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ABSTRACT
Propositional Typicality Logic (PTL) is a recently proposed form
of logic. It extends Classical Propositional Logic by the addition of
Typicality with the typicality operator (•). The typicality operator
is based on and extends the work done in the KLM-Approach with
the defeasibility operator (|∼) first suggested by Kraus et al [9]. The
extension is that the typicality operator is an unary operator, while
the defeasibility operator is a binary operator.
There have been two forms of entailment for PTL suggested by
Booth et al [2]: they are LM and PT Entailment. Both of these forms
of entailment are extensions of the Rational Closure Construction
and Algorithm first shown in Lehmann and Magidor [11] for De-
feasibile Reasoning. Both forms of entailment focus on satisfying a
different subset of properties.
This paper is a proof of concept of an implementation of LM En-
tailment, reducing the entailment problem in PTL to a series of
Classical Entailment checks which are effected by a SAT-Solver.
The reduction is achieved by performing the algorithm put forward
for LM-Entailment to make the LM Preference Relation, then con-
verting this ranked model to be compatible with the SAT-Solver.
This paper shows a successful proof of concept of an LM-Entailment
implementation, having been successfully testedwith sample knowl-
edge bases. Possible future work could include producing sample
knowledge bases to test all the properties of entailment in PTL and
to theoretically produce the Ranked Models that LM Entailment
produces with these knowledge bases. Working on the efficiency
of the implementation is also a possibility, as this was not focused
on in this paper
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1 INTRODUCTION
Propositional Typicality Logic (PTL) is a (newly) proposed logic[4],
which is an extension of Classical Propositional Logic. It extends
Classical Propositional Logic by adding the Typicality Operator (•).
The intended purpose of adding the notion of typicality to Classical
Propositional Logic would be to expand for cases in which the
sentence could be false without making the model inconsistent.
The most typical cases, the sentence will be true, but otherwise it
will not, allowingmore expressibility and better exception handling.
In the example of the tweety knowledge base, it allows for sentences:

• Typical birds fly: •b → f
• Penguins are birds: p → b
• Typical penguins don’t fly: •p → ¬f

In this knowledge base, it would concluded that Penguins are not
typical birds. The equivalent knowledge base in Classical Proposi-
tional Logic would be:

• Birds fly: b → f
• Penguins are birds: p → b
• Penguins don’t fly: p → ¬f

In this knowledge base, it would be concluded that there are no
penguins, which does not necessarily give an accurate reflection of
what is being modeled.
PTL is built upon the work done in Defeasible Reasoning with
the addition of the defeasibility operator (|∼). This is called the
KLM-Approach [9]. It extends this work by allowing the typicality
operator anywhere in the sentence. This is not the case for the
defeasibility operator because it is binary, whereas the typicality
operator is unary.
Because the operator is unary, PTL adds more expressibility than
the KLM-Approach. This is important for a number of reasons:
it puts forward a relatively simple logic in terms of number of
operators; it is very expressive; and it provides a more accurate
modeling of situations.
Despite not havingmany operators, difficulties do arise with regards
to entailment and reasoning due to the extra expressibility. Booth et
al [2] proposed two different methods for entailment in PTL: LM and
PT entailment. These are both extensions of the Rational Closure
Construction and Algorithm initially suggested for reasoning for
the KLM-Approach (Lehmann and Magidor [11]).
This paper focuses on a proof of concept of the implementation of
Entailment in PTL, focusing on LM-Entailment, while my project
partner, Andrew Howe-Ely, focuses on a proof of concept of the
implementation of PT-Entailment.

2 BACKGROUND
2.1 Classical Propositional Logic
Classical Propositional Logic forms the basis of all other logics.
It is made up of boolean operators and propositional atoms [1].
Propositional atoms are generally represented by lower-case letters
and either have a value of true or false.
In the context of logics, the assigning of meaning to a symbol is
called an interpretation. In propositional logic, this is just assigning
a true or false value to an atom. Interpretations refer to each atom
in a given knowledge base having been assigned either a true or
false value. The concept of interpretations is vital in later sections,
especially with regards to reasoning and entailment in the different
logics.
The important boolean operators in Propositional logic are:

• Implication (→)



