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ABSTRACT
In this paper we examine the potential intersection of Bayesian Net-
works and non-monotonic Logic, with the goal of supplementing a
Bayesian Reasoner with a non-monotonic knowledge base in or-
der to reduce Bayesian Network complexity. Specifically, we fo-
cus on the properties, limitations and reasoning methodologies of
both areas, and the theory of how a combined reasoner may func-
tion. We review 3 fundamental areas of preceding research: Propo-
sitional Logic and Classical Reasoning, Defeasiblility and Non-
monotonic Reasoning in Propositional Logic, Bayesian Networks
and Bayesian Reasoning, as well as investigate the potential im-
pact of logical implication in Bayesian Reasoning. We recognise
from the literature the benefit and the efficiency of propositional
and non-monotonic logic systems in being able to depict casual
relationships between objects. In particular, we propose proposi-
tional implication may have obvious synergy with the independent
variables of a Bayesian Network. We deduce that if a logical conse-
quence is specified between two variables of a Bayesian Network,
those variables may collapse into a single, composite variable in the
network, simplifying the network. Furthermore, while we identify
the benefit of adding defeasibility to this construct in being able to
specify contextual relationships in a Bayesian Network as opposed
to strict relationships, it is not as obvious what the consequence
would be on the network variables. Overall, we conclude that fur-
ther research is required into the role of logic and defeasibility in
Bayesian Network reasoners, as the theory behind such a combined
system is largely underdeveloped and the benefits of which are un-
known.
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1. INTRODUCTION
Artificial intelligence (AI) has in recent years grown significantly

both in depth and breadth, due to the growing need for systems that
are able solve increasingly more complex tasks. This boom has ac-
celerated development in a variety of sub-areas of the field, stem-
ming from computer vision to machine learning. One such field is
known as knowledge representation and reasoning, a form of logic
based AI where information about a system, known as a knowledge
base, is used solve complex decision problems [1].

Traditionally, such systems were based off propositional logic, a
mathematical formalism wherein statements, or propositions, about

actors in a system are used to draw conclusions. However, proposi-
tional logic reasoners are limiting in a number of ways. In particu-
lar, these systems are poor at dealing with exceptionality within the
knowledge base of the problem domain. That is, given a proposi-
tional implication such as "a implies b", in order to infer a conclu-
sion from the associated knowledge base, the relationship between
the two atoms in the statement should be definitively casual. This
fact limits the reasoning capability of classical knowledge bases, as
statements such as "a may imply b" are simply not defined. This
shortfall is addressed directly by introducing the notion of defea-
siblity, that is statements that present a typical rather than direct
casual relationship. In a defeasible reasoner, typicality allows for
reasoning about logical statements that would otherwise be in con-
flict with each other. As such, exceptional statements such as "a
typically implies b" are allowed [2]. Nonetheless, propositional
logic is binary, and is unable to reason with probabilistic systems.

Another branch of reasoning, known as Bayesian reasoning, uses
a what is known as Bayesian Network to calculate the likelihood
of a certain event occurring given the relationships between atoms
within a system and their associated probabilities [3]. Bayesian
Networks provide a powerful mechanism for reasoning with prob-
abilities, as a variety of efficient algorithms have been developed
to calculate the probability of an event occurring in the system ag-
nostic of the underlying probability distribution. These algorithms
rely on a key property of a Bayesian Network: atoms in a network
become independent of its non-descendents once the atoms which
are causal to it, or parents, become known. While there exists a
multitude of research in the literature for defeasible reasoning and
Bayesian Networks, few papers have explored the idea of combin-
ing the techniques to create a single knowledge base that can reason
with both defeasible statements and probabilistic statements.

This literature review aims to investigate the combination of these
two approaches, predominately by supplementing a Bayesian Net-
work system with either a propositional or non-monotonic knowl-
edge base, with the goal of reducing the complexity of a Bayesian
Network and ultimately speeding up the computation time of Bayesian
reasoning algorithms. In reviewing these areas, we seek to deter-
mine the viability and practicality of such a reasoner by understand-
ing the limitations, advantages and uses of each reasoning method-
ology. This literature review will cover four main topics of interest
to the area. These include an overview of classical logic, defea-
sibility in logic and defeasible reasoning, the theory surrounding
Bayesian Networks and reasoning in a Bayesian Network and the
consequence of logical implication within a Bayesian Network. Fi-
nally, we will discuss the idea of extending a Bayesian Network



with either a classical or defeasible knowledge base, what the in-
teraction between the systems may entail.

