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ABSTRACT
This literature review seeks to examine the basics and funda-
mentals of Bayesian Networks and Propositional Logic with
defeasible reasoning. This is done with the specific inten-
tion of informing a project which aims to introduce a classi-
cal and defeasible knowledge base into a Bayesian Network.
This is done with the objective of reducing the complexity of
the Bayesian Network by allowing for additional relationship
dependencies between variables in the network. This review
focuses on introducing these two topics independently, with
specific insight into the implementation of algorithms used
in reasoning.

We start by discussing Bayesian Networks and the suc-
cess found in modelling probabilistic relationships between
groups of variables. This is in part due to the assumption
of independence between variables not directly connected
in the network, allowing for efficient calculations of proba-
bility distributions. We then take a look at the basics of
propositional logic and its use in reasoning about common
place scenarios, before introducing defeasibility as a means
reasoning about exceptional situations. We then briefly ex-
amine how propositional logic statements may be added to
a Bayesian Network to produce additional dependencies be-
tween variables.
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1. INTRODUCTION
Over the past couple of decades Bayesian Networks have

become an extensively used tool with which to quickly and
efficiently reason about probabilistic information. Bayesian
Networks have been researched in many fields, most notably
in Artificial Intelligence in order to draw inference about
common sense scenarios [1]. The power of Bayesian Net-
works lies in the way probabilities are computed. Due to
the existence of efficient algorithms the probability of a given
set of network variables can be computed without needing to
compute the probability distribution of the entire network.
This is due to the key feature of Bayesian Networks which is
that a variable becomes independent of its non-descendents
once its parent variables are known [2].

For centuries, mathematicians have been seeking formal
structures in which to represent common logic in a math-
ematical environment. Propositional, or Classical, Logic is
one such example. More recently the field has seen inter-

est in Computer Science for its applications to automating
inference techniques in knowledge based systems [3]. These
implementations of logical reasoners have been successful in
automating inference from knowledge bases, and form the
basis of many artificial intelligence methods. Propositional
logic however, does not allow for any exceptionality to ex-
ist within a knowledge base. Due to this, the scope with
which it can be used to reason is limited. Defeasible rea-
soning extends classic logic by introducing well defined and
systematic approaches to exceptions to general rules. This
allows a knowledge base to contain sentences such as “x typ-
ically does y”. The introduction of the notion of typicality
deals with knowledge bases where a set of given rules com-
pete or are in conflict with one another. This branch of
reasoning has, as in with Bayesian networks, been used in
Artificial Intelligence research in order to analyse common
sense reasoning [4].

There has been extensive research into the construction
and application of Bayesian networks as well as defeasi-
ble reasoning however, there has been limited study into
the union of these two fields. This project aims to intro-
duce basic defeasible reasoning into a Bayesian Network and
to evaluate how this effects reasoning under the knowledge
base. The defeasible reasoning introduced to the Bayesian
Network will include limited forms of dependence between
variables in the form of varying levels of implication. The
project also involves a practical component, in which a rea-
soner is implemented which can reason about these extended
Bayesian Networks.

This literature review aims to investigate the intersec-
tion of Bayesian Networks and defeasible reasoning. The
review begins by investigating the current state of research
into Bayesian Networks, focusing initially on the theoreti-
cal background of how probabilistic information is reasoned
about, and then on how Bayesian Networks are implemented.
Defeasible reasoning is also explored beginning with an in-
troduction to reasoning through classical logic and the nota-
tion used, followed by an explanation of how exceptionality
is introduced and reasoned with. We then take a look at
how these two fields converge, with a specific focus on im-
plementing a practical Defeasible Bayesian Reasoner.

2. BAYESIAN NETWORKS FOR PROBABILIS-
TIC REASONING

Bayesian Networks, also known as Belief Networks [15],
are a class of probabilistic graphical models that have been
used in many fields for use as causal modelling and prob-
abilistic inference [14]. They allow for a coherent method



Figure 1: The DAG for a Simple Bayesian Network

of structuring probabilistic information about a system in
a way that makes it is easy to logically reason about the
system and it’s potential states [2]. Bayesian Networks also
include algorithms for coming to conclusions about the sys-
tem.

