
Propositional Typicality Reasoning using PT Entailment
Andrew Howe-Ely

University of Cape Town

hwland004@myuct.ac.za

ABSTRACT
Propositional Typicality Logic (PTL) is a logic that allows for ex-

ceptions to be made in the name of knowledge representation. It is

an extension of classical propositional logic with the addition of a

typicality operator. This paper provides the background of reason-

ing in PTL using entailment, and what this should seek to achieve.

Specifically one such proposed form is explored: PT Entailment. It

presents an implementation of PT Entailment as a proof of concept.

Testing of this implementation found it to be correct and produce

the correct minimal models and entailment results. However, it

proved inefficient, especially for large or complex knowledge bases,

with the algorithm having exponential complexity.

KEYWORDS
Defeasible Reasoning, Entailment, Non-monotonicity, Knowledge

Representation, Propositional Logic

1 INTRODUCTION
Propositional Typicality Logic (PTL) is a logic proposed by Booth

et al. [3] that includes the notion of typicality. The language of

PTL is that of classical propositional logic with the extension of the

typicality operator, •, which captures the most normal situations

in which a statement holds. This paper presents a description of

an algorithm for reasoning in PTL and its implementation, and

the necessary background. Reasoning in this setting amounts to

computing entailment. Two forms of entailment have been defined

for PTL [2]: one of these, PT Entailment, is presented in this paper.

While PTL is an extension of classical propositional logic, entail-

ment in it is based on the work in defeasible reasoning. Defeasible

statements are those of the form "typically if a, thenb". Reasoning in
a defeasible setting is non-monotonic, meaning conclusions can be

retracted if more information becomes known. A knowledge base

refers to a set of statements from which conclusions can be drawn.

Defeasible reasoning is done using Rational Closure, which is also

the basis of entailment in PTL. The language of PTL allows for the

creation of more expressive statements containing typicality. De-

feasible conditionals can only contain typicality in the antecedent

of a rule, whereas the • can be placed anywhere in a statement in

the language of PTL.

The motivation for PTL, and indeed defeasibility, is to express

the exceptions in a set of rules. This is easily done for humans in

the real world, as we can easily handle exceptions to general rules,

but becomes more complex to represent in logic. For example, we

know that while most birds fly, penguins are an exception. The

basis of classical propositional logic would not allow any excep-

tions, as these would bring up contradictions. To be able to express

exceptionality is therefore an interesting problem in the knowledge

representation and reasoning field of AI.

This paper describes an implementation of a reasoner for PTL

using PT Entailment by producing a wrapper around an existing

SAT Solver. A SAT Solver is an implementation of an algorithm

to solve the Boolean Satisfiability Problem, an NP-Complete prob-

lem. This can be used to compute classical entailment and check

satisfaction of sentences in classical propositional logic. My project

partner, Guy Green, focused on the implementation of the other

proposed form of entailment, LM Entailment.

The main aim of this project is to show that PT Entailment could

be implemented computationally and produce the same results

as those derived theoretically. This serves as a proof of concept

of the correctness of the algorithm. This paper will first give the

necessary background for classical and defeasible reasoning using

propositional logic in Section 2. Section 3 will provide the back-

ground of PTL and define 11 properties that the authors Booth et

al. put forward as appropriate for entailment in PTL, as well as the

result that they cannot all be satisfied at once. With this in mind,

PT Entailment is described along with the algorithm used to reason

in it. Section 6 describes the computational implementation of this

algorithm in the form of a program coded in Python and the results

of testing it using small knowledge bases.

2 BACKGROUND
In order to understand PTL, a description of the background work

is required. The starting point is propositional logic, since PTL is

an enriched version of classical propositional logic. Section 2.2 will

provide the background of defeasible reasoning.

2.1 Propositional Logic
Propositional logic is a logical system that builds up sentences from

propositional atoms and logic operators. Each atom represents

a value that is either true or false. Atoms are represented with

letters such as p and q. The connectives between atoms are the

following logic operators: And/Conjunction: ∧, Or/Disjunction: ∨,

Not/Negation: ¬, Implication:→ and Equivalence:↔. These are all

binary operators, besides negation. ⊤ and ⊥ mean unconditionally

true or false respectively. All of the other connectives and symbols

can be represented as a combination of negation, conjunction and

disjunction. This fact is important since in the implementation of a

propositional system everything will be broken down into those

terms.

A sentence built up from these atoms and connectives is either

entirely true or false. Let P be a set of propositional atoms, the

language L from P is built up of sentences α , β . Here α is state-

ment built from atoms such as p and q connected by the classical

operators.

