal relationships found in Bayesian Networks.
This paper also presents a possible extension to the common
BayesNets Interchange Format that would allow for IBNs to
be saved and loaded in a standard format.

The research sets out to determine if a tool could be de-
veloped that easily allows a user to add classical implication
statements into a Bayesian reasoner while maintaining the
ability to make meaningful queries to the network. The
IBRJ software tool achieves this and is presented alongside
this paper. This allows a researcher in the field to easily use
and understand how IBNs function. Included in the tool is a
Graphical User Interface that demonstrates how the network
structure changes as the new dependencies between network
variables are introduced. We briefly discuss the theory be-
hind the IBRJ tool followed by a discussion on the design,
implementation and results achieved from the development
of the software.

The addition of logical implication statements into Baye-
sian Networks gives the network designer finer control over
what the network describes and how it does so. The ad-
ditional dependencies can be added to a network after it
has been constructed as more knowledge becomes available,
without the network having to be completely redesigned.
The tool allows for this process to be visualised and the net-
work to be interacted with. Both Bayesian Networks and
formal logic find many applications in artificial intelligence,
and thus the union of these two fields may yield ramifications
in the way these two research areas are applied.

2. BACKGROUND

2.1 Propositional Logic
Logic, as a mathematical tool, provides a basis for evaluat-

ing and reasoning about the world around us. Unambiguous
systems are defined that allow precise, logical conclusions
to be drawn from a collection of statements. Propositional
logic is one of the most common formal logic systems due to
its applicability to modelling philosophical theory and na-

ture[13].
Propositional Logic, also known propositional calculus, is

a branch of logic that deals with singular truth-bearing vari-
ables and how these variables can be connected to create
logical arguments [14]. These truth-bearing variables are
known as ‘atoms’ and are the smallest unit of knowledge in
a propositional knowledge base [12]. They can take on one of
two states - true or false. Logical connectives can be used to
extend an atom or join multiple atoms together in order to
create composite atoms. These composite atoms can in turn
only be true or false, though they are composed of one to
many true or false atoms. Atoms and composite atoms are
known as sentences, and a collection of sentences makes up
a knowledge base [12][14]. As sentences are precise in their
truth value, we can use them to reason about the world, or
the state of a given system. In natural language, we use
declarative sentences to describe what is going on around
us. For example, we can state that “it is raining”. This is a
propositional atom - it holds a singular value of either true
or false and tells us something about the current state of the
world.

2.1.1 Classical Implication
There are five connectives in Propositional logic: ¬, ∧,
∨, ⇒ and ↔. We will only look at implication, or the ⇒
connective, as it is what this research is based on. For a
discussion on the other connectives, see A Concise Intro-
duction to Logic (DeLancey, C) [12]. This connective, often
referred to as classical implication, represents an if... then...
relation between the two atoms it connects. For example,
P ⇒ Q would be read as “if P then Q”. The first sen-
tence, P, is known as the antecedent, and the second, Q,
is known as the consequent. The truth values of an impli-
cation statement are given in table 1. Note that the value
of the implication sentence relies mainly on the value of the
antecedent.

P Q P ⇒ Q

1 1 1
1 0 0
0 1 1
0 0 1

Table 1: Truth table for P ⇒ Q

2.2 Bayesian Networks
Bayesian Networks, also known as Belief Networks [17],

are a class of probabilistic graphical models that have been
used in many fields for use as causal modelling and prob-
abilistic inference [16]. They allow for a coherent method
of structuring probabilistic information about a system in
a way that makes it is easy to logically reason about the
system and its potential states [10]. A Bayesian Network is
a double, BN =< DAG,CPT > where DAG is a Directed
Acyclic Graph and CPT is a set of Conditional Probability
Tables [17]. Nodes in the DAG correspond to the variables
that are being modelled, while the edges are interpreted as
the probabilistic independence relationship between these
variables [10] [17]. We denote this relationship as N → M
where N and M are variables in the network. The con-
ditional probability table specifies the probabilistic relation-
ship between the given variable and its parents. This assigns

an individual probability of a variable being either true or
false, based on its parents truth value. Bayesian Networks
are powerful in part due to the key notion that a variable is
independent of its children once the values of its parents are
known [18].

