
Implicative Bayesian Networks

Combining propositional logic and Bayesian Networks to create a more
expressive representation model

Elijah Roussos
RSSELI007

Department of Computer Science
University of Cape Town
elijah.rou@gmail.com

ABSTRACT
In this paper a model is proposed that combines Bayesian Networks
and Propositional Logic, called an Implicative Bayesian Network
(IBN). The goal of the project was to create a more expressive way
to represent inferential systems, while maintaining the ability to
use the well-established algorithms synonymous with both classical
reasoning and Bayesian reasoning. The model was then extended
with defeasible structures, which allows the model to perform non-
monotonic reasoning. This paper also provides background in-
formation in the relevant fields, including an overview of logical
implication and entailment in propositional logic, non-monotonic
reasoning and Bayesian Networks. The paper then describes how
to integrate propositional logic into a Bayesian Network, and in-
cludes new definitions, proofs, descriptions of the various relation-
ships and properties that exist in an IBN, as well as the algorithm to
transform a Bayesian Network into an IBN via a propositional logic
knowledge base. To extend the IBN model to be able to perform
non-monotonic reasoning, details are outlined about how the model
should transform in structure. Descriptions of the new formalisms
and procedures required for the extension are also provided. It is
identified that further research into the properties of the construc-
tion could improve the model and its versatility. In conclusion, the
basis for the model is sound, and provides a new and intuitive way
to model intelligent systems.

Keywords
Propositional Logic; Knowledge Representation;
Defeasible Reasoning; Non-Monotonic Logic;
Bayesian Networks; Artificial Intelligence;

1. INTRODUCTION
Within the field of artificial intelligence, researchers are always

trying to produce new ways to present and reason with knowl-
edge. Knowledge representation and reasoning systems are often
very powerful and are able to solve complex decision problems.
However, these systems’ ability to reason often comes at the cost
of the expressivity of the representation language in question. In
other words, the more one is able to express in one’s knowledge
representation language, the more difficult it becomes solve deci-
sion problems effectively. Two well established representation lan-
guages exist in the form of propositional logic and Bayesian Net-
works.

Propositional logic is a basic language that reasons explicitly
with logical boolean values and the relationships between those val-
ues without quantification, and as such, is used to solve basic log-

ical decision problems. Relationships in this language are usually
described with logical implication, a notion that describes how the
existence of one thing immediately implies the existence of another.
Typical queries to a propositional logic system will involve asking
the system whether a particular statement is true within the system.
These systems may also be extended with the idea of defeasibility,
that is, allowing arguments that are contingent and therefore able
to deal with exceptions in an effective manner.

A Bayesian Network on the other hand, is a model used reason
with probabilistic information in the context of different relation-
ships between events that are dependent on each other. As multiple
algorithms exist that exploit the structure of the model, querying
the system for probabilistic information is typically computation-
ally efficient.

The goal of this project is to merge these two reasoning sys-
tems effectively in order to create a new, more expressive reasoning
structure. This involves the construction of a new model, the Im-
plicative Bayesian Network, created by supplementing a Bayesian
Network with a logical knowledge base. We speculate this can be
done because Bayesian Network system variables are largely inde-
pendent of one another, and therefore additional relations can be
specified between such variables. This paper will cover the neces-
sary background knowledge of the domain and will describe the
specific theoretical definitions, proofs and algorithms needed to
create such a construction. Extensions to the model will then be
discussed, including introducing negation capable implication and
incorporating defeasibility into an Implicative Bayesian Network.

The second part of this project is to develop and describe a work-
ing implementation of this model in the form of a software tool.
This aspect of the project is presented by L, Neville in [1], and is
not the topic of this paper.

The development of a model such as the Implicative Bayesian
Network will allow modellers to specify more specific relationships
between entities in a system, thereby enabling the modellers to ar-
ticulate certain systems in more detail and with greater accuracy.
Furthermore, additional relationships between system variables can
be specified after the network has been constructed, without the
need to recreate the network. Finally, as the model is built on the
existing frameworks of propositional logic and Bayesian Networks,
querying an Implicative Bayesian Network can be accomplished
with established algorithms, which are both computationally effi-
cient and familiar to end users. As this is the case, Implicative
Bayesian Networks may prove to be a stepping stone in the way
researchers in Artificial Intelligence model intelligent systems.

2. LITERATURE REVIEW & BACKGROUND

2.1 Propositional Logic
The content of this section(2.1) cites Darwiche, A et al [2].

Formally, propositional logic is a mathematical language, used
to reason about claims that cannot be further decomposed and have
a value of either true or false. To construct a propositional sentence,
compositions of boolean variables are formed. A boolean variable
may also be referred to as an atom. While an atom is itself a propo-
sitional sentence, more complicated sentences may be formed al-
tering atoms or stating specific relationships between atoms using
logical operators. A sentence is said to be declarative should it cor-
respond to a specific truth value. For any propositional sentence,
a world is defined as a particular declarative combination of the
atoms in the system. In any propositional system there always exist
2n different worlds, where n is the number of atoms in the system.

2.1.1 Logical Implication
Logical implication represents the if-then operation, and is de-

noted with the symbol→. This connective describes the relation-
ship of logical consequence. That is, given two atoms A and B, if
A implies B then whenever A is known to be true, B will also be
true. It should be noted that logical implication is transitive. The
truth table for A→ B is given by:

world A B A→ B
w1 true true true
w2 true false false
w3 false true true
w4 false false true

Table 1: Truth Table depicting A→ B

2.1.2 Logical Entailment
A propositional logic knowledge base is comprised of a finite set

of logical rules, in the form of propositional statements. The rules
of a knowledge base can be interpreted as a large conjunction. An
inference φ can be entailed from some knowledge base KB if φ is
known to be true in every world. Entailment is denoted by �, such
that if KB entails φ it is represented as:.