An interpretation is what gives meanings to the symbols in a

sentence, it is a function which assigns a value of true or false to

every atom in a sentence. Each interpretation can also be referred to

as a possible world. For a sentence containing n atoms there are 2
n

interpretations. A valuation is another term for this same concept,

and is defined as a function v : P −→ {0, 1}. LetU be the set of all

possible valuations for P. These valuations can be represented as

binary strings or as a set of literals, e.g. if P = {p,q}, the valuation
where p is true and q is false can be written as 10 or as {p,¬q}.

A sentence is called satisfiable if there exists an interpretation

in which it evaluates as true. Notationally this is shown as: v ⊩ A,
where v is an interpretation that satisfies a sentenceA. A satisfying

interpretation is called a model.

From this, logical consequences can be defined. A sentence A is

a logical consequence of a set of sentences U if and only if every

model ofU is also a model of A. This is denoted byU |= A, and can

also be thought of as Mod(U) ⊆ Mod(A), where Mod(A) denotes
the models of A. This is the form of entailment used in a classical

setting. This form of entailment is monotonic. If we add a statement

to a knowledge base, anything entailed by the original knowledge

base will still be entailed.

To show how one can model the real world in propositional

logic, we take an example that will be referred back to later. The

classical Tweety example says that p → b, b → f . This can be

read as: penguins are birds and birds fly. From this we would reason

that penguins fly, or p → f . If we added the sentence p → ¬f ,
meaning penguins do not fly, we would reason that there are simply

no penguins.¬p would be a consequence, as well asp → f . This is a
demonstration of monotonicity, since more information was added

but the previous consequences still held. Clearly, this is not what

we desire in a situation where we want to handle exceptionality.

2.2 Defeasible Reasoning
Defeasible reasoning extends reasoning in propositional logic by

being able to deal with exceptions to rules. This allows for the

creation of statements that were not previously able to make in

classical propositional logic. Recall the Tweety example from propo-

sitional logic, where given an exception that penguins do not fly

lead us to conclude there are no penguins. With defeasibility we

say that birds typically fly, and then conclude that penguins are

simply exceptional birds that do not fly. In order to do this a new

connective is introduced: |∼. This is a new type of conditional. The

statement a |∼ b reads as: if a, then typically b. This approach is

referred to as the KLM approach and was investigated in Kraus et

al. [7]

Defeasible reasoning is non-monotonic, meaning when new in-

formation is added that conflicts with previous conclusions, these

conclusions can be withdrawn. If this were not the case one would

not be able to make the exceptions needed to express something as

typical.

The |∼ operator is said to be a preferential conditional since it has

the following properties, put forward by the authors Kraus et al.:

Reflexivity (Ref), Left Logical Equivalence (LLE), Right Weakening

(RW) and Cautious Monotonicity (CM).

(Ref) α |∼ α (LLE)
|= α ↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β , α |∼ γ

α |∼ β ∧ γ
(Or)

α |∼ γ , β |∼ γ

α ∨ β |∼ γ

(RW)
α |∼ β , |= β → γ

α |∼ γ
(CM)

α |∼ β , α |∼ γ

α ∧ β |∼ γ

Another property that |∼ has is Rational Monotonicity (RM).

From this we can say it is a rational conditional.

(RM)

α |∼ γ , α ̸ |∼ ¬β

α ∧ β |∼ γ

In Lehmann and Magidor [8] ordered structures called ranked

interpretations are used to reason with the defeasible conditional.

A ranked interpretation is an ordering of different interpretations

in the set V using the ordering ≺, but can be written as a partition

R = (L0, . . . ,Ln). The valuations lower down in the ordering are

the ones that are more typical. Valuations that are not in the ranked

model are defined as being on L∞. We say a ranked interpretation

is a ranked model of some set of conditionals if it entails every

conditional in that set. A new preference relation ⊴LM is defined

in Lehmann and Magidor’s work. This forms a partial order over

ranked interpretations. The intuition is that the ranked interpreta-

tion with the most typical valuations possible at the bottom of the

ranking should be preferred. Using this order, there is shown to be

a unique minimal ranked interpretation among all the ranked mod-

els. This work is derived from Lehmann and Magidor and further

developed by Booth and Paris [4] and Giordano et al. [5]. Reasoning

in this KLM framework is thought of as deriving new conditionals

from a set of conditionals C. The Rational Closure of the set C is

|∼rc

C
:= {(α , β) | Rrc(C) ⊩ α |∼ β}. The rational closure construc-

tion gives us a form of entailment for defeasibility. This is not the

only form of entailment for defeasibility, but it is the one which

entailment in PTL is based on. A second method of entailment is the

rational closure algorithm, which reduces entailment of defeasible

conditionals to a series of classical entailment checks.