Once a Bayesian Network has been constructed, it can
be used to come to conclusions about network variables -
the specific probability of an event occurring can be deter-
mined. Variables can be ‘observed’ - this is the processes of
providing evidence of a nodes’ value. Given these values, the
probability of other events can be determined. For exam-
ple, given a network that models the reasons for having wet
grass, we can query Probability(Wet Grass = True | Raining
= False, Sprinkler = On, Water fight = Unknown (True or
False)).

There exist many types of queries and algorithms for pro-
viding answers to these queries. The IBRJ tool is concerned
primarily with a probability-of-evidence query, where the
probability of a specific variable is requested - P(e). When
this is computed with no provided evidence it is known as
the prior marginal. This is opposed the posterior marginal,
which is computed with some evidence - P(e|b). As men-
tioned, there are many algorithms for determining the mar-
ginals. In IRBJ, the variable-elimination algorithm is used
for its simplicity and ease of understanding. For a more in
depth look at queries and algorithms used, see Modelling
and Reasoning with Bayesian Networks (Darwiche, A) [19].

2.2.1 The Interchange Format for Bayesian Networks
A standardized format for representing Bayesian Networks

was first proposed by members of the AUAI [15] community
in order to foster the exchange of knowledge between re-
searchers using Bayesian Networks. The format would define
a strict grammar that could be used to save and exchange
Bayesian Networks. It was decided that an XML-based for-
mat would be used to “represent directed acyclic graphs that
can be associated to conditional probability measures for dis-
crete variables, with the possibility that decision and utility
variables be present in the graph” [11].

The following is an overview of the format. The network
is enclosed in network tags, defined by a name tag and a
sequence of property tags. Within the network tags, a se-
quence of variable tags are defined that represent each vari-
able or node in the network. The variable contains a name

tag that defines the name of the node, two outcome tags that
show the possible states the variable can be in, and again a
sequence of property tags. Conditional Probability Tables
are represented by a sequence of definition tags. Each
definition references which variable it is associated with via
a for tag, followed by given tags and the table tag which
contains the CPT values.

The .BIF format is now a widely used standard for saving
Bayesian Networks. For more information on the format
refer to Fabio Gagliardi Cozman’s website [11].

3. THEORETICAL ANALYSIS

3.1 Supplementing Bayesian Networks with
Propositional Inference statements

An Implicative Bayesian Network (IBN) is an extension of
a Bayesian Network that contains a Propositional knowledge
base that holds implication statements. The implications
can be classical (P ⇒ Q) or defeasible (P Q), though

this tool only implements the classical case. Negation is
also defined, allowing for the negation of implications, for
example, ¬P ⇒ Q. This merges the two fields of Bayesian
Networks and Propositional Logic to create a model that is
more expressive than each of its components in isolation.

This is possible because the variables in the Bayesian Net-
work can be viewed as propositional atoms connected to each
other via probabilistic, or causal, relationships. By adding
an implication statement between two network variables (or
network atoms) the relationship between them is modified
to be an implication relation instead of the prior causal re-
lationship. New relationships can also be added between
network atoms, as long as this does not create a cycle in the
graph.

If two network atoms have a causal relationship between
them, A → B, and then the classical implication A ⇒ B
is added to the IBN knowledge base, the causal relation is
replaced by the implication relation for the cases where A
holds. If the defeasible implication A B is added how-
ever, this may or may not over-write the causal relation,
depending on a required observation on the network.

An Implicative Bayesain Network is defined as a 3-tuple:

(DAG⊥, CPT⊥,KB),
where DAG⊥ is a directed acyclic graph connected via

causal relations, CPT⊥ is a set of conditional probability
tables associated with DAG⊥ and KB is a set of

implications between nodes in DAG⊥.

As implication statements are added to KB, causal rela-
tions in DAG⊥ and CPT⊥ are modified to create a DAG>
and CPT> which represent the new network with these
added implications. The basics of IBNs are presented be-
low as a background to this tool, however for a more in
depth discussion of IBNs, see Roussos [1].

3.2 Classical Implication
Adding a classical implication statement, A ⇒ B, to the

network makes the relation between the two network atoms
more specific - it says that the atom B is dependent on
the atom A more than just causally or by some probability.
The dependence is strict - if A happens then so must B.
The converse is not true however - if A doesn’t happen, we
cannot make any conclusions about the state of B.

In order to implement this change of relationship in the
Bayesian Network, we modify the CPT’s to reflect the stric-
ter influence A has over B. This process varies depending on
the relationship the two network atoms have in the Bayesian
Network. There are three relation types - Direct, Indirect,
and None. The Direct type specifies a relation where A is
a parent of B in the graph. Indirect type is the opposite -
A is a child of B. The None case handles all other relations
between network atoms - nodes that are not relatied, or
related via one or more intermediate nodes.