A Bayesian Network is a double BN = DAG,CPT where
DAG is a Directed acyclic graph and CPT is a set of con-
ditional probability tables [15]. A DAG is a directed graph
(each edge has a direction associated with it) that contains
no cycles - no path can be drawn from a node back to the
same node by following the directed edges. In the DAG,
the nodes correspond to the random variables that are be-
ing modelled, while the edges are interpreted as the proba-
bilistic independence relationship between these variables [2]
[15]. The absence of an edge between two variables denotes
the independence between the variables [16].

Each variable in the Bayesian Network requires a condi-
tional probability table which specifies the probabilistic re-
lationship between the given variable and its parents in the
DAG. Bayesian Networks are powerful due to the key no-
tion that a variable is independent of its children once the
values of its parents are know [16]. Another main feature
of Bayesian Networks is guaranteed completeness and con-
sistency. This is due to the fact that there can only ever
be one probability distribution that completely satisfies the
network [2]. To see this, we look at Bayesian statistics.

As described in Bayesian Statistics, The R Book [17] a
probability distribution is a mathematical function that de-
scribes all the possible values that a random set of vari-
ables can take in a given system. For example, if the system
contains four variables the probability function would be
P (A,B,C,D), where this is the probability of each variable
taking a specific value. In a system where no independence
is specified, the probability distribution must contain the all
variables taken in relation to all over variables. If the vari-
ables in our example system were binary this would result
in 2n probability distributions where n = 4 in the example
above - the number of variables in the system. As previously
described, Bayesian Networks restrict this by introducing in-
dependence between certain variables.

A P(A)

True p1
False p2

A B P(B | A)

True True p3
True False p4
False True p5
Flase False p6

A C P(C | A)

True True p7
True False p8
False True p9
Flase False p10

B C D P(D | B,C)
True True True p11
True True False p12
True False True p13
True False False p14
False True True p15
False True False p16
False False True p17
False False False p18

Table 1: The CPT Tables for the Simple Bayesian
Network

Bayes Rule is extremely powerful and forms the basis for
the computations that are used to propagate probabilities
through a Bayesian Network when new information is re-
ceived. Bayes Rule allows us to ask, “given this new infor-
mation, how is our view of the world changed?” [17]. For
any two variables A and B, Bayes Rule states

P (A|B) =
P (B|A)× P (B)

P (A)
(1)

where P (A|B) is read as the probability of A given that
B has taken place. Bayes rule can be extended to multiple
variables, for example P (A|B,C,D) [16]. These extended
Bayes are used to compute the values of a given variable
in a Bayesian Network, where B,C,D would be the parent
nodes of node A. This is further discussed in the following
sections.

Due to these statistical properties and the independence
between variables and their children, the computation re-
quired to compute the probability distribution of a Bayesian
Network is greatly reduced. This gives Bayesian Networks
their power - the probability of a given variable can be
computed extremely efficiently [2]. For example, consider
a system with n variables. To compute the joint Probability
Distribution of this system, one would have to compute all
possibilities of each combination of variables. This would
require 2n − 1 probability values. When represented as a
Bayesian Network however, this number is reduced as the
probability value for each variable is only conditioned on its
parents’ probability value.

In summary, Bayesian Networks work as well as they do
at computing probability distributions due to the assump-
tion that variables that are not directly connected in the
network are independent - that is, their probabilities are not
directly dependent on one another. Bayes theorem is central
to Bayesian Networks - the construction and propagation of
probabilities relies on it. Bayes theorem could, however be
applied to variables that are not directly connected in the
network. This would still produce probability distributions



that could be reasoned with, but the algorithms that make
Bayesian Networks so fast and efficient could not be applied.