Figure 1 shows a ranked interpretation for the knowledge baseK =

{b |∼ f ,p → b,p |∼ ¬f } when using rational closure. Let’s inter-

pret these as birds typically fly, penguins are birds, penguins typically
don’t fly. This ranked interpretation is a model for K , meaning it

satisfies it.

L2 : 111

L1 : 100 101

L0 : 000 010 110

Figure 1: A ranked interpretation for P = {b, f ,p}.

2.3 SAT
SAT refers to the Boolean Satisfiability Problem [9]. This problem is

to determine whether given a formula, there exists an interpretation

2

that satisfies it. This problem is NP-Complete, and there is no algo-

rithm that is known to solve each SAT problem. However, there are

SAT-algorithms that can solve SAT problems sufficiently for most

practical uses. In many cases, in order to solve SAT problems, the

formulas need to be in a specific format: Conjunctive Normal Form

(CNF). This form is the conjunction of several clauses of literals.

A literal is either a variable, or the negation of that variable. Each

clause is the disjunction of literals. For example, a clause would be

x ∨ ¬y. In this sense, the sentences must be an and of ors. Since
every other Boolean connective can be represented as a combi-

nation of ∨,∧ and ¬, it is possible to convert every propositional

sentence into CNF. However, sometimes this means the sentences

will exponentially grow. An example below shows the conversion

of such a sentence into CNF:

a ∨ (b ∧ c) −→ (a ∨ b) ∧ (a ∨ c) (1)

A formula in CNF can be checked for satisfiability by a SAT-

solver, an implementation of an algorithm that solves SAT. Several

implementations exist [6] and one was chosen for the implementa-

tion in Section 6.

3 PROPOSITIONAL TYPICALITY LOGIC
Propositional Typicality Logic (PTL) is an extension to propositional

logic by adding the typicality operator, •. It was introduced by

Booth et al [3] [2]. This operator captures the worlds that are most

typical. This means the sentence •α , meaning the situations in

which α is most typical, can now be part of the language. The

typicality operator can be put anywhere in the sentence, and α
itself can be a typicality sentence. The language of PTL sentences

is L•
. The sentence •b → f can be read as typical birds fly. This

has the same meaning semantically as b |∼ f , and will generate

similar results. However, the power of PTL is that the typicality

can be placed anywhere, not just in the antecedent of a rule. For

example, •b → •f is possible, and would read as typical birds are
typical flying things. This added expressivity allows for more varied

sentences which contain information about typicality.

Ranked interpretations are also used for the semantics of PTL.

Satisfaction of a sentence •α by v in R is defined as v ⊩ α and

there is nov ′
lower thanv in R such thatv ′ ⊩ α . In other words,v

must be the most typical world in which α holds in order to satisfy

•α . A ranked model of α is a ranked interpretation that satisfies

α . A PTL knowledge base, K , is a finite set of PTL sentences in

L•
. The models, Mod(K), of a knowledge base are the ranked

interpretations that satisfy the conjunction of all sentences in it.

3.1 Entailment in PTL
Entailment in PTL should also be defeasible. In fact there are a num-

ber of postulates suggested by Booth et al. that a form of entailment

for PTL could satisfy. However, they show the result that these can-

not all be simultaneously satisfied. This impossibility result means

that multiple forms of entailment are possible for PTL.

The authors define ranked entailment for a typicality knowledge

base, as K |=0 α if and only ifMod(K) ⊆ Mod(α). They show this

form of entailment to be unsuitable for PTL [2]. Ranked entailment

forms the underlying form of entailment for entailment in typicality.

For a typicality entailment relation |=•, its consequence operator

Cn• is the set of consequences of a knowledge base. It is defined as

Cn• := {α ∈ L• | K |=• α }. The consequence operator of ranked
entailment is defined similarly, and denoted Cn0 .

The first two properties are:

P1 K ⊆ Cn•(K) (Inclusion)

P2 Ifα ∈ Cn•(K), thenCn•(K∪{α }) = Cn•(K) (Cumulativity)

These two properties are satisfied by the consequence operators of

ranked entailment.

The following two properties satisfy the need for entailment in

PTL to be non-monotonic.

P3 For every K ⊆ L•
, Cn0(K) ⊆ Cn•(K), and for some K ′ ⊆

L•
, Cn0(K ′) ⊂ Cn•(K ′) (Ampliativeness)

P4 For some K,K ′ ⊆ L•
, K ⊆ K ′

but Cn•(K) ⊈ Cn•(K ′)

(Defeasibility)

Ampliativeness says that this form of entailment should give

at least as many consequences as the classical form of entailment.

While defeasibility is the condition that previously drawn conclu-

sions can be withdrawn upon the addition of more information.