K � φ

As an example, consider a knowledge base KB , comprised of
the following propositional sentences:

A→ B
A→ C
C → E

Figure 1: A knowledge base

As a trivial demonstration of entailment, it can be seen that KB �
A→ E.

2.1.3 Reasoning in Propositional Logic
When given a propositional sentence, the truth value of the sen-

tence can always be computed when supplied with the values of the
atoms in the sentence. It is for this reason that propositional logic
is decidable, and therefore given a knowledge base of propositional
statements, any possible combination of atoms will definitively re-
sult in some value. In other words, any world is decidable.

Due to this decidability, knowledge bases can be queried by check-
ing if a given propositional sentence is consistent with all worlds
that the knowledge base expresses. As discussed in 2.1.2, this de-
fines entailment in propositional logic, and gives means to reason
with knowledge bases.

2.2 Non-Monotonic Reasoning
Defeasible arguments are contingent: they allow people to draw

conclusions from sentences that do not imply a specific answer and
are contextual rather than definitive. If for instance someone at-
tempts to cross a street, we could infer that typically they would
succeed in doing so. However, it is not definite. The individual
may be having a particularly unlucky day and get hit by a truck,
and therefore would not succeed in crossing the street [3]. Hence,
our original inference was defeasible.

This feature of defeasibility is due to the fact that it is non-
monotonic, that is upon learning new information about a system
certain conclusions may be withdrawn. This is in contrast to mono-
tonic logic, such as propositional logic, where the addition of new
logical axioms to a knowledge base KB may never decrease the
conclusions that can be drawn from KB [4].

2.2.1 Defeasible Implication
The work of Kraus, Lehman and Magidor (KLM) in [5] pro-

posed a set of natural properties of non-monotonic reasoning. Con-
ditional entailment, denoted in this paper with the symbol , was
introduced to describe plausible inferences. For instance, if atom
A typically implies another atom B, it is given by:

A B

In this paper conditional entailment will be referred to as defeasible
implication, and will be treated as an operator similar to proposi-
tional implication.

2.2.2 Rational Consequence and the R Logic
KLM organised the essential characteristics of non-monotonic

reasoning into a hierarchy of systems. KLM rational logic R [6],
is the logic system used to define the operator in this problem.
For R, authors Lehmann and Magidor outlined 7 key properties of
defeasible implication sets, presented in the form of inference rules:

Reflexivity:
Conditional inference should imply itself

A A

Left Logical Equivalence (LLE):
Logically equivalent formulas should entail exactly the same

consequences
� A↔ B then (A C)→ (B C)

Right Weakening (RW):
All plausible consequences that potentially exist should be

accepted
� A→ B then (C A)→ (C B)

Cautious Monotonicity (CM):
Learning a new fact, the truth of which can be plausibly

concluded, should not nullify previous inferences
[(A B) ∧ (A C)]→ (A ∧B C)

Conjunction (And):
Conditional inference should obey propositional conjunction

[(A B) ∧ (A C)]→ (A B ∧ C)

Disjunction (Or):
Conditional inference should obey propositional disjunction

[(A C) ∧ (B C)]→ (A ∨B C)

Rational Monotonicity (RM):
Only additional information, the negation of which was expected,

should force us to withdraw plausible conclusions previously
inferred

[(A B) ∧ ¬(A ¬C)]→ [(A ∧ C) B]

2.2.3 The Ranking Algorithm and Rational Closure
The rational closure of R is an algorithm that performs entail-

ment over defeasible knowledge bases. In order to conduct the ra-
tional closure algorithm, every statement in the defeasible knowl-
edge base in question should be assigned a ranking. From a high-
level view, the ranking algorithm works as follows. All defeasible
statements in a knowledge base K are converted into their corre-
sponding classical implication forms. The knowledge base now
contains only classical propositional statements. These statements
are then ranked by initially assuming all statements are equally
valid in any given world. Then, each statement is checked to ensure
that it does not cause conflict within the knowledge base. If it does,
it is pushed ‘up’ into a new rank of exceptionality. This process is
repeated until a ranked interpretation is formed, that is a ranked list
R of propositional statements where a higher rank indicates that
the sentence is deemed to be more exceptional in the context of the
knowledge base [7]. The lowest rank of R is R0, and contains ev-
ery non-defeasible implication statement. The highest rank of R is
referred to as R∞.

Once a ranking of K has been determined, the rational closure
algorithm can be used for entailment checking with respect to K.
The way this works is as follows: A formula φ = X Y is
converted to the propositional statement X ⇒ Y and is iteratively
checked with R to ensure that it is a non-exceptional statement.
This is done by checking if the negation of the antecedent¬X holds
in the current ranked interpretation, starting with R∞. If it does
not hold, the check is repeated with the next rank Ri−1. This is
repeated until ¬X holds in some Ri. An entailment check is then
performed with the interpretation Ri and φ as if it was a normal
propositional logic entailment check.