The algorithms for how the network should be modified
are given in section 5.2.1. The Direct and Indirect case
simply change the current CPT, while the None case adds
a new edge in the graph between the two nodes, and then
modifies the CPTs to reflect the implication.

As edges can be added to the network, cycles could be
created. This is termed a ‘clash’, and is not allowed in an
IBN. If an implication is added to the network that would
cause a clash, the implication is rejected. This ensures that
the network cannot have cycles.

Despite this, a cycle of implication statements can legally
be added to the network, forming an implication cycle. In
implication cycle is a cycle formed between nodes in the
network where every edge in the cycle is an implication edge.
In this case, all events within the implication cycle can be
viewed as one event and thus can collapse into one node.
This process is described in section 5.2.1.

3.3 Other IBN features
IBNs also define how a Bayesian Networks should respond

under the negation of a network variable. The introduction
of negation also allows for a new type of implication to be
added to the network - defeasible implication. This allows
for some notion of exceptionality to be introduced in the
network. This requires the use of addtional algorithms such
as ranking and rational closure [8][9].

3.4 Querying an Implicative Bayesian
Network

The strength of IBNs is that they can be queried in the
same way that standard Bayesian Networks can be. This
allows all the same algorithms to be used, without any added
complexity. Probabilistic observations can still be made and
thus prior and posterior marginals can still be computed.
Another type of observation is also available - the logical
observation. This is a classical or defeasible sentence that
can be added to the network as an observation. This does
not effect the network graph or CPT’s, but rather acts as
a specifier for which world the knowledge base is in. When
inference is drawn, the knowledge base will be checked to see
if it is entailed by the logical observation. If it is, then the
knowledge base is applied as usual; however if it isn’t, then
the DAG⊥ network will be used as the observation made
shows that the knowledge base is not consistent.

4. REQUIREMENT ANALYSIS
The goal of this project was to design and develop a soft-

ware tool that allows a user to specify additional dependen-
cies between variables in a Bayesian Network while main-
taining the ability to draw inference on the network. Specif-
ically, this is the creation of a tool that allows researchers to
use and understand Implicative Bayesian Networks (IBN).
This is the implementation and practical execution of the
work presented by Roussos [1]. The tool only implements
classical implication, as a demonstration of how a Bayesian
Reasoner might implement implication.

Requirements were identified that, given full implemen-
tation, would result in a completed tool that fully demon-
strates IBNs. These requirements are presented below as a
set of use cases.

The user needs to be able to:

1. Run the program through a Command Line Interface
or a Graphical User Interface.

2. Load or import a Bayesian Network saved in any of
the standard formats - .bif, .ibif, .xml or .net.

3. View the Bayesian Network graph - the nodes and
edges of the graph - as well as the variable CPTs.

4. Make observations on network variables, setting them
to a known true/false value, or making a logical obser-
vation on the network.

5. Add classical implication statements to the network,
and view how this changes graph structure and CPTs.

6. Compute prior and posterior marginals before and af-
ter implication statements have been added.

The software tool should:

1. Store an internal representation of an Implicative Baye-
sian Network that contains a Bayesian Network and a
knowledge base of implication statements that have
been added to the network.

2. Apply classical implication sentences to the network
as defined in IBNs.

3. Find any cycles in the graph and adjust the graph
when an implication cycle is found.

4. Parse an extension of the BayesNet Interchange For-
mat, the .ibif, to allow users to load and save IBNs.

These use-cases allow a user to perform all necessary tasks
to observe how implication statements effect a Bayesian Net-
work, and thus demonstrates how IBNs can be used.

The tool is intended to be used to demonstrate and ex-
plain how IBNs function. It should also provide a basis and
example for further research into introducing formal logic
into Bayesian Networks. Due to this, the software tool is
aimed at researchers in the field of Bayesian Networks, for-
mal logic, and knowledge representation. This effected the
requirement specifications in that the tool is intended to be
a proof-of-concept, rather than a consumer ready product.

As there has been no previous example of introducing im-
plication statements into Bayesian Networks, these research
goals and use-cases are important as they provide a novel
insight into this field.