The next property is that the defeasible conditional induced by

Cn•(K) should be a rational conditional, as defined previously, by

meeting all the rationality properties.

P5 |∼Cn•(K) is a rational conditional relation on L(Conditional

Rationality)

P5 would also imply P4. The next property is a strengthening of

P4.

P6 For every K ⊆ L•
, there is a ranked interpretation R s.t.

for all α ∈ L•
, α ∈ Cn•(K) if and only if R ⊩ α (Single

Model)

WhenK is a conditional knowledge base, made up of statements

of the form •α → β , the result should coincide with that of rational

closure.

P7 If K is a conditional knowledge base, then |∼Cn•(K)= |∼rc

K
(Extends Rational Closure)

The next property was shown to be satisfied by rational closure.

P8 Let α ∈ L. Then α ∈ Cn•(K) if and only if α ∈ Cn0(K)

(Strict Entailment)

This states that Cn• should produce the same results as ranked

entailment when the sentences do not contain the typicality opera-

tor.

P9 Let K be a conditional knowledge base and α ∈ L. Then

α ∈ Cn•(K) if and only if α ∈ Cn0(K) (Conditional Strict

Entailment)

This is a weaker version of strict entailment that only requires

it to hold for conditional knowledge bases.

P9′ Let K ⊆ L and α ∈ L. Then α ∈ Cn•(K) if and only if K

entails α in classical propositional logic. (Classical

Entailment)

This requires the form of entailment to coincide with classical

propositional entailment.

P10 Let α ∈ L. Then •⊤ → α ∈ Cn•(K) if and only if •⊤ →

α ∈ Cn0(K) (Typical Entailment)

This last property is similar to P8.

3

Booth et al. then provide the result that these cannot all be

satisfied at once.

Theorem 3.1. There is no PTL consequence operatorCn• satisfying
all of P1, P6, P8 and P10.

This means that more than one form of entailment is possible

for PTL, dropping certain properties. The authors point to this as a

result of the expressive nature of PTL. Two forms of entailment are

put forward, LM and PT Entailment. The latter being the focus of

this project and will be discussed more in the next section.

4 PT ENTAILMENT
PT Entailment is a form of entailment for PTL that satisfies Strict

Entailment, but not Conditional Rationality and therefore not the

Single Model postulate.

PT Entailment is based on the minimality of ranked models. The

algorithm to find minimal models can return multiple models. The

idea behind this is to preserve the presumption of typicality, which

corresponds to considering only models where valuations are as far

down as possible in the ranking, meaning more typical. To compare

ranked models a preference relation ⊴PT is introduced using a

function defined as the height function. The height of a valuation

in a ranked model is the number of the layer it is on, or if it is not

in the ranked model then the height is infinity.

Definition 4.1 (Height Function). For a ranked interpretation
R = (L1, ...,Ln) and valuation v ∈ V , hR(v) = i if 0 ≤ i ≤ n or∞
otherwise.

Using this height function the relation ⊴PT is defined. This rela-

tion is a preorder. When comparing two ranked interpretations, R1

and R2, R1 ⊴PT R2 if and only if the height of every valuation

in R1 is lower than its height in R2.

Definition 4.2 (Relation ⊴PT). For two ranked interpretations
R1 and R2, R1 ⊴PT R2 if and only if hR1

(v) ≤ hR2
(v) for every

v ∈ U. R1 ◁PT R2 if and only if R1 ⊴PT R2 and not R2 ⊴PT R1.

This relation is important as it tells us which models are more

preferred, with the PT-minimal models being the minimal models

according to this relation. The minimal models of a knowledge

base K is denoted bymin⊴PT
(Mod(K)). PT Entailment is formally

defined as:

Definition 4.3. K |=⊴PT α if and only ifmin⊴PT
(Mod(K)) ⊆

Mod(α)

To put this in words, it says a knowledge base entails a sentence

α if and only if every valuation in the PT-minimal models of K is

also a model for α . The consequence operator for PT Entailment is

CnPT . CnPT satisfies P1-4, P7 and P8-10.

4.1 LM Entailment
In comparison, LM Entailment satisfies every postulate except for

P8; Strict Entailment. The algorithm for LM Entailment returns a

single minimal model built by moving valuations up in the ranked

model if they do not satisfy a given knowledge base with respect

to the ranked model. This algorithm terminates when valuations

being moved up a level are the same as the previous iteration. This

is in contrast to PT Entailment, where multiple minimal models are

returned and valuations are not moved up the ranked models but

different models are tested.

5 PT ENTAILMENT ALGORITHM
PT Entailment requires us at look at different ranked interpretations

to determine minimal models. Here the algorithm for determining

these models will be presented.