2.3 Bayesian Networks
A Bayesian Network is a visual construct that represents rela-

tionships between probabilistic events in a structured manner. It
consists of a graph depicting the relationships between random
variables, and a set of conditional probabilities associated with those
variables [10]. The random variables in a network are boolean in
nature. They are either true or false. Suppose a model for the way
rain interacts with being sad. Two random variables would be de-
fined, rain which represents if it is raining, and sad which repre-
sents the emotion of sadness. If rain has a known influence on being
sad, this could represented by the following Bayesian Network:

rain P (rain)
true 0.1

rain sad Pr(sad|rain)
true true 0.6
false true 0.5

rain sad

Figure 2: A Bayesian Network and its CPTs

Note that in both probability tables specified in Figure 2, the
probabilities for sad = false are not specified. This is as
Pr(sad|X)+Pr(sad|X) = 1 on some evidenceX , and therefore
trivially Pr(sad|X) = 1− Pr(sad|X).

The construction is formatted in such a way that making infer-
ences about an event in a system arranged as a Bayesian Network
is efficient. This is due to a variety of probabilistic reasoning algo-
rithms that have been developed which take advantage of the simple
structure of a Bayesian Network.

2.3.1 Bayes Theorem
Bayesian Networks rely on Bayes Rule, which describes the no-

tion of conditional probability [11].
Let A and B be two events in some sample space S. Then, the

conditional probability of event B given that event A has occurred
is denoted with P (B|A), and is given by:

P (B|A) = P (A,B)

P (A)
=
P (A|B) · P (B)

P (A)

Using this formula, we can calculate the probability of any event
B given any number of conditions Ai as :

P (B|A1, A2, ..., An)

2.3.2 The structure of a Bayesian Network
The content of the following section(2.3.2) cites Darwiche, A et

al [2]

Formally, a Bayesian Network BN is pair 〈DAG,CPT 〉, where
DAG is a directed acyclic graph and CPT is a set of conditional
probability tables. DAG nodes represent random variables, with
the edges that connect those nodes representing a dependency re-
lation. Variables are deemed independent of each other should no
edge directly connect them. The CPT of BN specifies the proba-
bility distributions of each of the variables and their respective par-
ents in the modelled system. There can only ever be one such CPT
specifying a network, and as such any Bayesian Network BN has
completeness and consistency guarantees.

The power in Bayesian Networks relies on the notion of variable
independence. Given some variable X in BN , if the values of the
parents of X are known, then X is also independent from its chil-
dren. Due to this independence, in any computation only probabil-
ities associated with the variable in question need to be considered,
decreasing computation time.

2.3.3 Reasoning within Bayesian Networks
The content of the following section(2.3.3) cites Darwiche, A et

al [2]

Without a method of evaluating or reasoning with a Bayesian
network, the formalism would be useless. The structure should be
able to answer queries about the state of its variables in an efficient
and accurate manner.

The simplest and most intuitive query that can be made on a
network is the probability-of-evidence query. This is a query for
the probability that certain events occurred in the system, i.e. to
ask Pr(A), where A is some variable in the network. Queries may
also be asked for a subset of variables in the network, Pr(A,B).
Given some subset of variables, X1...Xi, the query Pr(X1...Xi)
will return the probability associated with events X1...Xi taking
place. This query is computed using a relatively simple algorithm
known as Variable Elimination.

Variable Elimination is the process of sequentially removing vari-
ables from the network that are not associated with the query, while
still maintaining the ability to answer queries on the remaining vari-
ables. This elimination removes the need to calculate the proba-
bility of all variables in the network. Given a query, Pr(A,B),
variable elimination removes all other variables from the network,
while embedding the probabilities associated with those variables
in the remaining variables, A and B.

3. THE PROJECT: INTEGRATING LOGIC
INTO BAYESIAN NETWORKS

This section details the the construction of the proposed new
model, the Implicative Bayesian Network. The model is created
by supplementing a Bayesian Network with a propositional logic
knowledge base, causing implicative statements to alter the Bayesian
Network.

3.1 Relationships between events
This section details the definitions for the two types of relation-

ships in an Implicative Bayesian Network, influences and implica-
tions.

3.1.1 Influences
The influence relationship describes whether or not the probabil-

ity of an event occurring is directly affected by another. Simply put,
if some event A affects the probability of another event occurring,
B, then A is an influence on B. Denoted A → B, an influence of
A on B is formally defined as follows:

Definition 3.1. A → B if Pr(B|A,X) 6= Pr(B|X) on some
evidence X

By definition, an influence is equivalent to an edge in a Bayesian
Network.

3.1.2 Implications
An implication describes a relationship in which the observation

of one event immediately implies the existence of another, i.e. if
some event B immediately follows upon observing some event A,
then A implies B. It then follows that if this is the case, the proba-
bility of observing event B given A must be equal to 1. Similarly,
if there exist two events A and B such that Pr(B|A) = 1 and
Pr(B|A) exists, it must be the case the B logically follows from
A, and hence A implies B. As such, an implication of A on B,
denoted A⇒ B, is formally defined as follows:

Definition 3.2. A ⇒ B if and only if Pr(B|A,X) = 1 on some
evidence X

An implication relationship is equivalent to logical implication
as found in propositional logic, and obeys all the properties of the
connective such as transitivity. Implications in this model may only
be specified by positive atoms. Namely, the implications of A ⇒
B, A⇒ B and A⇒ B are not yet defined.

3.2 The IBN model
An Implicative Bayesian Network IBN is a 3-tuple:

(DAG⊥,CPT⊥,KB),
where DAG⊥ is an input directed acyclic graph connected via

influences, CPT⊥ is a set of conditional probability tables
associated with DAG⊥ and KB is a set of implications.

The KB set represents the propositional logic knowledge base
associated with the system, while the DAG⊥ and CPT⊥ sets form

the bottom Bayesian Network, B⊥. The bottom Bayesian Network
represents the system when it is unaffected by the inferences made
in KB .