2.1 Reasoning with a Bayesian Network
The following section discusses how Bayesian Network is

used to come to conclusions about variables. For a more in
depth look at this topic see Modelling and Reasoning with
Bayesian Networks (Darwiche, A) [24], from where these
algorithms are taken. We start with discussion on the types
of queries that can be made on a Bayesian Network, followed
with brief explanation of some algorithms that can provide
answers to these queries.

2.1.1 Types of Queries
The simplest and most intuitive query to ask is what is

the Probability of some variable, e, in the network, i.e. P (e).
This may extend to asking the Probability of multiple vari-
ables, i.e. P (e, q). The variables in question (E,Q) are
known as Evidence variables, and the query P (e, q) is known
as the probability-of-evidence query.

A marginal distribution is a projection of the joint prob-
ability distribution on a subset of the network variables. In
other words, it is the sum of the probabilities of the subset
of network variables. When the marginal is computed with
no evidence, this is known as the prior marginal. This is op-
posed the posterior marginal, which is computed with some
evidence.

The Most Probable Explanation (MPE) is the most prob-
able instantiation of the network given some evidence. If
x1..xn are the network variables and e is some prior known
evidence, the MPE is the values of x1..xn where P (x1..xn|e)
is at a Maximum. This instantiation is called the most prob-
able Explanation given evidence e.

The Maximum a posteriori query is a more general case of
the MPE discussed above. Given a network with variables
X, and M is a subset of those variables, the query seeks to
ask what are the values m of M where given some evidence
e, P (m|e) is maximal. This is the same as the most probable
Explanation except where the network variables in question
are some subset of the entire network variables.

2.1.2 Algorithms for Answering Queries
There are a variety of methods of answering these queries

on a network. Each method has it’s strength at answering a
specific type of query, and may range in time and algorithmic
complexity.

One of the simplest methods of inference in Bayesian Net-
works is that of Variable Elimination. This method is re-
stricted to answering probability of evidence and prior and
posterior marginal queries. Variable Elimination is the pro-
cess of successively removing variables from a Bayesian net-
work, while still maintaining the ability to answer queries
on the remaining variables, which in this case would be the
variables of interest.

Consider a Bayesian Network with 5 variables, N = A,B,C,
D,E. Variable Elimination will be able to compute a marginal
P (D,E) by eliminating the variables A, B and C from the
network. This process of summing out variables is based
off reducing the variables in the join probability distribu-
tion. Given the network N, there will be 25 possible worlds,
though some of them may not exist due to properties of a
Bayesian network as previously discussed. In some of these
worlds, all variables in the network will hold the same truth

value bar one variable. For example, there are two worlds
where B, C, D and E = true - one where A = true, and
one where A = false. In order to sum out the variable A,
for instance, the probabilities of these worlds occurring are
added, and the variable A is simply dropped from the ta-
ble. This process can be repeated for all variables in the the
table not under question, until the probability distribution
only contains the variables that form part of the query. This
can be continued until there is only one variable left. If this
is done, the prior marginal can be computed for each indi-
vidual variable. If some evidence is given, the appropriate
worlds are simply removed from the probability distribution
and the marginals are recalculated.

Factor Elimination improves on the complexity of variable
elimination when answering multiple queries. Considering a
Bayesian network, the marginals for each variable can be
computed using variable elimination, in O(n2exp(w)) time
where n is the number of variable and w is the width of
the network. This will clearly become an issue when dealing
the large networks. Using an algorithm known as the Join-
tree Algorithm, this complexity is reduced to O(nexp(w))
time. This algorithm is best described as Factor Elimina-
tion, where factors are eliminated instead of variables.

The algorithm will compute the marginal of some variable
Q in a network by eliminating all factors except for the one
that contains the variable Q. A factor is a grouping of vari-
ables, P (X,Y,W ), as found in a CPT. The elimination of a
factor f from a set of factors S firstly comprises of eliminat-
ing all variables V that appear only in the factor f, and then
multiplying the result of the sum of those variables by some
other factor is the set.