The algorithm will return a set of PT-minimal models RK . To

do this systematically all possible interpretations of the atoms P

in a knowledge base K must be considered. First, all valuations

which do not satisfy classical statements in the knowledge base are

removed from the set of possible valuationsU. Then the power set

of the remaining valuations is computed, excluding the empty set.

Let’s call thisG. Each subset s ofG is considered and, starting with

the arrangement where every valuation is taken as most typical,

each set of equivalent ranked interpretations is considered for that

set of valuations. This is done by moving one valuation up a level

at every step. Ranked interpretations are equivalent in this case if

they have the same structure and are incomparable to each other

with respect to⊴PT . Starting with the ranked interpretation where

every possible valuation is on L0 is motivated by the fact that

this would be the minimal ranked interpretation under ⊴PT. A

ranked interpretation R1 is considered better than another, R2, if

R1 ⊴PT R2.

An arrangement can be represented as a number where each

digit represents a valuation, and its value the level it is on. Suppose

we have three interpretations v1, v2 and v3. We would start with

the arrangement 000. Then try 001, 010 and 100, and so on and so

forth until the arrangements we are trying are a linear ordering of

interpretations and there are no more ways to move valuations up.

As a rule there can not be an empty level between two levels, since

this is just equivalent to removing that level entirely. To denote this

let Ai be the set of arrangements in the ith iteration.

Every ranked interpretation is checked for satisfaction of the

typicality knowledge base. If it does indeed satisfy the knowledge

base, it is a model for it. This check is done by computing whether

for every valuation in the interpretation, it satisfies every sentence

in the knowledge base classically and with respect to the typicality

operator. When an atom has the typicality operator attached to

it, e.g. let’s say in the sentence •a → b, and we are checking

a valuation v . We also check whether, in the valuation we are

checking, it is indeed the typical case. This simply involves checking

what the lowest level an interpretation where a is true exists. If it is

the typical, i.e. lowest level for •a, we can evaluate it as a classical

statement, if not then •a is false and we evaluate by replacing it

with ⊥.

The set of minimal models for each subset s is denotedRs . When

a ranked model is found: only the equivalent arrangements are

considered and the search stops for that set of valuations. The justi-

fication for this is that any arrangements in a subsequent iteration

will be worse than the one already found. Once a model is found

for a set of valuations, that set is removed fromG. When a model

for a subset of size n is found, it is compared to every previously

found model. A model with n − 1 valuations in it can be worse than

one with n valuations in it, or it can be incomparable. However, it

cannot be better than it since at least 1 valuation will be on level

4

infinity. For any model found, let’s call it R, if it worse than a

previous model R ′
, i.e. R ′ ⊴PT R, then it is also removed from

the set of minimal models.

Once every possible subset has been checked the algorithm ter-

minates and returnsRK , a set of minimal models for a given knowl-

edge base K .

This algorithm is not very efficient for finding models, as it

requires going through every possible subset of a set of valua-

tions. This means it is checking exponentially many sets for models.

Similarly when looking for minimal arrangements, the number of

arrangements will blow up when the number of valuations being

arranged grows.

Once the minimal models have been found, to check entailment

for a statement is to check whether in every valuation in every

ranked model, the statement is entailed.

For a detailed version of the algorithm used to find minimal

models, see Appendix A.

6 IMPLEMENTATION
The main focus of this project is the implementation of PT Entail-

ment in code. This essentially comes down to building a wrapper

for a SAT-Solver, since the SAT-solver can check the satisfiability of

a series of statements. To do this my partner and I chose to use the

same SAT-solver: MiniSAT [10] and to code in Python. This SAT-

solver is a suitable fit for our purposes, and to interface with it we

used a pre-existing Python library called PyMiniSolvers, licensed

under the MIT license
1
. The code for the implementation can be

found on GitHub.
2
The main components of this implementation

are detailed as follows.

6.1 Language Representation
The input format for formulas was chosen to a readable approx-

imation of the sentences of PTL. The following table shows the

representation of each symbol:

Symbol Representation

∧ &

∨ |

¬ −

→ >

• ∗

An example of such a sentence would be *p > -f. These sen-
tences are input as strings. They should be properly bracketed to

read unambiguously, otherwise they are processed as being brack-

eted associatively from right to left. The user should input their

knowledge base as a series of strings each representing a sentence,

as well as the statement that is being checked for entailment.

Initially in the implementation, in order to represent typicality of

a sentence •α instead of just an atom •p, the sentence was instead
replaced by a new atom q and the new information that says α ↔ q
added to the knowledge base. This approach removes the possibility

of nested typicality operators. For example, if we have *(p & *q)

1
https://github.com/liffiton/PyMiniSolvers

2
https://github.com/AndrewHoweEly/PTR-PT-Entail

Figure 2: A Formula Tree from Ben-Ari [1]

we would introduce a new variable x and change the sentence to

be *x and add the new sentences x > (p & *q) and (p & *q) >
x. Unfortunately, this naive solution had the side effect of adding

more variables to the situation and makes entailing sentences with

typicality of more than just a single atom impossible.