• Disjunction/Or (∨)
• Conjunction/And (∧)
• Equivalence (↔)
• Negation/Not (¬)

All of these operators are binary operators, with the exception of
the negation operator, which is unary. The left hand side of a bi-
nary boolean operator is generally referred to as the antecedent
and the right hand side, the consequence. Combinations of these
boolean operators and propositional atoms are built up to make up
sentences which can be used to describe situations or rules which
are to be modeled. Sentences can be valued as either true or false
relative to interpretations. Groups of sentences can be made that
describe a situation in as much detail as possible. A group of sen-
tences grouped together to describe a specific situation is known
as a Knowledge Base (K).
Entailment is the crucial part of reasoning in logics. Interpretations
are fundamental to the idea of reasoning. Sentences are called sat-
isfiable if there is a minimum of one interpretation in which the
sentence is true. To assess whether or not a sentence entails from a
knowledge base, the first step is to produce the set of interpretations
that make the conjunction of all the sentences in the knowledge
base satisfiable. We call the set of interpretations that makes the
conjunction of a set of sentence(s) the model of that set of sen-
tence(s). The second step is to take the model of the sentence that is
being checked (whether or not it entails from the knowledge base).
It can be said that a sentence, α , entails from a knowledge base, K ,
(K |= α ) if and only if the model of the knowledge base is a subset of
the model of the sentence (Mod(K) ⊆ Mod(α)).Entailment in Clas-
sical Propositional Logic can be reduced to a Boolean-Satisfiability
problem.
The Boolean-Satisfiability Problem[8] is given a boolean formula,
is there an interpretation that exists that satisfies it. It is often re-
ferred to as the SAT Problem. This is exactly the question that is
being asked in entailment. This problem is a known NP-complete
problem [6]. SAT-Solvers have been created to solve this problem.
In this paper SAT-Solvers are used to help with the implementation
of LM-Entailment.

2.2 Defeasible Reasoning
Classical Propositional Logic is not capable of dealing with excep-
tions as has been shown in the tweety example. A way to fix this
problem is the addition of a binary operator called the Defeasibility
Operator(|∼) to Classical Propositional Logic - also called the KLM-
Approach - first introduced by Kraus, Lehmann and Magidor[9].
This allows for a sentence to have exceptions.
Kraus, Lehmann andMagidor [9] also discuss the properties (shown
below) that defeasibility operator has that make it a preferential
conditional. It also satisfies the property of Rational Monotonicity
(RM; shown below) and so is said to be rational conditional.

(Ref) α |∼ α (LLE) |= α ↔ β, α |∼ γ

β |∼ γ

(And) α |∼ β , α |∼ γ

α |∼ β ∧ γ
(Or) α |∼ γ , β |∼ γ

α ∨ β |∼ γ

(RW) α |∼ β , |= β → γ

α |∼ γ
(CM) α |∼ β , α |∼ γ

α ∧ β |∼ γ

(RM)
α |∼ γ , α ̸ |∼ ¬β

α ∧ β |∼ γ
An example of using the KLM-Approach is as follows: In the knowl-
edge base that contains the atoms, {p,b, f }, where p, b and f stand
for penguins, birds and fly respectively. The sentence b |∼ f says
typically if birds is true then fly (or can fly) is true but it also allows
for the exception that a penguin is a bird that cannot fly
With this addition, entailment and reasoning becomemore complex.
Lehmann and Magidor [11] suggest the concept of Ranked Inter-
pretations - an ordered structure of interpretations ranked on their
typicality. This allows for the concept of entailment and reasoning
to be possible with regards to the defeasibility operator.
The Rational Closure Construction and Algorithm was suggested
[11] as the primary method to produce the Ranked Interpretation
structure and check entailment in Defeasible Reasoning. They also
showed that the Rational Closure Construction and Algorithm pro-
duces a minimal ranked model that represents the most typical
situation of the world. The concept of a minimal ranked model is
crucial in later sections. Slight adaptions to the concept of Ranked
Interpretations have been made by Booth and Paris [5] and Gior-
dano et al. [7] Once we have this ranked interpretation structure,
entailment in the KLM-Approach can be reduced to a Boolean Sat-
isfiability Problem.
In the tweety example in KLM-Approach, the knowledge base is as
follows:

• b |∼ f (Birds typically fly)
• p → b (Penguins are birds)
• p |∼ ¬f (Penguins typically do not fly)

The Rational Closure Construction and Algorithm produces the
Ranked interpretation structure shown in Figure 1. The first value
represents the boolean value for penguin. The second value repre-
sents the boolean value for bird and the third value represents the
boolean value for flying.