2. CLASSICAL REASONING
There exist various mechanishms that allow us to make infer-

ences about the systems that govern the world around us. One
such mechanism, logic, formalises this process, providing a math-
ematical basis for drawing logical conclusions from a collection
of premises. Indeed, logic does not necessarily comply with one
particular representation, and as such there exist a variety of "log-
ics", each providing a certain level of expressivity and usefulness
in particular domains. However, expressivity is not without cost,
as more expressive logics are typically more complex to evaluate
algorithmically [4].

The notion of reasoning in logic means to entail certain conclu-
sions from what is known as a knowledge base, i.e. a collection of
statements in a logic language describing the interactions and re-
lationships between actors in a system. Thus, given a statement s
and a knowledge base K, a reasoner will determine whether s is
consistent with K [7]. If s can indeed be concluded from K, we
denote entailment, otherwise known as logical consequence, with
the symbol � and write:

K � s .

2.1 Propositional Logic
When people use logic to make decisions in the real world, the

conclusions drawn are typically based on facts about the environ-
ment in question. In particular, people determine whether or not
a particular "thing" is true or false in a certain context, draw rela-
tionships between these different "things" and use that information
to make inferences. For example, one might infer after recently
making a cup of tea that if you were to drink it, you would burn
yourself as the tea is hot. In this case, a logical connection has been
made between tea and being burnt, based on the proposition that
we know hot items burn things and the tea is hot.

Formally, propositional logic is a mathematical language, used
to reason about claims that cannot be further decomposed and have
a value of either true or false. It provides the basis for all other
logics [5]. To construct a propositional sentence we form composi-
tions of boolean variables, otherwise known as atoms (or "things"
in our analogy). While an atom is itself a propositional sentence
(specifically an atomic sentence), more complicated sentences may
be formed altering atoms or stating specific relationships relation-
ships between atoms. A sentence is said to be declarative should
it correspond to a specific truth value. A collection of a number of
these declarative sentences corresponds to a propositional knowl-
edge base.

2.1.1 Boolean Variables
In order to demonstrate the language of propositional logic, sup-

pose the previous tea example. In this example, our atoms consist
of tea, hot and burn, which in classical logic are boolean variables
which could be represented by the letters T,H and B. Therefore
where the object in question is X , T (X) implies the object is tea,
H(X) implies the object is hot and B(X) implies the object is
burning [11]. For simplicity, the (X) in the atoms can be omitted,
such that H(X) = H . As mentioned above however, there is little
that can be concluded from the atoms themselves without stating
the relationships that exist between them. In order to do so, propo-
sitional logic makes use of logical connectives, of which 6 exist.

To demonstrate how these connectives work, they will each be
depicted in what is known as a truth table. Truth tables provide a

useful insight into how variables in such a system interact by pre-
senting what each possible sentence, or world, of the system evalu-
ates to. If there are n atoms in the system, there will be 2n possible
worlds with valid evaluations. Using truth tables, the validity of
logical sentences describing the system can be checked. [6]

2.1.2 Logical Connectives
The content of the following section(2.1.2) cites Darwiche, A et

al [6] (Aside from the xor operation).

Consider the variable T (X). We know that stating T implies tea.
But there are situations where the object is in fact not tea (unfortu-
nately). The first logical connective, the not or negation operator,
is a unary operator that negates the boolean variable it is applied to,
and is denoted with ¬. For example, a propositional sentence that
states an object "is not tea" would be written:

¬T

In the truth table of Table 1, there are 2 possible worlds.

world T ¬T
w1 true false
w2 false true

Table 1: Truth Table depicting ¬T

Logical conjunction, is the logical connective that represents the
and operator, and is denoted with the symbol ∧. It is a binary
operator, and creates a compound sentence that outputs true if both
atoms are true, and false otherwise. Using this operator, we can
create sentences that state "it is tea and it is hot", as such:

T ∧H

In this case, the sentence is only true if T is indeed tea and H is
hot. [6]

world T H T ∧H
w1 true true true
w2 true false false
w3 false true false
w4 false false false

Table 2: Truth Table depicting T ∧H

Similarly, there exists a connective that represents the or oper-
ator known as logical disjunction, and is denoted with the symbol
∨. If neither of these atoms are true, the sentence evaluates to false.
Otherwise, the sentence evaluates to true. This operator can be used
to define sentences that state "it is tea or coffee", as such:

T ∨ C

Where C(X) is the boolean variable representing coffee. In this
case, the sentence is true if T is tea, C is coffee or both. Disjunc-
tion, together with the negation and conjunction functions, can be
combined to form the remaining logical connectives.



world T C T ∨ C
w1 true true true
w2 true false true
w3 false true true
w4 false false false

Table 3: Truth Table depicting T ∨ C

In many cases, we wish to construct sentences that select one
item over another item explicitly, instead of tolerating both as the
or operation does. The exclusive disjunction connective, represents
the xor operator, and is denoted with the symbol ⊕. In this op-
eration, if either atom evaluates to true, but not both, the entire
sentence will evaluate to true. Should you want "tea or coffee, but
not both", you can construct a sentence as follows:

T ⊕ C
The sentence however, could be phrased differently, and equiva-
lently you could state that you want "tea and not coffee or not tea
and coffee". The propositional equivalent of this is:

(T ∧ ¬C) ∨ (¬T ∧ C)

This defines the operation of T ⊕ C. [5]

world T C T ⊕ C
w1 true true false
w2 true false true
w3 false true true
w4 false false false

Table 4: Truth Table depicting T ⊕ C

Atomic variables can be casual to others, the existence of one
object or event may imply the existence of another. The logical
connective of implication represents the if-then operation, denoted
with the symbol→. With this connective, casual connections can
be made between boolean values, and sentences such as "if this
is hot tea you will get burned" can be represented by the logical
statement:

α→ B

Where α is the sentence H ∧ T . Equivalently, this can be stated as
the logical sentence:

¬α ∨B
In this case, the truth table is less obvious. Where the first atom is
true, the case is trivial. If α is indeed hot coffee, if what follows
is a burn B the expression evaluates to true, but should there be no
burn the expression evaluates to false. In sentences where the first
atom is false and the second atom is also false, the sentence is also
trivially true. No tea implies no burn. However, w3 is peculiar,
as it evauluates to true counterintuitively. The reason is that the
existence of no tea does not necessarily imply no burn. In other
words, burning does not itself imply that you had tea.

world α B α→ B
w1 true true true
w2 true false false
w3 false true true
w4 false false true

Table 5: Truth Table depicting α→ C

Finally, the last connective defined in propositional logic is known
as equivalence, which represents the equal, or if and only if, opera-
tion. Denoted by the symbol↔, the connective implies a bi-casual
relationship between two variables, and allows for sentences that
describe situations such as "it is hot if and only if it burns". This
sentence in particular is represented as:

H ↔ B

As this represents a bi-casual relationship, an equivalent statement
is to say that "if its hot then you will burn and if you burn then it
was hot", and can represented by the propositional statement:

H → B ∧B → H

Equivalence is trivial to define. In cases where both atoms are the
same truth value, the entire sentence should evaluate to true, and
false otherwise.

world H B H ↔ B
w1 true true true
w2 true false false
w1 false true false
w1 false false true

Table 6: Truth Table depicting H ↔ B

2.2 Reasoning in Propositional Logic
When given a propositional sentence, the truth value of the sen-

tence can always be computed when supplied with the values of the
atoms the sentence is comprised of. It is for this reason that propo-
sitional logic is decidable, and therefore given a knowledge base of
propositional statements, any possible combination of atoms will
definitively result in some value. In other words, any world is de-
cidable.

Due to this decidability, knowledge bases can be queried by check-
ing if a given propositional sentence is consistent with all worlds
that the knowledge base expresses. This defines entailment in propo-
sitional logic, and gives means to reason with knowledge bases.
However, while propositional logic is decidable, it is not easily de-
cidable. In fact, the satisfiability of a propositional logic sentence
is said to be an NP-complete problem [8], a problem that is inher-
ently difficult to decide but trivial to check any given solution. This
is due to the number of possible worlds growing at least 2n, as
mentioned in section 2.1.1, which is exponential in the input of n
atoms.

A Propositional logic knowledge base is a 2-tuple (F,R), where
F is a set of literals called facts(statements we know to be true)
and R is a finite set of logical rules [11]. The rules of a knowledge
base can be interpreted as a large conjunction [6]. As an example
consider a knowledge base K, comprised of the following proposi-
tional sentences:

K =
f1 : tea(rooibos)
r1 : hot→ burn
r2 : tea→ hot

Where f denotes a fact and r denotes a rule. This knowledge base
states as a fact that "rooibos is a tea", and gives 2 rules: "Hot things
burn" and "tea is hot". Then, we can construct the truth table for K
from the truth table for (hot→ burn) ∧ (tea→ hot) as such:



world hot burn tea K �
w1 true true true true
w2 true true false true
w3 true false true false
w4 true false false false
w5 false true true false
w6 false true false true
w7 false false true false
w8 false false false true

Table 7: Truth Table depicting K = (hot → burn) ∧ (tea →
hot)

A conclusion that may be drawn from K is that since hot →
burn and tea → hot, it must be that rooibos → burn. This
inference can be made as their is at least one world where tea →
burn holds. That is, (tea → burn) ∧ K � true, We can confirm
this from the truth table in Table 7. Precisely, tea → burn holds
in worlds w1, w2, w6 and w8. We know that tea(rooibos), and
therefore as there is at least one world where tea → burn is true,
we say thatK entails this result [6], and your rooibos unfortunately
will burn you. Formally:

K � rooibos→ burn

3. DEFEASIBLE REASONING
Many a time, propositions are not as straightforward as one might

initially believe. If propositional logic truly governed the way we
think, we would not be able to make inferences that are exceptions
to the normal rule. Take a penguin for example. We know that
birds fly, but we know that a penguin is a bird that does not fly.
Classical logic would dictate that penguins should not exist. This
is of course absurd. Penguins most certainly exist (thankfully). We
therefore need a mechanism to cater for such exceptions. Using
the concept of defeasibility, we can extend classical logic and in-
troduce the notion of typicality, i.e. allowing statements that say
"birds typically fly".

Koons, Robert et al [9] describes reasoning as defeasible when
an argument is rationally compelling but is not deductively valid.
In other words, a statement is defeasible when the information it
presents does not highlight a strict relationship, and any conclusion
drawn from the statement is contextual rather than definitive.

As defeasible arguments are contingent(not necessarily false nor
necessarily true), they allow us to draw conclusions from sentences
that do not imply a specific answer. If for instance someone at-
tempts to cross a street, we could infer that typically they would
succeed in doing so. However, it is not definite. Our poor friend
may be having a particularly unlucky day and get hit by a truck,
and therefore would not succeed in crossing the street [9]. Hence,
our original inference was defeasible.

3.1 Non-Monotonicity in Logic
Defeasibility in logic allows us to "back-track" on conclusions

when presented with conflicting information. Suppose you were
told by a famed zoologist that mammals do not lay eggs, and that a
duck-billed platypus is a mammal. As you may be aware, a duck-
billed platypus lays eggs. Therefore, in traditional logic, there can
only be one conclusion. If a duck-billed platypus is an egg-laying
mammal, then it simply cannot exist. We however know that duck-
billed platypi do exist, and that they are indeed mammals. We
therefore note that a platypus must be an exception to our original
implication, and conclude that a duck-billed platypus is a mammal,

hence back tracking on our original conclusion that they did not
exist. This is a concept useful in autonomous systems, as it allows
machines to reason presumptuously about their environment, i.e.
presuming actions can be performed under certain conditions [9].

This feature of defeasibility is due to the fact that it is non-
monotonic, that is upon learning new information about a system
certain conclusions may be withdrawn. This is in contrast to mono-
tonic logic, such as propositional logic, where the addition of new
axioms(propositional sentences) to a knowledge baseK may never
decrease the conclusions that can be drawn from K [10].

3.2 Introducing Defeasiblity into Propositional
Logic

The work of Kraus, Lehman and Magidor (KLM) in [14] pro-
posed a set of natural properties of non-monotonic reasoning. In
doing so a further logical connective, known as defeasible or con-
ditional entailment, denoted with the symbol p∼ was introduced
to describe plausible inferences, such as the statement "if this is
a mammal then typically it should not be able to lay eggs". For
instance:

mammal p∼ ¬eggs
However, it is insufficient to to merely introduce conditional entail-
ment into the language of propositional logic without first defining
the semantics of the language in question.

3.2.1 Rational Consequence and the R Logic
KLM organised the essential characteristics of non-monotonic

reasoning into a hierarchy of systems, ordered from worst to best
according to the strength of the system. These were: Cumulative
Logic C, loop-cumulative logic CL and preferential logic P. Pref-
erential logic was further strengthened into KLM rational logic R
in [13], which is the logic we shall use to define the p∼ operator in
this paper. For R, authors Lehmann and Magidor outlined 7 key
properties of conditional entailment sets. Presented in the form of
inference rules, the properties of logic R include:

Reflexivity:
Conditional inference should imply itself

A p∼ A
Left Logical Equivalence (LLE):

Logically equivalent formulas should entail exactly the same
consequences

� A↔ B then (A p∼ C)→ (B p∼ C)

Right Weakening (RW):
All plausible consequences that potentially exist should be

accepted
� A→ B then (C p∼ A)→ (C p∼ B)

Cautious Monotonicity (CM):
Learning a new fact, the truth of which can be plausibly

concluded, should not nullify previous inferences
[(A p∼ B) ∧ (A p∼ C)]→ (A ∧B p∼ C)

Conjunction (And):
Conditional inference should obey propositional conjunction

[(A p∼ B) ∧ (A p∼ C)]→ (A p∼ B ∧ C)

Disjunction (Or):
Conditional inference should obey propositional disjunction

[(A p∼ C) ∧ (B p∼ C)]→ (A ∨B p∼ C)



Rational Monotonicity (RM):
Only additional information, the negation of which was expected,

should force us to withdraw plausible conclusions previously
inferred

[(A p∼ B) ∧ ¬(A p∼ ¬C)]→ [(A ∧ C) p∼ B]