Using the elements from the KB set, DAG> is constructed by
creating or modifying existing influences in DAG⊥ such that the
all the statements in KB are represented as influences in DAG>.
Implications are represented with a double line in the newly con-
structed graph, while regular influences remain the same. Then,
the accompanying probability tables for DAG>, CPT>, are cre-
ated by modifying the probability tables in CPT⊥ such that every
implication relationship specified by KB holds (covered in section
3.3). Implications will always take precedence of regular influence
relationships. DAG> and CPT> form the top Bayesian Network
B> of IBN , which represents the system once the inference rules
in KB have been applied.

When the top Bayesian Network has been determined, an IBN
can then be queried as if it was a normal Bayesian Network. This
is done by using satisfiability checking to determine whether the
top or bottom Bayesian Network should be used, and then using
algorithms such as variable elimination on the correct network to
answer the query. An example of a bottom Bayesian Network and
the associated top Bayesian Network excluding the probability ta-
bles is given below.

KB =
A⇒ B
A⇒ C
D ⇒ E

A

B

C

D

E

Figure 3: The graph of a bottom Bayesian NetworkB⊥ and the
corresponding knowledge base

A

B

C

D

E

Figure 4: The graph of the top Bayesian NetworkB> converted
from Figure 3

3.3 Implicative Relationships
Implications specified between various events can take different

forms within an Implicative Bayesian Network. This section details
the specific transformations to DAG⊥ and CPT⊥ that occur in the
various scenarios of node pairings to create DAG> and CPT>.

3.3.1 Direct Relation
A direct relation is one in which an implication A⇒ B maps to

a specified influence A→ B in the network (two nodes connected
via an edge). In this case, the probability table of the subsequent
eventB in the relationship is modified such that in every case where
the antecedent event A is true, Pr(B|A,X) becomes 1.

A B A B Pr(B|A)
true true 0.6
false true 0.5

A⇒ B

A B A B Pr(B|A)
true true 1
false true 0.5

Figure 5: Using a direct relation

3.3.2 None Relation
A none relation is one in which an implication A ⇒ B maps to

events in the network that do not directly influence each other such
that A 9 B (i.e. they are independent). In this case an influence
is created from the antecedent event A in the implication to the
subsequent event B such that A → B. As A becomes a parent
of B, the probability table associated with B is modified to include
rows forA. All the rows whereA is false contain the probabilities
from the previous iteration of the table, while the new rows where
A is true have their probability set to be equal to 1.

A

B

C B C Pr(C|B)
true true 0.7
false true 0.3

A⇒ C

A

B

C

A B C Pr(B|A)
false true true 0.7
false false true 0.5
true true true 1
true false true 1

Figure 6: Using a none relation

None relations have the potential to cause cycles in certain sit-
uations, which violate the properties of a Bayesian Network. This
issue is addressed later with the notion of a clash in Section 3.4 .

3.3.3 Reverse Relation
A reverse relation is one in which an implication B ⇒ A maps

to the reverse of a specified influence A → B. In this case, the
direction of the original influence does not change. However, the
probability table of the subsequent event B is modified such that
in every case where the antecedent event A is false, Pr(B|A,X)
becomes 0. The Bayesian Network representation for a reverse re-
lation is slightly different in that arrowhead of the edge representing
the implication in the graph is reversed.

A B A B Pr(B|A)
true true 0.6
false true 0.5

B ⇒ A

A B A B Pr(B|A)
true true 0.6
false true 0

Figure 7: Using a reverse relation

3.4 Implicative Clashes
Allowing for implication relationships that can create cycles via

none relations causes problems in the Bayesian Network model.
Hence, any implication that causes such a phenomenon is not al-
lowed to modify the network, and will not be used in querying the
structure. A clash will be used to identify such implications, and is
defined as follows:

Definition 3.3. A clash occurs should an implication cause a cycle
with at least two influences.

It should be noted that if an implication causes a clash, it does
not mean it is thrown out of the knowledge base. Rather, it is distin-
guished from other implications as potentially causing an Implica-
tive Cycle.

A

B

C

Figure 8: An example of an implication C ⇒ A causing a cycle
in a network

3.5 Implicative Cycles and Event Equivalence
Implications specified inKB may themselves cause cycles within

an IBN. However in this case, the events can be considered equal
in outcome. In particular for a set of events C1...Cn:

Theorem 3.1. Given events C1...Cn with n > 1, if C1 ⇒ C2,
C2 ⇒ C3, ..., Cn−1 ⇒ Cn, Cn ⇒ C1 then C1 ≡ C2 ≡ ... ≡ Cn

Consider the formula C = C1 ⇒ C2 ∧ X2 ⇒ C3 ∧ ... ∧
Cn−1 ⇒ Cn ∧ Cn ⇒ C1, where n > 1 is the number of atoms
in the formula. Assume some conjunct in C, φi = Ci ⇒ Ci+1,
is false in an assignment that makes C = true for some i. For
C to be true, the conjunct of φi ∧ φi+1 should evaluate to true.
However, as φi = false there exists no assignment for φi+1 such
that φi ∧ φi+1 = true. Therefore, φi must be true, and via the
transitivity property of implication, all φ1 to φn must be true. As
this is the case, there can exist only two possible assignments for
any φi: Ci = true, Ci+1 = true or Ci = false, Ci+1 = false.
As these are the only possible assignments, all of Ci are logically
equivalent, and C1 ≡ C2 ≡ ... ≡ Cn.