L∞ : 100 101
L2 : 111
L1 : 010 110
L0 : 000 001 011

Figure 1: The Ranked Interpretation structure for the tweety
example

2.3 Propositional Typicality Logic (PTL)
Propositional Typicality Logic (PTL) is newly proposed extension to
Classical Propositional Logic. PTL is Classical Propositional Logic
with the addition of the Typicality Operator (•). While the typicality
and defeasibility operators are fairly similar, a major difference lies
in the former’s being unary, which allows it to be anywhere in the
sentence. The defeasibility operator, being binary, only allows for
typicality on the antecedent.
An example of the typicality operator being used is as follows: in
the knowledge base that contains the atoms, {pa,p,b, f }, where
pa, p, b and f stand for parrots, penguins, birds and fly respectively.
The sentence •b → f is equivalent to b |∼ f in the KLM-Approach.
But PTL allows for the extra expressibility of saying a sentence like
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parrots are typical birds or pa → •b.
Entailment with PTL also makes use of Ranked Interpretation struc-
tures or Ranked Models. For the statement •α to be considered
satisfiable in the knowledge base, it must be true on the most typi-
cal level of α only in a ranked model. Entailment for PTL will be
elaborated on in later sections of the paper.

3 ENTAILMENT FOR PTL
With the extra expressibility of PTL come challenges with the pro-
cess of Entailment and Reasoning in PTL. In Booth et al [4], they
show that the same Rational Closure Algorithm that is used in De-
feasible Reasoning no longer works for PTL. Therefore adaptions
need to be made for PTL for working out entailment.
Booth et al [3] [2] put forward ten postulates with regard to typ-
icality which the consequence operator would need to satisfy in
order for the rational closure algorithm to be able to be applied.
The consequence operator is the set of all the consequences of a
given knowledge base, which is basically the set of everything that
can be reasoned from a given knowledge base. They show that, in
the case of TL, it is impossible for all ten postulates to be satisfied
simultaneously. This result is referred to as the Impossibility Result.

3.1 Impossibility Result
If we are given an entailment relation |≈? for PTL (L), the associated
consequence operator can be shown to beK ⊆ L•, Cn?(K) := {α ∈
L• | K |≈? α }.[2] The consequence operator therefore is simply
being defined as all the sentences (α ) that entail from the knowledge
base (K) in the given language (L).
With the Entailment Relation and the Consequence operator given
above, the ten postulates put forward are as follows [3]:

P1 K ⊆ Cn?(K) (Inclusion)
P2 If α ∈ Cn?(K), then Cn?(K ∪ {α }) = Cn?(K) (Cumulativ-

ity)
P3 For every K ⊆ L•, Cn0(K) ⊆ Cn?(K), and for some K ′ ⊆

L•, Cn0(K ′) ⊂ Cn?(K ′) (Ampliativeness)
P4 For some K,K ′ ⊆ L•, K ⊆ K ′ but Cn?(K) ⊈ Cn?(K ′)

(Defeasibility)
P5 |∼Cn?(K) is a rational conditional relation on L(Conditional

Rationality)
P6 For every K ⊆ L•, there is a ranked interpretation R s.t.

for all α ∈ L•, α ∈ Cn?(K) if and only if R ⊩ α (Single
Model)

P7 If K is a conditional knowledge base, then |∼Cn?(K)= |∼rc
K

(Extends Rational Closure)
P8 Let α ∈ L. Then α ∈ Cn?(K) if and only if α ∈ Cn0(K)

(Strict Entailment)
P9 Let K be a conditional knowledge base and α ∈ L. Then

α ∈ Cn?(K) if and only if α ∈ Cn0(K) (Conditional Strict
Entailment)

P9′ Let K ⊆ L and α ∈ L. Then α ∈ Cn?(K) if and only if K
entails α in classical propositional logic. (Classical
Entailment)