The property CM is a characteristic of all KLM logics, while the
property RM distinguishes logic R from logic P. A defeasible as-
sertion that satisfies all 7 of these properties is called a rational
consequence relation [13]. The definition of rational consequence
in R is an important one, as R appears to simulate the key char-
acteristics of non-monotonic reasoning. Suppose for example the
conditional knowledge base:

K = dday p∼ lit_review
"Normally if it is d-day then I would write my literature review"

Suppose you began to panick in loom of your inevitable litera-
ture review deadline. In R, dday p∼ lit_review would not entail
dday ∧ panicking p∼ lit_review as in propositional logic, and
this is a desired property of p∼. In other words, if you "normally
write your literature review on d-day", it does not automatically in-
fer that you "normally write your literature review on d-days where
you are panicking" too.

3.2.2 Drawbacks of R
R is not without flaws however. We have just demonstrated that

by the non-monotonicity of the p∼ operator, α p∼ β does not en-
tail α ∧ γ p∼ β. Indeed, there may be scenarios in which we would
want to infer by default α∧β p∼ γ from α p∼ γ, with the possibility
to withdraw such an inference if we find it is inconsistent with the
knowledge base. For example, in instances where γ is irrelevant to
property β, we may tentatively infer that from dday p∼ lit_review
that dday ∧ raining p∼ lit_review ("normally if it is d-day, even
if it raining I will write my literature review"). Should we discover
however that raining does indeed stop me from writing my liter-
ature review, we would want to withdraw the initial inference. R
cannot handle irrelevant information in defeasible statements, such
as the example just illustrated [15].

3.3 Reasoning with a Defeasible Knowledge Base
in R Logic

The Rational closure of R is an algorithm allows us to perform
entailment over defeasible knowledge bases. It also allows us to
perform reasoning with consideration to the flaw outlined in 3.2.2 .

From a high-level overview, the way this algorithm works is that
each propositional sentence si in a knowledge base K is given a
rank, denoted with a natural number. The higher the ranking of the
formula, the more exceptional the formula is deemed to be [15].
Formally, this rank is known as a ranked interpretation R, and is
defined as pair 〈V,≺〉, where V is a subset of all the possible val-
uations of K and ≺ is a unique ordering of all of si. Lehmann
and Magidor showed that there exists a minimal R for any K, and
therefore each of si is interpreted as normally as possible. That is,
there some R that produces a minimal ordering of ≺s.

Given this, a defeasible sentence φ = A p∼ B is said to be in
the rational closure of K should the ranked interpretation of A be
strictly less than the ranked interpretation of A ∧ ¬B or where A
has no rank [12] [18]. The exact steps of this algorithm and the
minimisation of R are outlined by Casini and Straccia, and can be

found in [2].

3.3.1 An illustration of Rational Closure
Suppose the following (classic) example:

K =

f1 : penguin(nemo)
r1 : bird p∼ fly

r2 : penguin→ bird
r3 : penguin p∼ ¬fly

Where f1 is a fact, r1 and r3 are defeasible rules and r2 is a strict
rule. There is an obvious conflict. It is stated that birds typically fly
and a penguin is a bird. However it is also stated that penguins typ-
ically do not fly, leading to a (potential) contradiction. Specifically,
nemo cannot exist unless the contradicting statement is overruled.
Using the semantics of rational closure, the minimal ranked inter-
pretation R of K is given by:

R =
"least typical" 3 r2 : penguin→ bird

↑ 2 r3 : penguin p∼ ¬fly
"most typical" 1 r1 : bird p∼ fly

≺= (r1, r3, r2)

As we now have R, we have the ability to query K. Perhaps you
want to check "if something flies is it typically not a penguin?".
Formally, K �?fly p∼ ¬penguin. In this case, we need to check
that the rank of fly is less than the rank of fly∧¬(¬penguin). As
it happens, p∼ fly sits at rank 1, where as fly∧penguin, which can
be inferred from r2, sits at rank 3. Therefore, fly p∼ ¬penguin is
in the rational closure of K and we deduce that:

K � fly p∼ ¬penguin.

4. BAYESIAN NETWORKS
Formal logic systems are not the sole way to model real-world

phenomena. In fact, there exist more numerical ways of viewing
the world, as opposed to a simple binary system as in propositional
logic. One such way is through the lens of probability, which is a
method of quantifying the likelihood of events occurring. However,
the way we calculate the probability of an event happening in a
system is not straightforward. Certain events in the system may be
dependent on others, and to calculate the probability of some event
occuring one must consider the probability of the dependencies of
that event as well.