5. DESIGN AND IMPLEMENTATION
As the main focus of this project was the development of a

software tool, a well planned design was important to ensure
successful implementation of the tool. The program was
designed to reflect the use-cases documented in section 4. A
well-planned design, though one that was open to changes,
allowed for an efficient and effective implementation of the
IBRJ tool.

5.1 Design
The IBRJ tool is an extension of a Bayesian Reasoner

- a tool that can draw inference on a Bayesian network -
that introduces the additional options to add implication
statements. As such, IBRJ is built on top of a preexisting
Bayesian Reasoner. The IBRJ tool will handle the modifi-
cations on the Bayesian network, and then make calls to the
underlying Bayesian reasoner. This is done so a Bayesian
reasoner need not be implemented, as there are many suit-
able solutions available. This leads to two options; an open-
source Bayesian reasoner is extended to add implication sup-
port, or a wrapper is built around a Bayesian reasoner li-
brary. Both have advantages and disadvantages, discussed
below.

Modifying a preexisting Bayesian reasoner means that the
base program is already fully implemented. This means that
a GUI and UX does not need to be designed and built. This
is a major advantage as a well designed UX is important

so as to allow the user to fully experiment with and under-
stand how Implicative Bayesian Networks function (IBN).
However, extending a preexisting program means that the
new code is placed alongside the original code. This results
in no modularity and complete dependency on the original
program.

Building IBRJ as a wrapper around a Bayesian reasoner
removes this high dependency by using the Bayesian rea-
soner as a library. This means that the reasoner could
be swapped for another reasoner should a better option be
made available with minimal interference to the software.
This does however mean the UX must be designed and built.

It was decided that building the tool as a wrapper would
be preferable. This detaches the new implication part of the
program from the Bayesian reasoner, removing this depen-
dency. This also means that the choice of Bayesian reasoner
is less relevant, as it can be changed with minimal effort.

An appropriate language was needed to implement the
software tool. There was a large restriction placed on which
languages could be used by which Bayesian reasoner IBRJ
was built as a wrapper around. Additionally, the program
should be written in a language that is common and used by
as many people as possible, allowing users to easily inspect
the code to better understand how IBNs were implemented.
Following from these considerations, Java was chosen. The
Bayesian reasoner chosen was written in Java. Java also has
the advantage of being easily portable, and is a widely used
and understood language.

The software tool is designed to follow standard Object
Orientated Programming principles. This means that code
is modular and compartmentalized - only code that relates
to a specific class should be found in that class. This ensures
that code is well organized and coherent. The package that
acts as an interface to the Bayesian reasoner library should
be the only place where references to the API are found.
This is important as it represents a singular point of con-
tact with the reasoner, ensuring minimal changes needed if
the reasoner is changed. An agile development method was
applied so as to ensure that rapid changes in the definition
of IBNs could be accommodated.

The Bayesian reasoner on top of which this program is
built has an internal representation of a graph. This rep-
resentation needed to be extended to contain a knowledge
base of classical implication statements. This is identified
as a key area that needed to be implemented. The tool
should have internal representations of implication that are
coherent within the context of the program. Additionally,
algorithms for identifying cycles in the graph need to be im-
plemented. A fully optimized solution is not the goal for
this project, and as such this is not a major factor in de-
sign. That said, an efficient solution is still considered in
the design to ensure that the tool is usable without any per-
formance issues.

As stated above, the design of IBRJ aims to be modu-
lar and follow good OOP practices. The package diagram
in figure 1 shows the structure of the software tool. Note
there are minimal dependencies between packages, ensuring
maximum decoupling.

5.2 Implementation
A survey of the available Bayesian reasoners was carried

out. The reasoner needed to have a free use licence such
as the GNU GPL [2], so that it could be used by IBRJ.

Figure 1: IBRJ Package Diagram

Ideally, the reasoner would also be open source to allow for
inspection of the underlying tool and easier development.
This was however not essential, as long as the reasoner had
a well documented API.

The reasoners identified include Bayesian Networks Tools
for Java (BNJ)[3], JavaBayes [4] and Banjo [5]. A num-
ber of Bayesian reasoners were not considered as they re-
quired a licence to use. Of those identified, BNJ and Banjo
were the main candidates. These are completely free and
open source, and designed specifically for research purposes.
JavaBayes was discredited as it was developed using Java
Version 1, which was is not fully compatible with the mod-
ern Java compiler. Both BNJ and Banjo are very similar
in functionality, however BNJ offers a more comprehensive
API to access the underlying classes used for managing the
Bayesian Network and drawing inference. Due to this, BNJ
was chosen as the underlying Bayesian reasoner. The API
for BNJ is well documented, and most methods required by
IBRJ were already implemented and easy to use.