Conditioning, also known as case analysis, is a form of
inference in which the probability of a variable is computed
by considering all cases which correspond to a particular as-
sumption. Then, each case is solved under its corresponding
assumption, and summed together to obtain the probability
of the variable. This is illustrated as

P (x) =
∑
c

P (x, c) (2)

Here, the probability of x is computed by considering a num-
ber of cases c, and summing the probability of x with each
case c. There are two Conditioning algorithms, Cutset and
Recursive Condition, both of which are discussed in depth
in Darwiche, A. [24].

Approximate inference is a method of appropriating the
results of a query, allowing for trade-offs between quality of
approximation and computational resources. Belief Propa-
gation is one such inference method. In this method, mes-
sages are passed from node to node, effected by the prob-
ability and relationship between the nodes. The messages
are passed inwards, towards the node that is being queried.
This method of message passing is based off of the jointree
algorithm used in factor elimination Another method of ap-
propriate inference is Stochastic Sampling. In Stochastic
Sampling, situations are repeatedly simulated according to
their probability and then the probability of events is esti-
mated due to their occurrence in the simulated situations.
For example, consider an event or variable “is rainy”. If we
simulate 100 situations and find out that is is rainy in 25 of
them, we say that the probability of being rainy is 1/4.



2.2 Applications and Implementation of Bayesian
Networks

Bayesian Networks have found success in a wide variety
of fields. In recent years, applications in Machine Learning
and Artificial Intelligence have been fruitful, especially in
fields such as speech recognition [2] [18] and document and
text classification [19]. There have also been widespread
uses in biology, especially bioinformatics and gene expression
analysis [20].

Due to their widespread use, there are many software and
computer language packages that can efficiently learn and
evaluate Bayesian Networks. One such example is BNFinder
[21], a python package that can construct Bayesian Net-
works from experimental data, aimed for use in biological
fields. BNFinder is a free tool available to researchers with
the specific aim of being simple and efficient to use. Since
BNFinders release, a second version has been released, BN-
Finder2 [22], which is faster and contains a number of other
improvements. BNFinder2 is freely available under the GNU
public licence.
JAGS (Just Another Gibbs Sampler) is an open source pro-
gram for modelling and simulating Bayesian models [23]. It
is licensed under the GNU general public licence and is writ-
ten in C++.

3. FORMAL LOGIC FOR REASONING
Logic, as a philosophical and mathematical tool, is hard

to define. It provides a basis for evaluating and reasoning
about the world around us. Mathematically, it is neces-
sary for this powerful tool to be formalised into well defined
languages which can be further used for knowledge repre-
sentation. This allows us to draw , where a knowledge base
is some collection of statements about a given world.

This mathematical need for knowledge representation has
led to a wide variety of formal logic representations. These
representations vary from languages with few operators and
thus limited expressivity to languages many operators and
high levels of expressivity. These languages with high ex-
pressive power may be more useful in modelling the world
accurately, however this comes at a cost of high algorithmic
complexity [5].

Today, the most common formal mathematical logic sys-
tems are propositional and first-order logic due to their ap-
plicability to modelling philosophical theory and nature [6].
We will focus on propositional logic and its relevance to
drawing inference about a given knowledge base.

3.1 Classical Reasoning
Propositional Logic, also known propositional calculus, is

a branch of logic that deals with singular truth-bearing vari-
ables [7] and how these variables can be connected to create
logical arguments. These truth-bearing variables are known
as ’atoms’ and are the smallest unit of knowledge in a propo-
sitional knowledge base [5]. They can only take on one of
two states - true or false. Logical connectives can be used to
extend an atom or join multiple atoms together in order to
create composite atoms. These composite atoms can in turn
only be true or false, though they are composed of one to
many true or false atoms. Logical connectives can be seen
as operators as they perform some function on the atoms.
Atoms and composite atoms are known as sentences, and
a collection of sentences makes up a knowledge base [5][7].

Something that is important to note, is that all sentences in
a knowledge base can either hold a value of true or false -
these are known as a declarative statement or sentence. This
implies that a sentence can never be both true and false, or
neither of the two.