Therefore, events in an implicative cycle can treated as a single
event in which all the events in the cycle occur.

Corollary. Given n events C1..Cn, if C1...Cn form an implica-
tive cycle C, the event C = C1 ∩ C2∩, ...,∩Cn. It follows that
Pr(C|X) = Pr(C1, C2, ..., Cn|X) on some evidence X .

There are now two cases to consider, Case 1: influences to an
implicative cycle from another event, and Case 2: influences from
an implicative cycle to another event. To describe what happens in
either scenario, consider a Bayesian Network consisting of an im-
plicative cycle C consisting of events C1, C2, C3 and C4, together
with events A and B in the following configuration:

A C1

C2

B

C3

D

Figure 9: A Bayesian Network with an implicative cycle

3.5.1 Probability to a cycle
For case 1, consider eventA and eventB with cycleC. Pr(C|A,B)

must be equal to Pr(C1, C2, C3|A,B). Via Bayes Theorem, it fol-
lows:

Pr(C1, C2, C3|A,B) =
Pr(C1, C2, C3, A,B)

Pr(A,B)

=
Pr(C1, C2, C3, A,B)

Pr(C2, C3, A,B)
· Pr(C2, C3, A,B)

Pr(A,B)

= Pr(C1|C2, C3, A,B) · Pr(C2, C3|A,B)

= Pr(C1|C2, C3, A,B) · Pr(C2, C3, A,B)

Pr(A,B)

= Pr(C1|C2, C3, A,B) · Pr(C2, C3, A,B)

Pr(C3, A,B)
· Pr(C3, A,B)

Pr(A,B)

= Pr(C1|C2, C3, A,B) · Pr(C2|C3, A,B) · Pr(C3|A,B)

This expansion can be generalised to several variables and is
summarised accordingly:

Theorem 3.2. Given an event A and implicative cycle C = C1 ⇒
C2, ..., Cn ⇒ C1 consisting of n events. If A → C1, A →
C2, ..., A→ Ci for some i <= n, then:

Pr(C|A) =
Pr(C1|C2, ..., Ci, A) · Pr(C2|C3, ..., Ci, A) · ... · Pr(Ci|A)

The newly calculated probability becomes an entry in the con-
ditional probability table for the new node C. In this example, the
same calculation would be done for P (C|A,B), P (C|A,B) and
P (C|A,B).

3.5.2 Probability from a cycle
For case 2, consider event D with cycle X . Due to the logical

equivalence amongst events in a cycle, there can only be two pos-
sible cases of observation: Either all the events are observed to be
true, or all the events are observed to be false. Therefore, the
probability table associated with any event which has an influence
leaving the cycle is truncated to included only these cases. In this
case, every entry in the probability table for D where C1 6= C2 is
removed.

From figure 7, we obtain the following concatenated Bayesian
Network:

A C D

B

Figure 10: The concatenation of the network in Figure 9

3.6 Querying an IBN
Queries posed to an IBN structure will involve determining the

probability of an event occurring in the system given some logical
observations. Suppose a query to find the probability of some event
A occurring given a set of of n negatable atomsN = {N1, ..., Nn}
and a set of m implications I = {I1 ⇒ I2, ..., Im−1 ⇒ Im}. This
is given by:

Pr(A|N1, ..., Nn, I1 ⇒ I2, ..., Im−1 ⇒ Im)

In order to perform this query, it must be determined whether
the top or bottom Bayesian Network should be used to calculate
the required probability. This can be done using entailment check-
ing with respect to KB on every element in both N and I . If
every statement specified by N and I is consistent with KB , the
top Bayesian Network B> = 〈DAG>,CPT>〉 is used. How-
ever if there exists an element in either N or I that is not con-
sistent with KB , the system is treated as if none of the implica-
tions in KB have been applied, and the bottom Bayesian Network
B⊥ = 〈DAG⊥,CPT⊥〉 is used.

Upon determining the correct network to conduct the query with,
the query is treated as if it was a normal Bayesian Network query
without the observed implications as such:

Pr(A|N1, ..., Nn)

This can be calculated easily via algorithms such as variable elimi-
nation.

3.7 Transformation from a Bayesian Network
to an IBN

This section details the algorithms that transform the bottom
Bayesian Network BN⊥ = 〈DAG⊥CPT⊥〉 into the top Bayesian

Network BN> = 〈DAG>CPT>〉 using the knowledge base of
implications KB , and the analysis of their computational complex-
ity in terms of Big-O notation.

Algorithm 1, applyImplication, applies a transformation to the
conditional probability table(CPT) of the subsequent event in a
specified implication X ⇒ Y . The algorithm performs at least
n/2 operations, where n is the number of entries in the CPT, and is
therefore O(n).

Algorithm 1: Transforming the probability tables of node Y
according to the type of implicative relationship specified byX
and Y .
procedure applyImplication (G,X, Y);
Input : Graph G, Antecedent node X , Consequent node Y
if relation(X,Y) = DIRECT OR relation(X,Y) = NONE then

if relation(X,Y) = NONE then
Add edge from X to Y in G
Extend Y .cpt by length(B.cpt) rows
Add column for X in Y .cpt

for entry ∈ Y .cpt do
if entry.X = true then

entry.Probability← 1

else
foreach entry ∈ Y .cpt do

if entry.X = true then
entry.Probability← 0

Algorithm 2, createTop, copies the bottom Bayesian Network
BN into a new network BN ′ and modifies BN ′ to create the top
Bayesian Network. This algorithm relies on a function that finds
cycles in graphs, cycleCheck, which is assumed to be based on the
Bellman-Ford algorithm [12]. As this is the case, cycleCheck is
assumed to run with complexity O(|V | · |E|), where |V | is the
number of vertices in the graph and |E| is the number of edges.
Another function is required to find implicative cycles. This can be
done trivially via the transitivity properties of implication, and in
this algorithm will be represented by the function findICycles. The
algorithm performs at least k operations in findICycles, and further
k operations of cycleCheck and applyImplication, where k is the
number of implications in the Knowledge Base KB . Therefore,
the algorithm has a worst case time complexity of:

O(k · |V | · |E| · n)

Therefore, creating a top Bayesian Network from a bottom
Bayesian Network can be done in polynomial time.