After a package and class structure was identified, as shown
in figure 1, development of the tool began. Initially, a simple
wrapper that added no extra Bayesian reasoning function-
ality was build around BNJ. This was done in conjunction
with building a Command Line Interface (CLI) for IBRJ.
Once the simple wrapper been completed, implication was
added to the program. Classical implication was added iter-
atively, implementing the simple direct case first, followed by
the indirect and none cases. These cases were implemented
using the supplementClassical algorithm outlined in sec-
tion 5.2.1. Subsequently, cycle detection was added in order
to identify clashes and implication cycles. This represented
the complete implementation of classical implication.

In parallel to this development, a Graphical User Interface
was built. This was done to fulfill the requirements of allow-
ing a user to fully understand, via visualizations, how the
network graph was effected by supplementing the network
with implication statements.

Subsequent to completing the addition of classical impli-
cation to the network, a parser for the Implicative BayesNet
Interchange format was implemented, allowing saving and

loading of IBN’s.
Defeasible implication was not implemented in IBRJ as

in order for any specific functionality to be drawn from it,
propositional negation also needed to be implemented. This
pushed the implementation of defeasibility out of the scope
of this project.

5.2.1 Algorithms
The following algorithm describes how a classical implica-

tion statement, A⇒ B, should effect a Bayesian Network.

Algorithm 1: Supplementing a Bayesian Network with
classical implication

1 function supplementClassical (g, a, b);
Input : Graph g, Antecedent node a, Consequent

node b
Output: Graph g′

2 if relation(a,b) = DIRECT then
3 cpt ← b.CPT;
4 foreach entry in cpt do
5 if cpt.a = 1 and cpt.b = 1 then
6 set P(B|A) = 1;
7 if cpt.a = 1 and cpt.b = 0 then
8 set P(B|A) = 0;

9 end

10 else if relation(a,b) = INDIRECT then
11 cpt ← a.CPT;
12 foreach entry in cpt do
13 if cpt.b = 1 and cpt.a = 1 then
14 set P(B|A) = 0;
15 if cpt.b = 1 and cpt.a = 0 then
16 set P(B|A) = 1;

17 end

18 else if relation(a,b) = NONE then
19 Add edge from a to b in g;
20 cpt ← b.CPT;
21 foreach entry in cpt do
22 if cpt.a = 1 and cpt.b = 1 then
23 set P(B|A) = 1;
24 if cpt.a = 1 and cpt.b = 0 then
25 set P(B|A) = 0;

26 end

Once an implication cycle is found in the knowledge base,
the variables involved in the cycle are assumed to be equal,
and thus those nodes can be reduced to a singular node
that represents the whole cycle. This is performed using
the collapseNode algorithm. The construction of the cycle
node CPT is given in Roussos [1].

Entailment checking, used to apply logical observations,
is performed using the algorithm presented by Russell and
Norvig [7].

5.2.2 User Experience
In order to create a tool that allows researchers to use and

understand IBNs effectively, the tool needed to have a clear,
simple and easy to use user experience. This would ensure
that the user could focus on understanding how the model
works, and not on using the tool. A Command Line Interface
(CLI) as well as a Graphical User Interface (GUI) were built
to cater to all needs and environments. The Model-View-
Controller pattern was used in order to maintain a clear

Algorithm 2: Collapsing an implication cycle of nodes
to a singular node

1 function collapseNodes (g, cycleNodes);
Input : Graph g, Set of cycle nodes cycleNodes
Output: Graph g′

2 cycleParents ← new empty set;
3 cycleChildren ← new empty set;
4 foreach node in cycleNodes do
5 if node.parents not in cycleNodes then
6 cycleParents.add(node.parents) ;
7 if node.children not in cycleNodes then
8 cycleChildren.add(node.children);
9 graph ← graph.remove(node);

10 end
11 foreach parent in cycleParents do
12 graph ← graph.addEdge(parent to CycleNode);
13 end
14 foreach child in cycleChildren do
15 graph ← graph.addEdge(CycleNode to child);
16 end
17 construct CycleNode.CPT;
18 foreach child in cycleChildren do
19 modify child.CPT to represent new parent;
20 end

separation between the functionality of the software, and the
interface to this functionality. This ensured that maximum
code could be reused between the CLI and the GUI.