As sentences are precise in their truth value, we can use
them to reason about the world, or the state of a given sys-
tem. In natural language, we use declarative sentences all
the time to describe what is going on around us. For exam-
ple, we can state that “it is raining”. This is a propositional
atom - it holds a singular value of either true or false and
tells us something about the current state of the world.
In classical logic, upper case letters (P,Q,R,S...) are used
to represent atoms [5]. As such, our sentence “it is raining”
can be labelled as P. Another sentence, “the ground is wet”
may be labelled as Q.

3.1.1 Logical connectives
Propositional logic is limited to five logical connectives.

This is enough to ensure an expressive language, while still
maintaining simplicity in reasoning. Many of these connec-
tives find their roots in natural language, namely and, or,
not and if P then Q. These logical connectives are discussed
below. For a more in-depth explanation of each operator,
see A Concise Introduction to Logic (DeLancey, C) [5]

Sentences can be constructed by applying these logical
connectives to atoms. The not operator is applied to one
sentence, whilst the remaining connectives are applied on
pairs of sentences. The not operator, described as negation,
is represented by the symbol ¬. This inverts the value as-
sociated with the atom to which it is applied. In natural
language, we can read negation as simply adding “it is not
the case that...” to the beginning of our sentences. For exam-
ple, if our sentence P is “it is sunny”, ¬P can be interpreted
as “it is not the case that is is sunny”, or simply, “it is not
sunny”.

Truth tables are a useful method of depicting the values
of logical expressions for each combination of the input vari-
ables [8]. Thus, we can use truth tables to show the logical
validity of propositional statements. Below, the truth table
for negation shows the possible inputs for P and the result-
ing values for ¬P.

P ¬P
1 0
0 1

Table 2: Truth table for ¬P

The and connective, known as conjunction, uses the sym-
bol ∧. This is applied to two sentences, resulting in one com-
pound sentence. This compound sentence takes the value
true if both conjuncts (that is, both individual sentences)
are true; otherwise the compound sentence is false. This
follows from our natural language usage of the word “and”.
From out example above of rain and went ground, P ∧ Q
is “it is raining and the ground is wet”. This would be true
only if it was raining and the ground is wet, otherwise the
sentence would be false. It is important to note that order-
ing of the conjuncts does not matter with conjunction - P
∧ Q is equivalent to Q ∧ P.

Disjunction - the or connective - works in much a similar
way to conjunction. The symbol ∨ is used to denote dis-



P Q P ∧ Q

1 1 1
1 0 0
0 1 0
0 0 0

Table 3: Truth table for P ∧ Q

junction. Or requires two conjuncts and for the compound
sentence to be true, only one of the two sentences is required
to be true. Using our example from above P ∨ Q would be
interpreted as “it is raining or the ground is wet”. As with
conjunction, ordering to this sentence is not important.

P Q P ∨ Q

1 1 1
1 0 1
0 1 1
0 0 0

Table 4: Truth table for P ∨ Q

It is useful to come to conclusions about some informa-
tion, based off of the results of some other, prior fact. In
propositional logic, this is known as a conditional sentence,
and is used in the same way we use “if” (some bit of infor-
mation) “then” (some other bit of information) in natural
language. The symbol used to represent this if ... then ...
relationship is→. For example, P→ Q would be read as “if
it is raining then the ground is wet”. The first sentence, P,
is known as the antecedent, and the second, Q, is known as
the consequent. Note that unlike conjunction and disjunc-
tion the order of the sentence matters - Q → P holds an
entirely different meaning.

Conclusions are drawn from conditional sentences by first
analysing the antecedent. If the antecedent is true, then the
truth value for the sentence simply takes on the value of
the consequent. This follows from how we would interpret
these scenarios in natural language. If the antecedent is
true, then the statement’s truth relies on the outcome of
the consequent. If the antecedent is false however, then the
value for the sentence is always true. This is due the fact
that no real conclusion can be drawn from the statement if
if the antecedent is false, and thus we default to true.