Algorithm 2: Applying each implication in K to the Bottom
Bayesian Network.

function applyKnowledge (BN ,K);
Input : Bayesian Network BN , Knowledge base KB
Output: Bayesian Network BN ′

copy(BN ′, BN) // copy BN into BN ′

iCycles← findICycles(KB)
for i ∈ iCycles do

concatenate Cycle i and add to BN

for k ∈ KB do
if !cycleCheck(BN ′, k) then

applyImplication(BN ′.graph, k.antecedent,
k.subsequent)

4. EXTENDING THE IBN MODEL WITH
NEGATION CAPABLE IMPLICATION

While an Implicative Bayesian Network adds a useful layer of
expressivity over a typical Bayesian Network, there is a significant
drawback in the model. Namely, the definition of implication does
not describe how to deal with statements in which negation is ap-
plied to the events. This not only limits how much the system can
depict, but in order to describe any defeasible extension, it is re-
quired that such properties be in the representation language. To
this end, the definition of implication is extended to describe dif-
ferent configurations of negatable events and their effects on con-
ditional probability tables.

4.1 Representing Negation
In order to keep the representation of implication consistent across

both the knowledge base and the Bayesian Network components of
an IBN, new notation will be introduced that represents different
configurations of implication coupled with the negation of events.
In particular, the overline in a negated event such as A is replaced
with a ◦ in an implication statement. If for instance, not A im-
plies B, this would be written as A ◦⇒ B, and represented by the
following Bayesian Network:

A B

Figure 11: A Bayesian Network representation of A ◦⇒ B

Similarly, if A implies not B then A⇒◦ B, and if not A implies
not B, then A ◦⇒◦ B. This notation allows the representation to
remain the same for both the Bayesian Network and the proposi-
tional logic knowledge base.

As with implication in propositional logic, any statement A ⇒
B is equivalent to not B implies not A. Therefore:

A⇒ B ≡ B ◦⇒◦ A
A ◦⇒ B ≡ B ◦⇒ A
A⇒◦ B ≡ B ⇒◦ A

Given this, in this extension the reverse relation as specified in
Section 3.3.3 is removed, as all reverse relationships can be ex-
pressed as direct relationships with negation. The remaining two
relations, the direct and none relations, remain in the model. How-
ever, the way in which the probability changes is now dependent on
the type of implication specified by the relation as well. It should
be noted that the notion of a clash still holds in this extension, as
well as the notion of implicative cycles.

4.2 Defining negation capable implication
Implication is considered negation capable under the following

definition:

Definition 4.1. Following the definition of implication as outlined
in Section 3.1.2, implication is considered negation capable if,

A⇒ B if and only if Pr(B|A,X) = 1,
A ◦⇒ B if and only if Pr(B|A,X) = 1,
A⇒◦ B if and only if Pr(B|A,X) = 0,
A ◦⇒◦ B if and only if Pr(B|A,X) = 0,

on some evidence X

4.3 Type 1 Implication
A type 1 implication is any implication that results in a value of

falsewhen some eventA = true and some eventB = false, and

therefore Pr(B|A) = 1. These includeA⇒ B and the equivalent
reverse statement B ◦⇒◦ A. A type 1 implication invokes the
same transformation to conditional probability tables as the direct
and none relations did in Section 3.3 (refer to Figure 5 and Figure
6).

4.4 Type 2 Implication
A type 2 implication is any implication that results in a value of

false when some event A = false and some event B = false,
and therefore Pr(B|A) = 1. These include A ◦⇒ B and the
equivalent reverse statement B ◦⇒ A. In the example below, all
the rows in the probability table for B where A is false have their
probability set to be equal to 1.

A B A B Pr(B|A)
true true 0.6
false true 0.5

A ◦⇒ B

A B A B Pr(B|A)
true true 0.6
false true 1

Figure 12: Using a type 2 direct relation

4.5 Type 3 Implication
A type 3 implication is any implication that results in a value of

false when some event A = true and some event B = true, and
therefore Pr(B|A) = 0. This includesA⇒◦ B and the equivalent
reverse statement B ⇒◦ A. In the example below, all the rows in
the probability table for C where A is true have their probability
set to be equal to 0.

A

B

C B C Pr(C|B)
true true 0.7
false true 0.3

A⇒◦ C

A

B

C

A B C Pr(B|A)
false true true 0.7
false false true 0.5
true true true 0
true false true 0

Figure 13: Using a type 3 none relation

4.6 Type 4 Implication
A type 4 implication is any implication that results in a value of

false when some event A = false and some event B = true,
and therefore Pr(B|A) = 0. This includes A ◦⇒◦ B and the
equivalent reverse statement B ⇒ A. In the example below, all
the rows in the probability table for B where A is false have their
probability set to be equal to 0.