The CLI is a simple repeating menu style interface. Sim-
ple navigation, with shallow menu options, ensure the user
will not get lost in menu navigation. The CLI allows the
user to perform all functions on an IBN, however the graph
and CPTs cannot be viewed graphically. This is especially
limiting as it does not allow for one of the main goals of this
research to be fulfilled: to easily view how adding implica-
tion statements effect the structure of the graph.

This issue is rectified with the introduction of the GUI,
which allows users to visualize the graph structure. The
GUI, built using the Java Swing framework, provides a sim-
ple interface to IBNs. It makes use of the OpenJGraph li-
brary for graph visualization, and allows the user to perform
all IBN functions. The GUI is shown in figure 2, with the
common ‘Asia’ network visualized.

Figure 2: IBRJ GUI showing the popular Asia net-
work with some implications and observations.

5.2.3 Challenges
One of the main challenges during development was that

of limitations of the API for the underlying Bayesian rea-
soner. Often the API would not provide the functionality
needed by IBRJ. This would mean a wrapper function that
made best of the API would have to be written, which of-
ten resulted in an undesirable approach, though the only
one available. These issues were as a result of BNJ not be-
ing built with the features that an IBN requires, such as
the heavy modification of CPTs. Another challenge was the
changing results presented in theoretical component of this
project. This meant that development was often stunted
while a solution was worked on. This slowed down progress
on the tool.

5.3 Testing
Unit tests were developed alongside development of each

package. This ensured that each class and method was pro-
ducing the correct results throughout development. Integra-
tion tests were also set up that tested the functionality of
the program as a whole. These tests checked that adding
certain implication types had the intended effect on the net-
work. These tests were especially useful for refactoring of
classes and packages.

5.4 Software Documentation and
Maintenance

The IBRJ software is fully documented, with a README
and JavaDocs supplied in both the program directory as well
as on the project website. This should provide thorough
insight into how to run the program and how to use the
programs API. This should make it simple for developers to
understand the structure and purpose of each class, making
it easy to continue development on IBRJ.

The software package should not require any maintenance
as all dependencies are static - that is, they will not change.
The only foreseeable maintenance that is potentially requi-
red would be updating the Java code should it become un-
supported by future versions of the Java compiler.

As the program is coded in Java, portability is ensured
via the JVM. Thus, the code should run on any system that
supports the JVM.

6. AN EXTENSION TO THE BAYESNET
INTERCHANGE FORMAT

The following describes a potential extension to the Bayes-
Net Interchange Format (.bif) - the Implicative BayesNet
Interchange Format (.ibif). This format will allow Bayesian
networks to be saved in an XML based file-type that retains
the knowledge base of added implication statements. This
allows for IBNs to be saved and reloaded, facilitating con-
tinuous development on the network, as well as encouraging
exchange of research.

6.1 Implicative BayesNet Interchange Format
The .ibif format retains all components of the .bif format.

The new format adds tags that store propositional sentences.
The sentence tag begins an implication statement. Within
a sentence, a connective must be defined that specifies the
type of implication the sentence represents - classical or de-
feasible. The sentence must also specify an antecedent and
a consequent. There is also an optional sequence of prop-

erty tags. These can be used to add additional information
such as if the sentence is part of the knowledge base or an
observation on the network.

Listing 1: Example .ibif file
<?xml version=”1 .0 ”?>
<BIF version=”0 .3 ”>
<network>
<name>Example Network</name>

< !−− Var iab l e s −−>
. . . some e n t r i e s . . .

< !−− P r oba b i l i t y d i s t r i b u t i o n s −−>
. . . some e n t r i e s . . .

< !−− Knowledge base −−>
<sentence>
<connec t ive>c l a s s i c a l</ connect ive>
<antecedent>some−node</ antecedent>
<consequent>another−node</ consequent>

</ sentence>

</network>
</BIF>

7. RESULTS AND EVALUATION
The development of the Implicative Bayesian Reasoner

(IBN) for Java was a success. The final version is a com-
pleted tool that can fulfills all use-cases that were identi-
fied. The tool has two interfaces, both of which are fully
developed. The tool implements classical implication fully,
as described in an IBN. When development began, imple-
menting defeasible implication was an intention. However,
as progress on the project continued it was made evident
that this would be out of the scope for this project and the
implementation of defeasible implication was abandoned.