P Q P → Q

1 1 1
1 0 0
0 1 1
0 0 1

Table 5: Truth table for P → Q

The final connective used in propositional logic is the bi-
conditional. Represented as↔, the biconditional represents
an if and only if relationship between two sentences. In or-
der to understand how this connective works, we analyse the
meaning of the operator. P ↔ Q can be interpreted as P if
Q and P only if Q, or more simply, P if Q and Q if P or
P → Q ∧ Q → P. Thus, the value for the sentence is true

only if both sentences hold the same value.

P Q P ↔ Q

1 1 1
1 0 0
0 1 0
0 0 1

Table 6: Truth table for P ↔ Q

3.1.2 Reasoning with Propositional Logic
Since propositional logic is decidable, that is given any

sentence and the truth values for each propositional atom
in the sentence, the truth value for the whole sentence can
always be computed. This means that for any combination
of truth values assigned to each atom in a knowledge base,
every sentence can be computed. This is known as a model
- a particular assignment of true or false to each atom in the
knowledge base. There will always be 2n models where n is
the number of atoms in the knowledge base.

The evaluation of a sentence is the overall value resulting
from applying a particular model to that sentence. This can
be extended to the evaluation of an entire knowledge base,
which is the conjunction of all sentences in the knowledge
base evaluated under given model. Due to this, there are 2n

evaluations of any given model.
A query can be made on a knowledge base by checking

if the knowledge base allows for the new, query sentence to
evaluate to true under any given model. This is known as
entailment, and is represented as KB � S, where KB is the
knowledge base and S is the query sentence. A query S is
said to be entailed by a knowledge base KB if all models
that result in KB evaluating to true, also result in S evalu-
ating to true [9]. This process of evaluation can be used to
query knowledge bases. However, this process is computa-
tionally complex due to exponential increase in models with
the increase in size of a knowledge base.

3.2 Defeasibility as a means of reasoning about
exceptionality

Defeasible reasoning is an extension of propositional logic
that deals with reasoning when the knowledge base contains
rules that conflict or compete with each other [10]. It is com-
mon for a reasonable knowledge base that models the real
world to contain conflicting statements. For example, natu-
ral moral thought would dictate that one should not steal,
but this may clearly be over-ruled by other moral philoso-
phies, such as “feed your children” [10]. Propositional logic
does not allow for this kind of reasoning, as a sentence in
the knowledge base is taken to be fully correct - thus one
would be conflicted as to whether one should steal food in
order to feed their children.

Defeasible reasoning allows for the concept of exception-
ally to exist within a formal knowledge base [11]. This means
that relationships between atoms may be described as ’typi-
cal’, allowing for two statements to conflict and be reasoned
by saying that one of the relationships is simply an excep-
tion to the norm. Kraus, Lehman & Magido in their paper
Nonmonotonic Reasoning, Preferential Models and Cumula-
tive Logics [27] introduced the idea of defeasibility in order
to describe these non-definitive, more contextual relation-



ships. They used the symbol to denote defeasible entail-
ment. Where in classical logic, the sentence P → Q is read
as if P then Q, the defeasible statement P p∼ Q is read as if
P then (typically, normally, apparently) Q [12] [13]. This al-
lows for the statement“if your children are hungry, typically
don’t steal in order to feed them” to exist within a defeasible
knowledge base. As we can see, the notion of defeasibility
allows for propositional logic to become more expressive in
the way that the world can be described. This results in a
richer knowledge base and stronger reasoning power.

3.3 Non-Monotonicity of Defeasible Reason-
ing

Defeasible reasoning allows us to withdraw conclusions
that we may have come to from a knowledge base. As new
information is added to a knowledge base, we may decide
that a deduction we would have made is no longer reason-
able, and should be removed from the knowledge base. This
is due to defeasible reasoning being non-monotonic. This
describes how adding sentences to a knowledge base may
decrease the conclusions that can be drawn from that knowl-
edge base [13]. A sentence maybe be added that clears up
any uncertainty that a defeasible statement introduced to
the system, allowing for a definite conclusion to be drawn
[25]. In contrast, propositional logic is monotonic - adding a
sentence to the knowledge base can only result in the number
of conclusions staying the same size or growing.