A B A B Pr(B|A)
true true 0.6
false true 0.5

A ◦⇒◦ B

A B A B Pr(B|A)
true true 0.6
false true 0

Figure 14: Using a type 4 direct relation

4.7 Amending the algorithm to apply implica-
tions

This section details the change to the algorithm applyImplication
when using negation capable implication. The algorithm performs
at least n/2 operations as with Algorithm 1, where n is the number
of entries in the CPT, and is therefore O(n).

Algorithm 3: Transforming the probability tables of node Y
according to the type of implication by X and Y .

procedure applyImplication (G,X, Y);
Input : Graph G, Antecedent node X , Consequent node Y
if relation(X,Y) = NONE then

Add edge from X to Y in G
Extend Y .cpt by length(B.cpt) rows
Add column for X in Y .cpt

if type(X,Y) = TYPE_1 then
for entry ∈ Y .cpt do

if entry.X = true then
entry.Probability← 1

else if type(X,Y) = TYPE_2 then
foreach entry ∈ Y .cpt do

if entry.X = false then
entry.Probability← 1

else if type(X,Y) = TYPE_3 then
foreach entry ∈ Y .cpt do

if entry.X = true then
entry.Probability← 0

else
foreach entry ∈ Y .cpt do

if entry.X = false then
entry.Probability← 0

5. EXTENDING THE IBN MODEL WITH
DEFEASIBLITY

This section details the construction of a defeasible IBN from a
negation capable IBN, which would allow a multi-state system to
be represented by the model.

5.1 Alternations
An alternation describes a relationship in which the observation

of one event typically implies the existence of another. Specifically,
if some event B follows from A and A is true, then A alternates
B. Therefore in the case in which we observe A and A holds, the
probability ofB givenAmust be equal to 1. As such, an alternation
of A on B, denoted A B, is formally defined as follows:

Definition 5.1. A B if A ⇒ B when B holds true and⇒ is
negation capable

An alternation is equivalent to defeasible implication as found in
non-monotonic propositional logic.

5.2 The Defeasible IBN model
A Defeasible Implicative Bayesian Network is a 3-tuple:

(DAG⊥,CPT⊥,KB),
where DAG⊥ is an input directed acyclic graph connected via

influences, CPT⊥ is a set of conditional probability tables
associated with DAG⊥ and KB is a set of implications and

alternations.

The KB set represents the non-monotonic logic knowledge base
associated with the system, while the DAG⊥ and CPT⊥ sets form
the bottom Bayesian Network as with a typical IBN. Now however,
KB is used to build an ordered set of Bayesian Networks B, each
associated with a rank as determined by the defeasible ranking al-
gorithm such that each rank Ri maps to a Implicative Bayesian
Network Bi. The bottom Bayesian Network B⊥ is associated with
rank 0, R0, while the top Bayesian Network B> is associated with
rank∞, R∞. The entire system of networks B can be represented
as a single network where the edges for alternations are squiggly
lines. An example of a bottom Bayesian Network and its asso-
ciated knowledge base is shown below, together with the system
view graph for B.

KB =

A B
A ◦ C
B ⇒ C
E ◦⇒◦ B

A

B

C

D

E

A

B

C

D

E

Figure 15: A bottom Bayesian Network and the corresponding
defeasible knowledge base, as well as the overall system view
graph

Using the ranking algorithm (refer to Section 2.2.3) on alterna-
tions found in KB , a ranking R of implications is constructed with
R0 = {∅}. Then, a series of Bayesian Networks constructed by
applying the logical implication statements in Ri+1 to the corre-
sponding networkBi to create a new Bayesian NetworkBi+1 from
i = 0. This is done in the same manner as described in Section 3.2.
This is repeated until the statements associated with R∞ are used
to create the top Bayesian Network B>, a network that contains all
the statements associated with KB .

The graph of each individual Bayesian Network Bi is repre-
sented in exactly the same manner as specified in Section 3.1, with
implication edges as double lines. An example of such a construc-
tion is presented below in Figure 16.

R =

R∞ 7→ B> A⇒◦ C
R2 7→ B2 A⇒ B
R1 7→ B1 B ⇒ C,E ◦⇒◦ B
R0 7→ B⊥ ∅

Apply R1 to B⊥ to create B1:

A

B

C

D

E

Apply R2 to B1 to create B2:

A

B

C

D

E

Apply R∞ to B2 to create B>:

A

B

C

D

E

Figure 16: The ranking of KB from Figure 15, R, and the cor-
responding Bayesian Networks

When the top Bayesian Network has been determined, a defeasi-
ble IBN can then be queried for probabilistic information. Queries

are similar to that of a regular IBN. However, rational closure is
now used for entailment checking to determine which Bayesian
Network in B should be utilised to calculate the probability of the
query.

5.3 Querying a Defeasible IBN
Queries posed to a defeasible IBN structure will involve deter-

mining the probability of an event occurring in the system given
some defeasible observations. Suppose a query to find the probabil-
ity of some eventA occurring given a set of n negatable atomsN =
{N1, ..., Nn}, a set of m implications I = {I1 ⇒ I2, ..., Im−1 ⇒
Im} and j alternations T = {T1 T2, ..., Tj−1 Tj}. This is
given by:

Pr(A|N1, ..., Nn, I1 ⇒ I2, ..., Im−1 ⇒ Im, T1
T2, ..., Tj−1 Tj)

Performing this query involves using the rational closure algo-
rithm to determine if all alternations t ∈ T are entailed by KB .
Upon running the rational closure algorithm, ranks will slowly be
eliminated from R. This occurs until the algorithm can decide
whether t is entailed by KB . If t is not entailed by KB , the al-
gorithm halts and the bottom Bayesian Network B0 is used for the
query. Otherwise, the index of the rank at which this occurs is noted
as i, and the Bayesian Network Bi ∈ B is used for the query.