A Bayesian Network is a visual construct that allows us to repre-
sent such dependencies between probabilistic events in a structured
manner. It consists of a graph(a set of nodes and edges connect-
ing those nodes), depicting the relationships between random vari-
ables, and a set of probabilities associtated with those variables [3].
The random variables in a network are boolean in nature. They are
either true or false. Suppose we wanted to model the way rain in-
teracts with mood, in particular being sad. We would define two
random variables, rain which represents if it is raining, and sad
which represents if we are sad. If we know that the rain makes us
sad, this could represented by the following Bayesian Network:



rain sad rain P (rain)
true 0.1
false 0.9

rain sad P (sad|rain)
true true 0.6
true false 0.5
false true 0.4
false false 0.8

Figure 1: A Bayesian Network and its CPTs

The construction is formatted in such a way that making infer-
ences about an event in a system arranged as a Bayesian Network
is quite efficient. This is due to a variety of probabilistic reasoning
algorithms being developed that take advantage of the simple struc-
ture of a Bayesian Network. Before we formally define a Bayesian
Network, it is necessary to go over the necessary prerequisite prob-
ability theory. We do however assume some familiarity with basic
probability theory.

4.0.1 Bayes Rule
Bayesian Networks rely on Bayes Rule, which describes method

of revising probabilities in the light of new information [22]. This
is known as conditional probability, and is defined accordingly:

Let A and B be two events in some sample space S. Then, the
conditional probability of event B given that event A has occurred

is denoted with P (B|A), is given by:

P (B|A) = P (A,B)

P (A)

In other words, the probability ofB givenA is the probability ofA
and B occurring divided by the probability of A occurring.

This rule can restructured, as we know thatP (A,B) = P (A|B)·
P (B) from the definition, giving us:

P (B|A) = P (A|B) · P (B)

P (A)

Using this formula, we can calculate the probability of any event
A given any number of conditions Bi as P (B|A1, A2, ..., An)

4.0.2 Probability distributions
A probability distribution is a statistical function that maps all

the possible values that random variables in a system can take to
some probability [22]. For example suppose the system describing
rain and sad. Both rain and sad can each take one of two values,
true or false, leading to four potential states the system can take:

rain and sad
rain and not sad
not rain and sad

not rain and not sad

A probability distribution will then map each state to a certain prob-
ability, such that if you query the distribution with some state of the
system it will provide the probability associated with that state.

4.0.3 The Structure of a Bayesian Network
The content of the following section(5.0.3) cites Darwiche, A et

al [6]

Formally, a Bayesian NetworkBN is pair 〈DAG,CPT 〉, where
DAG is a directed acyclic graph and CPT is a set of conditional
probability tables. DAG nodes represent random variables, with
the edges that connect those nodes representing a dependency re-
lation. Variables are deemed independent of each other should no
edge directly connect them. The CPT of BN specifies probabil-
ity distribution of each of the variables and their respective parents
in the modelled system. There can only ever be one such CPT
specifying a network, and as such any Bayesian Network BN has
completeness and consistency guarantees.

The power in Bayesian Networks relies on the notion of variable
independence. Given a some variable x in BN , if we know the
values of the parents of x, then x is also independent from its chil-
dren. Due to this independence, in any computation only probabil-
ities associated with the variable in question need to be considered,
drastically decreasing computation time.

4.1 Bayesian Reasoning
A Bayesian Network would be useless construct should we not

be able to reason with the structure for information. There exist
several types of queries that can be used to reason with a Bayesian
Network, outlined by Darwiche in [6]. For the purposes of this
paper, we shall focus on the most obvious query available in a
BN , i.e. the probability-of-evidence query, which allows us to
query the network for the probability of certain events occurring
in the system. Given one or many evidence variables xi, the query
P (x1, .., xn) will output the probability associated with x1, .., xn.
This is done by use of an algorithm called Factor Elimination,
which sequentially removes variables that are not associated with
the query, eliminating the need to calculate the probability over all
the variables in the network. The details of this algorithm are cov-
ered by Darwich [6].

5. LOGICAL IMPLICATION IN BAYESIAN
NETWORKS

Ultimately, we seek an approach to Bayesian reasoning in which
we combine logical causality with a Bayesian Network in question
in hopes of further simplifying the said network. This can be done
as the nodes in a network are in reality propositional atoms holding
either a true or false value, and any dependencies depicted in the
network could be depicted as logical dependencies, albeit with a
certain probability attached to the relationship. For example, sup-
pose the following Bayesian Network:

A BC

P (A,B,C) = P (C) · P (A|C) · P (B|A)

Figure 2: Bayesian Network of A,B and C

You may notice that at a glance there seems to be a link between
logic statements and such a network. Specifically, we propose that
in non-monotonic logic this could be interpreted as the conditional
entailment of propositional atoms A and B as such:

A p∼ B
This construction would allow us to specify additional dependen-
cies within a Bayesian Network in the form of logical implica-
tions between atoms, such as C → B, which can be done as



Bayesian Network variables are largely independent from one an-
other. In attempting to develop such a model, we will look at how
this construction affects the structure of the network and its associ-
ated probabilities, and how to reason with it.