The other data structures used were 2D arrays to represent a

RankedModel as well as sets and lists to represent sets of valuations.

A knowledge base is simply a list of sentences. Every valuation is

represented as a binary string, with a list of variables kept also used

to keep the ordering of the valuations in the string. For example

with a variable list [p, q] the valuation 10 would represent {p,¬q}.

6.2 SAT-Solving
Calls to the SAT solver in the MiniSolvers library must be in CNF

as in Section 2.3, with each clause being added separately to the

solver. A new variable needs to be created in the solver class for

each variable used in the clauses. An example set of clauses would

be: [1, 2], [-2]. Logically this is equivalent to (x1 ∨ x2) ∧ ¬x2.
This format only allows for sentences containing ands and ors.

Implementing this using only string manipulation proved difficult,

since some of the conversions require the negation of statements

and the rearrangement or propagation of ands and ors. To solve

this the string sentences are read into a binary tree format. This

idea was taken from the book on propositional logic by Ben-Ari [1].

The root of each tree is the operator with highest precedence and

the left and right nodes are those sentences or atoms on the left or

right of each operator. Figure 2 shows an example of such a tree

from Ben-Ari.

Several conversions need to be done to each formula tree. The

first is to convert an implication p → q into ¬p ∨q. This is done for
each > node in the tree. In order to convert to CNF; instances where

the disjunction of a conjunction takes place - an or of ands - must

be detected and converted so that the & takes precedence. This is
done recursively down the tree with the base case being the same

as Equation 1. Other tree operations include propagating negations

across conjunctions and disjunctions using De Morgan’s laws, e.g.

¬(p ∧ q) ↔ ¬p ∨ ¬q. The order of the conversion steps is: first

convert implications, then propagate negations and lastly convert

ors of ands. Once the tree has been processed it can be converted

5

into SAT form simply by producing an inorder string of nodes in the

tree, since it will now be in the correct CNF format. The sentence

is split on & and each substring becomes its own clause. The list of

variables is used to align the variables used in the SAT Solver with

the relevant atoms.

6.3 Checking Satisfaction
An important step in the algorithm for finding minimal models is to

check whether an interpretation satisfies a knowledge base K . For

a single valuation this means checking whether the conjunction of

the valuation, itself a conjunction of literals e.g. 11 or {p,q} becomes

p ∧ q, and K is satisfiable. This is easy to pass to the SAT-Solver.

To determine whether a ranked interpretation R satisfies K , we

check whether every valuation in R satisfies the K with respect to

the ranked structure.

For each valuation, a new knowledge base is created using the

ranks. For every sentence in K , it is checked for statements of the

form •α , where α is either a sentence, a single atom or the sentence

which is just the negation of one atom. If the valuation is on the

same level as the most typical occurrence of α , i.e. the lowest level
with a valuation where α is true, we simply remove the occurrence

of the typicality operator and check sentence classically. If it is not

the most typical level, we replace •α with p ∧ ¬p, where p is an

atom in the variable list, since this is equivalent to false. Where

α is just equivalent to p or ¬p for some atom p, we only have to

see where the lowest level a valuation with 1 or 0 respectively in

p’s position is. Otherwise, it is a task for the SAT-Solver method to

check each valuation for satisfaction of α .
What is happening here is that on the most typical level we can

simply check whether a sentence is satisfied classically, without

regard to the typicality. But when the typicality is false we cannot

evaluate the sentence as it was classically. Suppose we have the

statement •b → f , typical birds fly, and an interpretation that does

not correspond to •b. Then, replacing the left hand side with false,

the statement as a whole would be true, since we are not looking

at the most typical birds.

If every valuation satisfies its new knowledge base, the entire

ranked interpretation is indeed a ranked model.

6.4 Generating PT Minimal Models
The algorithm to find PT minimal models starts by generating the

power set of the set of all valuations. Then valuations which do

not satisfy the classical statements in the knowledge base, i.e. those

without *, are thrown out. The largest subset is considered first

and for each subsequent subset the same procedure follows. Pos-

sible arrangements of valuations in a ranked model are generated

recursively and are tested to see whether they form a model.

To generate possible arrangements, each is represented as a

string of digits where every digit represents the level of a valuation.

An algorithm to produce these one iteration at a time was used.