3.3.1 Reasoning with a Defeasible Knowledge Base
This notion of defeasibility is only useful if there is an

accompanying method of being able to come to logical con-
clusions about the knowledge base when given a query. Ra-
tional Closure is an algorithm that allows entailment of a
given query on a knowledge base to be computed.

As described in Casini & Straccia [13], the rational clo-
sure algorithm involves ranking each sentence in the knowl-
edge base K. The ranking is based on the exceptionality of
the sentence - a higher rank indicates that the sentence is
deemed to be more exceptional in the context of K. This set
of ranked propositional statements is known as the ranked
interpretation R. This ranked interpretation can then be
queried for entailment as described in section 3.1.2.

3.3.2 Implementing Defeasibility
The rational closure algorithm relies on heavy use of clas-

sical propositional reasoning. Due to this, a defeasible rea-
soner can be implemented as wrapper around a classical rea-
soner, making a sequence of calls to the classical reasoner in
order to reason about a knowledge base. There are a number
of reasoners that implement rational closure and thus allow
for defeasible statements to be reasoned with. Casini et al
in their paper Introducing Defeasibility into OWL Ontologies
[28] describe their approach to modifying a real-world Web
Ontology Language (OWL) in order to introduce defeasible
statements into the language. They found that implement-
ing defeasible reasoning is feasible, based on generated test
data. Despite some limitations, the methods described in
the paper pave the way for more sophisticated implementa-
tions of defeasibility into real-world ontologies.

4. LOGICAL REASONING IN BAYESIAN NET-
WORKS

This project aims to combine the implication statements
from classical and defeasible reasoning, within a Bayesian
Network. A Bayesian Network could be read as saying that
if A happens, this implies that B happens, with some prior
probability. This is read in a very similar manner to logical
implication, A -> B, just with the added probability. Due
to this the variables in a Bayesian Network can be viewed as
propositional atoms. Given some Bayesian Network, we will
try to introduce the logical statements A -> B and A | B
into the knowledge base, where A and B are variables in the
Bayesian Network. This will produce additional dependen-
cies between variables in the Bayesian Network, or modify
already existing dependencies. In this project we will only
introduce limited forms of dependence between variables in
the network. These dependencies will take the form of classi-
cal and defeasible implication. These logical implication sen-
tences will be added after the network has been constructed.
We will attempt to answer such questions has“How does this
change the network and the algorithms associated with it?”,
and “How do we reason with this network?”.

Initially, we will only attempt to introduce material/ clas-
sical implication, (A -> B). Once this is successful, we will
introduce defeasible implication ( A | B). This will make
up the theory part of the project, which will look at how
the Bayesian Network algorithms need to be modified in or-
der to accommodate these dependencies. The following two
sections will discuss each form of implication.

4.1 Classical Implication
Classical implication, discussed in section 3.1, says that if

A happens, then B happens. In a Bayesian Network, this
could mean that P(B | A) = 1, given that B is a child of A.
This relaxes the requirement of independence of variables.
This has the potential of collapsing a network, by merging
the two nodes A and B.

4.2 Defeasible Implication
Defeasible implication, discussed in section 3.2, is slightly

more complicated. There is no simple explanation as to
how the typicality of statements is introduced into Bayesian
Networks. This refers to the ranking of statements used in
reasoning with defeasible reasoning. How is the quantifiable
probability in Bayesian Networks related to the qualitative
relationship of typicality. We will attempt to formalise this
relationship and work out what this means for Bayesian Net-
works and the algorithms that are used in reasoning.

4.3 Implementing Implication in Bayesian Net-
works

My part of the project is specifically looking at imple-
menting the classical and defeasible implication as back-
ground knowledge in a Bayesian Network in the algorithms
described in section 2.1. This will require a firm under-
standing of how the algorithms are implemented currently,
and also what changes need to be made to describe classi-
cal and defeasible implication. This implementation would
be done in one of two ways. The first option is to use a
standard Bayesian Network algorithm with wrapper around
it in order to solve the modified problem. If this does not
prove possible, a modified algorithm will be implemented
from scratch. This decision will be made as the theory sec-
tion of the project become clearer.