5.0.1 Classical Implication
Initially we aim to examine the consequence of a propositional

implication between Bayesian Network variables. Given such vari-
ables A,B and C from Figure 2 , if A → B our initial suspi-
cion is that P (B|A) = 1. Indeed, this would mean that vari-
ables A and B would collapse into some single variable D, where
P (D) = P (A|C).

C D = A→ B

P (C,D) = P (C) · P (A|C) · (P (B|A) = 1)

Figure 3: Bayesian Network of C,A→ B

5.0.2 Defeasible Implication
With the addition of defeasiblity, the construct becomes more

complex, as if A p∼ B we cannot deduce that P (B|A) = 1 as in
5.0.1 . We note however that if P (B|A) > 0 and P (B|A) < 1,
then it may imply that A p∼ B.

If this is the case, while rational closure is a suitable reason-
ing mechanism in non-monotonic logic, we are unable to deduce
what the effect of ranked interpretations of variables would be on
a Bayesian Network system. It is not obvious what the notion of
typicality means in Bayesian Network system. Nevertheless, in ex-
amining a combined mechanism we will attempt to formalise the
relationship between conditional entailment and conditional prob-
ability, ultimately with a formalism that resembles the follwing:

If A and B are variables in the Bayesian Network β such that:

A B

P (A,B) = P (A) · P (B|A)

Then, if A p∼ B ∃ a sequence of probabilities p where
∀qεp, 0 < q < 1, and q is the conditional probability

corresponding to a non-monotonic propositional sentence in the
minimal ranked interpretation R of some Knowledge Base K,

where K � A p∼ B. Suppose a function ξ, that selects the most
typical qεp given some logical rule φεV (R) of the form

φ = x→ y or φ = x p∼ y. Hence, if A p∼ B, then β becomes:

C = A p∼ B

P (C) = ξ(p, φ)

Essentially, to calculate the probability of this new node C, we
wish to assign probabilities to the rankings in R, and given some
logical formula φ we will determine how "typical" φ is according
the rankings and output the associated probability.

5.1 Alternative Solutions
The literature on integrating propositional logic into Bayesian

networks is well established. Pearl describes various mechanisms
for probabilstic reasoning in intelligent systems in his book [21],
and the work of Cozman and Mauá et al 2016 [20] describe how a
class of logics, known as Description Logics, can be used to repre-
sent Bayesian Networks.

There may be other ways to deal with the notion of A p∼ B in a
Bayesian Network. Most notably is the construct of fuzzy sets and
degrees of truth in Fuzzy Logic(a logic in which logical sentences
are assigned probabilties of occuring), which may aid in determin-
ing the degree of typicality implied by a non-monotonic statement
such as A p∼ B[16]. Furthermore is the idea of non-monotonicity
in fuzzy logic, as described by Castro, Trillas and Zurita et al 1995
[19], which can be used to deal with exceptions in much the same
way as propositional non-monotonic logic.

Other probabilistic logic systems do exist however. Probabilistic
Theorem Proving as described by Kautz and Singla et al 2016 [17]
allows for reasoning with uncertainity proving theorems in first or-
der logic, as well as checking the satisfiability of classical systems.
Plausible probabilistic reasoning systems are described

6. CONCLUSIONS
In this literature review, we concentrated on the properties of

logical reasoning systems, and how feasible an integration with
Bayesian Networks and these systems would be. As we have seen
from the literature, both classical and non-monotonic logic are well
established logic formalisms for reasoning. Specifically, they are
able to represent casual and typical relationships between variables,
and do so in an efficient manner.

The literature on Bayesian reasoning underlines the explicit struc-
ture of Bayesian Networks. In particular, we have identified that
the most valuable aspect of a Bayesian Network is the notion of
independence between variables that are not directly linked. This
specific property allows the probabilities in a Bayesian Network to
be calculated in a straightforward manner, where only the parents
of the node in question need to be considered for the calculation.

From an initial point of view, the fields of logic and Bayesian rea-
soning appear to have obvious synergy. In particular, the intersec-
tion of propositional logic and Bayesian Networks appear to pro-
vide an obvious mechanism of shrinking Bayesian Networks, and
therefore their associated complexity. However the same cannnot
be said of the intersection of non-monotonic logic and Bayesian
reasoning, as there a few glaring issues. Foremost, there is no
obvious way to correlate typicality with conditional probability.
There is also no formalism in the literature deals with defeasib-
lity in Bayesian Networks. Indeed, there is little to no literature on
the integration of such a defeasible reasoner with bayesian network
either, and as such we conclude these topics will need to be further
explored.