The tool is easy to use with simple navigation system for
both the GUI and the CLI. The main aim of building a tool
that allows researchers to use and understand Implicative
Bayesian Networks (IBN) is fulfilled. The tool is deemed
a success due to it’s effectiveness of demonstrating the se-
mantics of IBNs, and achieving all the goals layed out in the
project proposal.

All unit and integration tests have been passed, showing
that the tool’s functionality is correct.

The outline of an updated .bif format, .ibif, allows for
both classical and defeasible implications to be saved as part
of a knowledge base component of the interchange format.
This successfully allows networks to be saved and reloaded.

7.1 Expressiveness of Implicative Bayesian
Networks

Everything that is specified by an IBN can be expressed
in a standard Bayesian Network. This is proven implicitly
in the definition of how implication statements are added
to the network - they modify the network but it remains a
Bayesian Network; no Bayesian Network rules are broken in
the modified version. Due to this, the IBN is essentially a
syntactic modification of Bayesian Networks that semanti-
cally may represent something different, but mathematically
is identical to Bayesian Networks. This does not mean the
model is useless however. The semantic difference is highly
valuable as it allows the user to make logical modifications

to the network in an intuitive way without having to modify
the whole structure of the network. This allows for easier,
faster modeling.

8. SOFTWARE LICENCE
The IBRJ software is fully open-source. It is licensed un-

der the GNU General Public Licence (GPL) version 3 [2].
This allows the software and code to be used, run, shared,
studied and modified, while ensuring that the software and
all reproduced versions of it must remain free and open-
source.

9. USAGE
The IBRJ tool can be found and downloaded from the

project GitHub repository1. After running the build script,
the ibr program script can be run. For further explanation
as to how to run the program, please see the README.

10. LIMITATIONS
The IBRJ tool does not implement defeasible implication

or negation, two components of Implicative Bayesian Net-
works. This limits the extent of which IBNs are demon-
strated in the IBRJ tool.

A limitation of IBRJ are the available Bayesian Network
tools. The software has no support for constructing net-
works - nodes and edges cannot be added to the network
(except for those made as a result of adding implication
statements). The only method of opening a Bayesian Net-
work is via loading a pre-constructed network saved in a
.bif, .ibif, .xml or .net format. This is due to the focus of
the software being on observing how Bayesian Networks are
modified when implication statements are added, and not
on the construction of the Bayesian Networks themselves.
Additionally, the IBRJ tool has no Bayesian learning sup-
port.

Once an implication statement has been added to the
network, it cannot be removed. Additionally, observations
made on the network cannot be removed. The network
should be reloaded to reset these attributes of the IBN.

The software is developed and tested in a LINUX envi-
ronment. The JVM should allow IBRJ to work on any OS
that supports the JVM, however no guarantee is made that
this will be the case.

11. CONCLUSIONS
The Implicative Bayesian Reasoner for Java (IBRJ) is a

tool that implements Implicative Bayesian Networks (IBN)
[1] in a simple, easy to use way. This allows researchers in
the fields of Bayesian Networks, logic and knowledge rep-
resentation and other related Artificial Intelligence fields to
use and understand how IBNs function. This paves the way
for further research into IBNs, and sets a basis for how these
networks could be implemented.

A proposed modification of the standard .bif format is
presented that allows for knowledge base statements, such as
classical implication, to be saved in an Implicative BayesNet
Interchange format, .ibif. This successfully allows IBNs to
be saved and reloaded.

1https://github.com/Nevter/IBRJ

IBNs provide an extension to Bayesian Networks that only
extend the semantic meaning of the network. Equal conclu-
sions can be drawn from an IBN and a Bayesian Network.
Despite this, the IBN is valuable as it allows researchers an
easy way of modifying networks in a logical way. This makes
the network more expressive from a users persepective.

12. FUTURE WORK
Continuing development, the next step is to implement

negation and subsequently defeasible implication statements.
This will result in a fully implemented Implicative Bayesian
Network model.

Further work can be done on the IBRJ tool to extend
and improve its functionality. The algorithms and methods
implemented can be optimized to increase performance of
the tool. The Bayesian Reasoning capabilities of IBRJ could
also be extended to implement the limitations outlined in
section 10.

This research could be continued to look at implementing
other Propositional Logic connectives, or alternatively other
logic systems in Bayesian Networks. This has the potential
to further increase the expressiveness of Bayesian Networks.