Each subsequent iteration returns all the ways of adding 1 to ex-

actly one digit in every arrangement in the previous iteration. The

procedure starts with the arrangement 0..0 and iterates until no

new arrangements are created, discounting repeated arrangements

as well invalid arrangements, i.e. those with empty levels.

Each set of valuations is converted into a ranked interpretation

corresponding to an arrangement in the current iteration of ar-

rangements. Then, if that ranked interpretation is a model for the

knowledge base it is added to the list of models found. Only those

which are PT-minimal are kept and returned. This is done by com-

paring each model found to those previously found using the ⊴PT

relation. A ranked model is preferred if every possible valuation is

on an equal or lower level in the model to those in another model.

Those valuations not in a ranked interpretation are effectively on

level ∞.

A possible optimisation that was considered was to discard every

subset of a set of valuations if a rankedmodel is found for that subset.

However, this resulted in not every minimal model being returned,

so was not viable. See Section 6.6 for an example that shows a

minimal model formed from a subset of another model. This initial

algorithm looked at the maximum set of subsets before throwing

each set out. However, since we do not discard any subsets we are

in effect just looking at every set and are only going in decreasing

order of size.

6.5 Computing Entailment
Entailment is implemented by repeatedly checking classical entail-

ment for each valuation in a model as well as the additional typical-

ity check. The way classical entailment is checked is by adding the

negation of the sentence being checked to the rest of the knowledge

base and entered into the SAT-solver. If this returns false, it means

the sentence is indeed entailed. This is becauseK |= α is equivalent

to K ∧¬α being unsatisfiable, since there is no model that satisfies

both the knowledge base and the negation of the sentence.

To check if a knowledge base PT-entails a sentence, first find all

PT-minimal models. Then for every minimal model, every valuation

on every level is checked to see if it entails that sentence with

respect to the ranked model. The sentence is modified to remove

typicality instances following the same scheme as in Section 6.3,

which comes down to checking if an typicality sentence •α is typical

on each valuation’s level and if that valuation entails α . If there is a
valuation on a level that does not entail its modified sentence then

the entire check returns false.

6.6 Testing
Testing was done on small knowledge bases. These are just toy

examples, but the results of the entailment algorithm match the

theoretical expectation. For example, with a knowledge base of

{•p → ¬f , •b → f ,p → b} we generate the ranked model found

in Figure 1. A property of PT entailment is that if we only con-

sider statements of the form a |∼ b as in that example, we get the

same single ranked model as in LM Entailment. From this we can

successfully entail •b → ¬p.
Results follow for small knowledge bases with a small number of

atoms, usually producing only one minimal model. Testing against

the results from my partner, Guy Green, gives the same answers for

these small problems. This shows it is correct for small knowledge

bases.

However, due to the nature of checking each possible ranked

interpretation, the complexity of the algorithm is extremely large.

Consider the fact that for each sentence with n atoms there are 2
n

6

interpretations. Then the number of possible non-empty subsets of

these interpretations is 2
2
n
− 1. And each of these subsets must be

checked for all possible arrangements, which again can be expo-

nentially many. This makes the algorithm very inefficient for large

knowledge bases.

An example from the Booth 2015 paper is K := {•⊤ → (¬p ∧

¬r), •p → •¬f , •r → •f }, in other words "the most typical things

are neither penguins nor robins, typical penguins are typical non-

flying birds, and typical robins are typical flying birds". This example

can be modeled, converting the typicality of ⊤ into p ∨ ¬p, in the

implementation as:

["(*(p|-p))>(-p&-r)", "*p>*-f", "*r>*f"].
The resulting minimal models generated match with those PT

minimal models found in the paper:

R1 L0 : {¬f ,¬p,¬r } { f ,¬p,¬r }

R2

L2 : { f ,p,¬r }

L1 : {¬f ,¬p,¬r } {¬f ,p,¬r }

L0 : { f ,¬p,¬r }

R3

L2 : {¬f ,¬p, r }

L1 : { f ,¬p, r } { f ,¬p,¬r }

L0 : {¬f ,¬p,¬r }

Figure 3: PT Minimal Models

Note that R1 is the model produced by LM Entailment and its

set of valuations is a subset of R3.

Some expected results of entailment from Booth et al. [2] are

that •¬p → ¬r is entailed by the knowledge base, or more specifi-

cally from the PT Minimal models. This entailment is true in the

implementation so we can reason that typical non-penguins are
not robins. Two more examples are that neither •¬p → ¬f nor

•(¬p ∧ f) → ¬r are entailed by the knowledge base. The imple-

mentation correctly produces false for both of these and they are

therefore not in CnPT(K).

These tests produced the correct minimal models and the correct

entailment results. This means that the implementation is indeed

a successful proof of concept for PT Entailment, even though it is

not a highly efficient implementation.