We propose that union of these two reasoning mechanisms would
allow us to essentially shrink the size of any given Bayesian Net-
work by supplementing the network with a logical knowledge base.
This would be done by viewing the variables in the network as
propositional atoms, and then using the knowledge base to draw
causality between these atoms. We deduce that in drawing a log-
ical implication between these variables that they combine into a
single variable with a single probability.

Overall, we have determined a key area in the intersection of
non-monotonic logic and Bayesian Networks that presents a gap in
the literature. We conclude that further research is required into the
role of logic and defeasibility in Bayesian Network reasoners, as



the theory behind such a combined system is largely underdevel-
oped and the benefits of which are unknown.

7. REFERENCES
[1] Hunter, A. (2002, July 1). Propositional Logic: Deduction and

Algorithms (Book Review). Studia Logica: An International
Journal for Symbolic Logic. Kluwer Academic Publishers.

[2] Casini G., Straccia U. (2010) Rational Closure for Defeasible
Description Logics. In: Janhunen T., Niemelä I. (eds) Logics in
Artificial Intelligence. JELIA 2010. Lecture Notes in Computer
Science, vol 6341. Springer, Berlin, Heidelberg

[3] Darwiche, A. (2010). Bayesian networks. Communications of
the ACM, 53(12), 80–90. doi:10.1145/1859204.1859227

[4] Delancey, C. (2017). A concise introduction to logic.
Geneseo, NY: Published by Open SUNY Textbooks, Milne
Library, State University of New York at Geneseo.

[5] Ben-Ari, M. (2012). Mathematical logic for computer science.
Springer Science & Business Media.

[6] Darwiche, A. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, Cambridge, 2009.

[7] Eiter, T., Gottlob, G. (2006). Reasoning under minimal upper
bounds in propositional logic. Theoretical Computer Science,
369(1), 82–115. doi:10.1016/j.tcs.2006.07.054

[8] Sipser, M. (2006). Introduction to the Theory of Computation
(Vol. 2). Boston: Thomson Course Technology.

[9] Koons, & Robert, (2005) Defeasible Reasoning, The Stanford
Encyclopedia of Philosophy (Winter 2017 Edition), Edward N.
Zalta (ed.)

[10] Bundy A., Wallen L. (1984) Non-Monotonic Reasoning. In:
Bundy A., Wallen L. (eds) Catalogue of Artificial Intelligence
Tools. Symbolic Computation (Artificial Intelligence).
Springer, Berlin, Heidelberg

[11] Antoniou, G., Dimaresis, N., & Governatori, G. (2008,
March). A system for modal and deontic defeasible reasoning.
In Proceedings of the 2008 ACM symposium on Applied
computing (pp. 2261-2265). ACM.

[12] Strasser, Christian & Antonelli, G. Aldo, (2001)
Non-monotonic Logic, The Stanford Encyclopedia of
Philosophy (Summer 2018 Edition), Edward N. Zalta (ed.)

[13] Lehmann, D., & Magidor, M. (1992). What does a
conditional knowledge base entail?. Artificial intelligence,
55(1), 1-60.

[14] Kraus, S., Lehmann, D., & Magidor, M. (1990).
Nonmonotonic reasoning, preferential models and cumulative
logics. Artificial intelligence, 44(1-2), 167-207.

[15] Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L.
(2013). A Semantics for Rational Closure: Preliminary Results.
In CILC (pp. 99-113).

[16] Bergmann, M. (2008). An introduction to many-valued and
fuzzy logic: semantics, algebras, and derivation systems.
Cambridge University Press.

[17] Kautz, H., Singla, P. (2016). Technical Perspective:
Combining logic and probability. Communications of the
ACM, 59(7), 106–106. doi:10.1145/2936724

[18] Booth, R., Casini, G., Meyer, T. A., & Varzinczak, I. J.
(2015, June). On the Entailment Problem for a Logic of
Typicality. In IJCAI (pp. 2805-2811).

[19] Castro, J. L., Trillas, E., & Zurita, J. M. (1998).
Non-monotonic fuzzy reasoning. Fuzzy Sets and Systems,
94(2), 217-225.

[20] Cozman, F., & Mauá, D. (2016). The Complexity of

Bayesian Networks Specified by Propositional and Relational
Languages.

[21] Pearl, J. (2014). Probabilistic reasoning in intelligent
systems: networks of plausible inference. Elsevier.

[22] Underhill, L., Bradfield D. (2014). INTROSTAT, Department
of Statistical Sciences, University of Cape Town