13. ACKNOWLEDGEMENTS
Thanks are due to Tommie Meyer for supervising, guiding

and providing invaluable input to this project. Additional
thanks to Deshen Moodley for being a second set of eyes and
providing insight and suggestion towards completion of the
project. Thanks are also due to Elijah Roussos for spending
countless hours on the theoretical component of this research
and providing the methods and algorithms needed to imple-
ment IBRJ. Finally, the team that developed the Bayesian
Network Tools for Java is thanked for providing a well de-
signed and robust library on top of which this tool is built.

14. REFERENCES
[1] Roussos, E. (2018). A Model for Implicative Bayesian

Networks. (Unpublished). University of Cape Town,
Cape Town, South Africa.

[2] Gnu.org. (2018). The GNU General Public License
v3.0- GNU Project - Free Software Foundation. [online]
Available at:
https://www.gnu.org/licenses/gpl-3.0.en.html [Accessed
15 Sep. 2018].

[3] Bnj.sourceforge.net. (2018). Bayesian Network tools in
Java (BNJ) - Kansas State University Lab for
Knowledge Discovery in Databases. [online] Available at:
http://bnj.sourceforge.net/ [Accessed 15 Sep. 2018].

[4] cs.cmu.edu. (2018). JavaBayes 0.346. [online] Available
at: https://www.cs.cmu.edu/ javabayes/Home/
[Accessed 15 Sep. 2018].

[5] Hartemink, A. (2018). Banjo: Bayesian Network
Inference with Java Objects. [online] users.cs.duke.edu.
Available at:
https://users.cs.duke.edu/ amink/software/banjo/
[Accessed 15 Sep. 2018].

[6] Sharir, M., 1981. A strong-connectivity algorithm and
its applications in data flow analysis. Computers &
Mathematics with Applications, 7(1), pp.67-72.

[7] Russell, S., Norvig, P., & Davis, E. (2010). Artificial
intelligence: a modern approach (3rd ed., International
ed.). Upper Saddle River: Prentice Hall.

[8] Lehmann, D. and Magidor, M., 1992. What does a
conditional knowledge base entail?. Artificial
intelligence, 55(1), pp.1-60.

[9] Booth, R., Casini, G., Meyer, T. A., & Varzinczak, I. J.
(2015,June). On the Entailment Problem for a Logic of
Typicality. InIJCAI (pp. 2805-2811)

[10] Darwiche, A. (2010). Bayesian networks.
Communications of the ACM, 53(12), 80–90.
doi:10.1145/1859204.1859227

[11] Cozman, F.G., 1998. The interchange format for
Bayesian networks. URL http://www. cs. cmu.
edu/afs/cs/user/fgcozman/www/Research-
/InterchangeFormat.

[12] Delancey, C. (2017). A concise introduction to logic.
Geneseo, NY: Published by Open SUNY Textbooks,
Milne Library, State University of New York at Geneseo.
Retrieved from https://open.umn.edu/opentextbooks/
BookDetail.aspx?bookId=452

[13] Ferreirós, José (2001), ”The Road to Modern Logic-An
Interpretation”, Bulletin of Symbolic Logic, 7 (4):
441–484, doi:10.2307/2687794, JSTOR 2687794.

[14] Bealer, G. (1998). Propositions. (philosophy of
language, traditional proposition theory). Mind,
107(425), 1. doi:10.1093/mind/107.425.1

[15] UAI. (2018). Uncertainty in Artificial Intelligence.
[online] Available at: http://www.auai.org/ [Accessed 16
Sep. 2018].

[16] Hadlock, C. (2005, September 1). Causality: Models,
Reasoning, and Inference. Journal of the American
Statistical Association. Taylor & Francis.
doi:10.1198/jasa.2005.s38

[17] Zhao, Y., Chen, Y., Tu, K., & Tian, J. (2017).
Learning Bayesian network structures under incremental
construction curricula. Neurocomputing, 258, 30–40.
doi:10.1016/j.neucom.2017.01.092

[18] Boutilier, C., Friedman, N., Goldszmidt, M., & Koller,
D. (2013). Context-Specific Independence in Bayesian
Networks.

[19] Darwiche, A. (n.d.). Modeling and reasoning with
Bayesian networks (First paperback edition.). New York:
Cambridge Univ Press.

[20] Kraus, S., Lehmann, D., & Magidor, M. (2002).
Nonmonotonic Reasoning, Preferential Models and
Cumulative Logics.