There are many algorithms for reasoning with a Bayesian



Network. All have advantages and can answer different
queries. Not all of these algorithms are amenable to relax-
ation of independence by introduction of logic. I will only
attempt to implement those that lend themselves to logi-
cal implication. Work will need to be done managing space
and resource requirements of the algorithms, especially with
additional computation of the logical statements.

Consideration may need to made of existing implementa-
tions of Bayesian Network algorithms, such as BNFinder2
[22] and JAGS [23]. We will need to consider whether it
is more favourable to modify these already existing Open
Source programs to allow for logic, or to implement the com-
plete algorithm from scratch. This second option may turn
out to be simpler, as modifying large projects is often not a
trivial task.

It must be noted that we are not attempting to implement
Bayesian Network learning algorithms. Instead, are look-
ing to answer the question of how to reasoning and answer
queries on a Bayesian Network that is already constructed
and has had logical implication added to the knowledge base.
This means that our implementations will not involve and
learning Algorithms, but will assume a Bayesian Network
has already been created either via manual construction or
automatic learning, and will take this Bayesian Network in
as an input.

4.4 Discussion
In natural language and thought we reason in a very sim-

ilar way to defeasible reasoning in a day to day context. As
this is how we commonly construct our augments, it is in-
credibly useful to be able to add these sorts of arguments
to Bayesian Reasoning. This is growing in importance as
Bayesian Networks are increasingly used in artificial intelli-
gence. Thus, the ability to subtly modify Bayesian Networks
in a logical way has potentially useful gains.

5. RELATED WORK
It would be remiss to not briefly mention probabilistic

forms of propositional logic. Combining logic and probabil-
ity is fundamentally what we intend on achieving in this
project, however our method of introducing logic into a
Bayesian Network is not the only way of achieving this.
Probabilistic Theorem Proving allows for reasoning under
uncertainty proving theorems in first-order logic and test-
ing for satisfiability in propositional logic [29]. This allows
for exact probabilities to be attatched to propositional sen-
tences.

Probability Logic is another form of knowledge represen-
tation which seeks to combine probability theory with de-
ductive logic in order to make rational, formal arguments
[30].

6. CONCLUSIONS
Bayesian Networks have been extensively researched, with

many practical uses and methods for constructing and eval-
uating them finding their way into literature [2]. The key
insight into their value and performance is due to the as-
sumption of independence between variables that are not di-
rectly connected in the network. This greatly simplifies the
process of evaluating probabilistic relationships and makes
this sort of reasoning feasible.

There are many knowledge representation languages, from

first order to propositional logic. We are only interested in
limited forms of implication in propositional logic and defea-
sible reasoning. That is, how can the classical implication
P → Q and defeasible P p∼ Q be introduced into another
knowledge representation system.

There is not a lot of literature on introducing logic into
Bayesian Networks. Cozman, F., and Mauá, D. [26] describe
representing Bayesian Networks in a variety of description
logics, especially exploring the complexity of inference in
these languages. However, there appears to be little in the
way of defeasible implication in Bayesian Networks. Due
to this gap in knowledge, it provides a good opportunity
to explore this topic and the relationship between the two
fields.

Briefly, this will involve viewing variables in a Bayesian
network as propositional atoms. This allows for logical state-
ments such as implication to be added to a Bayesian network
knowledge base, increasing the number of dependencies be-
tween variables.

Implementation of a defeasible Bayesian reasoner will take
one of two forms. Either an existing Bayesian Network
reasoner will be used by implementing a wrapper around
it which adds the logical implication statements into the
knowledge base, or the algorithm will be implemented from
scratch. If the former option is taken, there are many rea-
soners that can be used by applying a wrapper to them [22]
[23].
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