Upon determining the correct network to conduct the query with,
the query is treated as if it was a normal Bayesian Network query
without the observed implications as such:

Pr(A|N1, ..., Nn)

5.4 Transformation from a Bayesian Network
to a Defeasible IBN

This section details the algorithm required to create a Defeasi-
ble IBN. The algorithm performs at least r operations, where r is
the number of rankings given by performing the ranking algorithm
on KB . Together with the run-time complexity of Algorithm 2,
Algorithm 4 has a worst case time complexity of:

O(k · |V | · |E| · n · r)

Algorithm 4: Applying each implication in a ranking of K to
create a set of Bayesian Networks.

function createBN (BN , R);
Input : Bottom Bayesian Network BN , Defeasible

knowledge base KB
Output: Bayesian Network set B
R← rankingAlgorithm(KB)
B.push(BN)
for i← 0 to R.length do

b← applyKnowledge(B.i, R.i)
B.push(b)

6. CONCLUSIONS
As seen from the successful construction of the Implicative

Bayesian Network model, it is clear that the model is both sound
and complete, and is able to reason with a system of knowledge
that contains both logical and probabilistic information. In addi-
tion, from the graphical representation illustrated in Section 3 it
is evident that the model has a thorough visualisation mechanism,
and therefore provides a suitable basis for a language of knowledge
representation. It is further noted that enhancing the model with
defeasibility in Section 5, and by extension negation, also results in

a sound and complete construction with an apt visualisation mech-
anism.

As this is the case, it may be inferred that both the regular and
defeasible constructions of an IBN offer a level of expressivity that
exceeds that of typical Bayesian Networks. This is due to the abil-
ity of an IBN to construct two or more Bayesian Networks, which
consequently may be used to represent different system states. This
can be achieved with little overhead over a regular Bayesian Net-
work.

While the the construction is correct, the model may be improved
by further research. In particular, if implications are discovered to
be influences via an if and only if relationship, a method for ac-
curately calculating the associated probabilities of the relationship
would need to be determined. Similarly, the properties of implica-
tive cycles could be explored further, and may lead to additional
characteristics that could enhance the expressivity of the model fur-
ther.

In conclusion, the Implicative Bayesian Network model is a suc-
cessful construction which combines the two reasoning mechanisms
of propositional logic and Bayesian Network. This is done while
retaining the ability to utilise the existing algorithms associated
with the said reasoning structures. Hence the IBN construction pro-
vides a new and intuitive way to model intelligent systems without
a significant compromise in performance.

7. ACKNOWLEDGEMENTS
First and foremost, I would like to thank Professor Thomas Meyer

in suggesting this interesting topic of research and agreeing to su-
pervise the project. Your input and insight into the topic had an
immeasurable impact in the outcome of this work. I would like to
extend this thanks to my project partner Luke Neville for spending
a myriad of long, hardworking hours on the practical component
of this project, as well as helping me brainstorm certain topics in
the development of the theory. Also, thanks for coming up with the
name of the model. Thank you to Professor Deshen Moodley for
the invaluable intermediate project evaluation, which helped both
Luke and I to finish the project timely. Finally, thank you to my
mother, Professor DK Glencross, who provided a great deal of sup-
port throughout my journey in writing this paper, and rightly bad-
gered me about writing a scientific paper in first person.

8. REFERENCES
[1] Neville, L (2018) Inferential Bayesian Reasoner, University of

Cape Town
[2] Darwiche, A. Modeling and Reasoning with Bayesian

Networks. Cambridge University Press, Cambridge, 2009.
[3] Koons, & Robert, (2005) Defeasible Reasoning, The Stanford

Encyclopedia of Philosophy (Winter 2017 Edition), Edward N.
Zalta (ed.)

[4] Bundy A., Wallen L. (1984) Non-Monotonic Reasoning. In:
Bundy A., Wallen L. (eds) Catalogue of Artificial Intelligence
Tools. Symbolic Computation (Artificial Intelligence).
Springer, Berlin, Heidelberg

[5] Kraus, S., Lehmann, D., & Magidor, M. (1990).
Nonmonotonic reasoning, preferential models and cumulative
logics. Artificial intelligence, 44(1-2), 167-207.

[6] Lehmann, D., & Magidor, M. (1992). What does a conditional
knowledge base entail?. Artificial intelligence, 55(1), 1-60.

[7] Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L.
(2013). A Semantics for Rational Closure: Preliminary Results.
In CILC (pp. 99-113).

[8] Strasser, Christian & Antonelli, G. Aldo, (2001)
Non-monotonic Logic, The Stanford Encyclopedia of
Philosophy (Summer 2018 Edition), Edward N. Zalta (ed.)

[9] Booth, R., Casini, G., Meyer, T. A., & Varzinczak, I. J. (2015,
June). On the Entailment Problem for a Logic of Typicality. In
IJCAI (pp. 2805-2811).

[10] Darwiche, A. (2010). Bayesian networks. Communications
of the ACM, 53(12), 80–90. doi:10.1145/1859204.1859227

[11] Underhill, L., Bradfield D. (2014). INTROSTAT, Department
of Statistical Sciences, University of Cape Town

[12] Addison-Wesley (2010). Data Structures and Problem Solving
Using Java 4th Edition, MA Weiss