7 CONCLUSIONS
The focus of this report was the implementation of PT Entailment

for the logic PTL. The approach was to first detail what PT En-

tailment means theoretically, with the necessary background in

propositional and defeasible logic provided. Several potential prop-

erties that entailment in PTL should satisfy are given, with the

result that it is not possible for all of these postulates to be satisfied

at once. Instead, PT Entailment satisfies the subset P1-4, P7 and P8-

10 of these properties. PT Entailment therefore produces different

results to that of LM Entailment. This was indeed shown by the

respective implementations.

An implementation of PT Entailment was created that matched

the high level theoretical description. This was achieved by creating

a wrapper in Python around the MiniSAT SAT Solver and using

an open source library to interface with it. This implementation

serves as a successful proof of concept for PT Entailment computa-

tionally. Testing on small knowledge bases gives the same results

as can be derived theoretically. Specifically, using examples from

the literature produced the same minimal models and entailment

consequences. However, the implementation also proved ineffi-

cient as the complexity of the algorithm is exponential. This stems

not only from the specific implementation but also its theoretical

description.

Future work that could be done in this area would be to optimise

the algorithm for finding PT minimal models on a theoretical as

well as computational level.

8 ACKNOWLEDGEMENTS
Thank you to my partner, Guy Green, and my supervisor, Professor

Tommie Meyer, for their help.

REFERENCES
[1] Mordechai Ben-Ari. 2012. Mathematical logic for computer science (3 ed.). Springer

Science & Business Media.

[2] Richard Booth, Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2015. On

the Entailment Problem for a Logic of Typicality. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI). 2805–2811.

[3] Richard Booth, Thomas Meyer, and Ivan Varzinczak. 2012. PTL: A Propositional

Typicality Logic. In Proceedings of the 13th European Conference on Logics in
Artificial Intelligence (JELIA) (LNCS), L. Fariñas del Cerro, A. Herzig, and J. Mengin

(Eds.). Springer, 107–119.

[4] Richard Booth and Jeff B Paris. 1998. ANote on the Rational Closure of Knowledge

Bases with Both Positive and Negative Knowledge. Journal of Logic, Language
and Information 7, 2 (1998), 165–190.

[5] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2012.

A minimal model semantics for nonmonotonic reasoning. In Logics in Artificial
Intelligence. Springer, 228–241.

[6] Weiwei Gong and Xu Zhou. 2017. A survey of SAT solver. AIP Confer-
ence Proceedings 1836, 1 (2017), 020059. https://doi.org/10.1063/1.4981999

arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4981999

[7] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic

reasoning, preferential models and cumulative logics. Artificial Intelligence 44
(1990), 167–207.

[8] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-

edge base entail? Artificial Intelligence 55 (1992), 1–60.
[9] Bart Selman, Henry A Kautz, Bram Cohen, et al. 1993. Local search strategies for

satisfiability testing. Cliques, coloring, and satisfiability 26 (1993), 521–532.

[10] Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a sat solver with conflict-

clause minimization. SAT 2005, 53 (2005), 1–2.

7

https://doi.org/10.1063/1.4981999
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.4981999

A PT-MINIMAL ALGORITHM

Procedure PT-minimal(K)

Input: K, U

Output: RK //RK is the set of the PT-minimal models of K

1 U := {v ∈ U | v ⊩ α, α ∈ K ∩ L} // U is restricted to valuations

that satisfy the classical statements in K ;

2 RK := ∅;

3 G :=P(U) \ ∅;

4 repeat
5 foreach s ∈ max⊆(G) do
6 Rs := ∅;

7 i = 0;

8 A0
:= {”0...0”} // A is the set of arrangements to be

considered;

9 repeat
10 foreach a ∈ Ai do
11 if Ra ⊩ K then
12 Rs := Rs ∪ Ra ;

13 i := i + 1;
14 if Ai = ∅ then
15 break

16 until Rs , ∅;

17 foreach R ∈ RK do
18 foreach R′ ∈ Rs do
19 if R ⊴PT R′ then
20 Rs := Rs \ R′

;

21 RK := RK ∪ Rs ;

22 G :=G \ s ;

23 untilG = ∅;

24 return RK

8

	Abstract
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 Defeasible Reasoning
	2.3 SAT

	3 Propositional Typicality Logic
	3.1 Entailment in PTL

	4 PT Entailment
	4.1 LM Entailment

	5 PT Entailment Algorithm
	6 Implementation
	6.1 Language Representation
	6.2 SAT-Solving
	6.3 Checking Satisfaction
	6.4 Generating PT Minimal Models
	6.5 Computing Entailment
	6.6 Testing

	7 Conclusions
	8 Acknowledgements
	References
	A PT-Minimal Algorithm