P10 Let α ∈ L. Then •T → α ∈ Cn?(K) if and only if •T →
α ∈ Cn0(K). (Typical Entailment)

In Booth et al [3] [2], these postulates are discussed and it is proven
that they cannot all be satisfied simultaneously in PTL, producing
the impossibility result. This means that more than one form of
entailment is possible for PTL. Each form of Entailment can satisfy
different subsets of the postulates. Two forms of Entailment have
been suggested for PTL: LM and PT Entailment. Choosing between
the two forms of entailment is in accordance with what postulates
are needed to be satisfied in the specific situation.

3.2 PT Entailment
PT Entailment satisfies all the postulates except Conditional Ra-
tionality and Single Model. It is an an algorithm that focuses on
making sure that the presumption of typicality (from Lehmann
[10]) is maintained. It can produce more than one ranked model.
My project partner, Andrew Howe-Ely focuses on the elaboration
of PT-Entailment and its implementation, while this paper focuses
on LM Entailment and its implementation.

4 LM ENTAILMENT
LM Entailment focuses on extending the Rational Closure Construc-
tion and Algorithm from Conditional Knowledge Bases to Typical
Knowledge Bases in PTL. It also focuses on keeping the property
of having a Minimal Model as a main property. The Minimal Model
created in LM-Entailment is referred to as the LM preference rela-
tion (⊴LM).
It is important to note that it must satisfy the Conditional Rational-
ity (P5) and, therefore, the Single Model (P6) Postulate. It is also im-
portant to note that LM-Entailment also satisfies Conditional Strict
Entailment (P9) and Classical Entailment (P9’). LM-Entailment ac-
tually satisfies all the postulates except Strict Entailment (P8).
The algorithm suggested in Booth et al [2] to create the LM-Preference
relation is shown below. U represents the set of all interpretations,
Li represents the i-th level of the Ranked Model(R).

Step 1 Start with an initial Ranked Model where all the inter-
pretations are on the first level: L0 = U

Step 2 Separate the interpretations which do not contradict the
knowledge base with regards to the current ranked model
from those that do. The set that does contradict is defined as
C. This is shown as Ci := JKKRi

Step 3 If the set of interpretations being moved is equivalent
to the current level, return the current Ranked Model with
the current level set to the infinite level: If Ci = Li , return
Ri

Step 4 If not move all the interpretations in Ci up a level
(Li+1 = Ci ) in the Ranked Model (creating a new Ranked
Model) and go to Step 2.

In Booth et al [2], it is shown that this algorithm always terminates,
produces a ranked model and that the ranked model produced is the
LM minimal model. Therefore this algorithm is all that is needed
to produce the ranked model needed to perform entailment checks
in LM Entailment.
With this Ranked Model, LM-entailment can be reduced to classi-
cal entailment checks which can be performed with a SAT-Solver.
Therefore, this algorithm is crucial in the proof of concept of a LM
Entailment Implementation.

3



5 LM IMPLEMENTATION
The LM Entailment Implementation 1 is the main focus of this paper.
The implementation was done in Python. It falls into three major
components: a SAT-Solver, Conversion and the Entailment Check
Algorithm. Each of these components are discussed in the next few
section.

5.1 SAT-Solver
SAT-Solvers are used to solve the Boolean Satisfiability Problem.
The Boolean Satisfiability problem is a known NP-Complete Prob-
lem. Many Logic Problems, including entailment in PTL, can be
reduced into a Boolean Satisfiability Problem.
The implementation of both LM and PT Entailment in this way
transforms into building a wrapper around a SAT-Solver. Both my
partner and I decided to use the Python implementation MINISAT,
licensed by MIT, for our implementations.2. The implementation
of the MiniSAT is called PyMiniSolvers.
The implementation of both entailment methods transforms into
using the algorithm described in Booth et al [2] to create the ranked
model(s).It then converts the relevant ranked models, knowledge
bases and sentences into a format that is compatible with the SAT-
Solver.
The SAT-Solver takes takes a 2D list in as input and produces True
or False as an output. It takes in the atoms as numbers rather than
letters. If the SAT-solver produces True, then the sentences and in-
terpretations that have been passed into it are consistent with each
other. If it produces False, then the sentences and interpretations
that have been passed into it the SAT-Solver are inconsistent with
each other.
A couple of examples of the format that is passed into SAT-Solver
are as follows:

[[1, 2], [3, 4]]
[[−1], [2, 3]]

These statements represent (a ∨ b) ∧ (c ∨ d) and (¬a) ∧ (b ∨ c)
respectively with each atom corresponding to a specific number.
Once everything has been converted into the format compatible
with the SAT-Solver, there are three steps to use it successfully:

(1) Make unique variables for each of the atoms
(2) Add each of the sentences of the Knowledge Base as a clause
(3) Run the "solve" method and see if it produces true or false

In the case of an entailment check, there is one extra step added.
The first two steps are the same. The inserted step would be to add
the negation of the sentence being checked as a clause. The next
step would be to run the "solve" method.
The negation of the sentence is taken, because the to solve the
Boolean Satisfiability Problem for a set of sentences, the SAT-Solver
would need to find an interpretation that satisfies the conjunction
of all the sentences. If this is possible with the negation of the
sentence being checked included in the set, it means that there is
a direct contradiction to the sentence and, therefore, the sentence
doesn’t entail.Therefore, it follows that, in the case of entailment, if
the SAT-solver returns true, then it is said that the sentence doesn’t
entail from the Knowledge Base. If the SAT-solver returns false,

1Implementation found at https://github.com/GuyAOrpGreen/PTR
2https://github.com/liffiton/PyMiniSolvers

then it is said that the sentence does entail from the Knowledge
Base.

5.2 Conversion
There are four steps that need to be taken in converting the problem
into a form that can be used with the SAT Solver. The steps are as
follows:

(1) Convert all sentences to Conjunctive Normal Form (CNF)
(2) Propagate the negation operators as far as possible in each

sentence
(3) Propagate the or/disjunction operators as far as possible in

each sentence.
(4) Convert each sentence into SAT-Solver Format (The 2D list

with the atoms represented as numbers)
Converting to CNF affects all the sentences with an implication
operator (→) in them. The implication operator gets replaced with
a disjunction/or operator (∨) and the antecedent is negated. An
example of this is shown in Equation 1. This can become tricky if
there are nested implications.

a → b ⇒ ¬a ∨ b (1)

Converting to CNF is implemented by looking at the bracket pairs
in the sentence and assessing whether the operator in between
them is an implication operator. It replaces the implication operator
with a disjunction operator and adds a negation to the antecedent if
it is. It starts with the outside brackets and once it has completed the
replacement, it produces the new sentence without that implication.
It then iterates this process until there is no longer an implication in
the sentence. It also keeps track of indices changes of the brackets,
as adding negation operators increases the indices of some of the
other brackets.
Moving onto the second step: propagating the negation operators
within the furthermost inside bracket. To propagate the negation,
DeMorgan’s Laws are followed. If you are distributing negation into
a bracket, negation is taken of the antecedent and the consequence
inside the bracket, as well as the corresponding operator. Each
or/disjunction operator (∨) is replaced with and and/conjunction
operator (∧) and vice versa. If there are two negations in row (¬¬),
they cancel each other out. An example of distributing negations is
shown below:

¬(a ∧ b) ⇒ (¬a ∨ ¬b) (2)

In the implementation, this is done recursively. The first step in
each recursive call to remove any double negations. From there it
then determine where the next negation that needs to be propa-
gated is in the sentence by looking for the first occurrence of "¬(".
It then distributes that negation into the next inner brackets.It does
this by applying De Morgan’s Laws (described above). It limits this
application to only the current bracket pair, ignoring other bracket
pairs that may be inside it. This process produces a new sentence.
The function is then called again with the new sentence. Intuitively
this means that it works systematically from the outer brackets
inwards on each side of the main operator. The base case is if the
string doesn’t contain ’¬(’. This would mean that there is not any
negation operator that would need to be propagated.
Propagating the or/disjunction operators (∨) is needed to make
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it easier to convert the sentence to SAT-solver format. This en-
sures that the and/conjunction operators (∧) are referring to the
outermost brackets. As soon as there is an or/disjunction operator,
any inner brackets from that point can only have disjunction/or
operators and no and/disjunction operators. This can be ensured
by manipulating the disjunction and conjunction operators within
these brackets. An example of this is shown below:

(a) ∨ (b ∧ c) ⇒ (a ∨ b) ∧ (a ∨ c) (3)

This algorithm is done recursively. It goes through each bracket
pair from the outermost to the innermost and as soon as there is a
disjunction/or operator, it ensures that there are no more conjunc-
tion/and operators. If there aren’t, it returns the sentence. If there
are, it retrieves the first occurrence of a conjunction/and operator
and fixes it. It does this by first determining if the conjunction/and
operator is in the antecedent or consequence of the relevant dis-
junction/or operator. It then replaces the disjunction/or operator
with a conjunction/and operator. It takes the antecedent and con-
sequence of the violating conjunction/and operator and takes the
conjunction of each of the antecedent and consequence taken with
the disjunction of the antecedent of the original disjunction/or op-
erator that got replaced earlier if the violating conjunction/and
operator occurs in the consequence. It takes the antecedent and
consequence of the violating conjunction/and operator and takes
the conjunction of each of the antecedent and consequence taken
with the disjunction of the consequence of the original disjunction
operator that got replaced earlier if the violating conjunction/and
operator occurs in the antecedent of that operator. The function is
then called again with the new sentence.
To show an example of how the propagating disjunction algorithm
works: Given this sentence where α , γ ,ω and β can be any sentence

((γ ) ∧ (ω)) ∨ ((α) ∨ (β))
The implementation checks whether or not propagation of the
disjunction operators are needed. It is seen in this case that it is
needed as the outermost brackets are separated by a disjunction/or
operator and the inner brackets on the left (the antecedent) are
separated by a conjunction/and operator. It then looks at which of
the antecedent or consequence of the disjunction/or operator is the
violation occurring.In this case it is the antecedent as it is on the
left hand side. So it then takes the antecedent ((γ )) and consequence
((ω)) of the relevantconjunction/and operator and creates the con-
junction of each of them with the disjunction of the consequence
of the disjunction/or operator (((α) ∨ (β))). And so it produces the
sentence:

((γ ) ∨ ((α) ∨ (β))) ∧ ((ω) ∨ ((α) ∨ (β)))
It then calls the function again with this new sentence. Dependent
on the sentences within the brackets, it will determine whether
propagation of disjunction is needed or not.
The last step is converting to SAT-Solver Format, which requires
the conversion of each sentence into a 2D list in which each atom
is represented by a unique number, negation is represented by a
’-’ and disjunction/or operators are represented by lists and con-
junction/and operators are represented by making a new list. An
example of this is shown below:

(a ∨ b) ∧ (¬b ∨ c) ⇒ [[1, 2], [−2, 3]] (4)

This is done by going through the string from left to right. At the
start a list is made. If the index being looked at is a negation, a
boolean is set to True. If the index being looked at is an atom, the
corresponding number is appended to the "other" list with a minus
if the boolean is true. The boolean is reset to False afterwards. If the
index is an or/disjunction operator, nothing is done. If the index is
an and/conjunction operator. The current "other" list is appended
to the list that was made at the start, and a new "other" list is made.
If all the steps in the conversion described above are done correctly,
this method will convert each sentence correctly into SAT-Solver
Format

5.3 Entailment Check Algorithm
This is the first and only part of the implementation that considers
the Typicality Operator(•). The rest of the sections ignore that the
typicality operator exists.
The creation of the Ranked model used to perform LM Entailment
is fairly similar to the Rational Closure Construction and Algorithm.
The algorithm was first described in Booth et al [2]. The algorithm
involves looking at all the possible interpretations from a given
knowledge base and moving them up levels of the ranked model,
depending on their typicality. This can be quite computationally
expensive as there are 2n interpretations for n atoms.
The first step in the implemented algorithm is to create all the
possible interpretations. Then these interpretations are all added
to the first level of the ranked model. Once that is complete, each
interpretation is looked at individually with the Knowledge Base.
Each interpretation is either left on its current level, if it is consis-
tent with the knowledge base, or it is moved up one level if it’s
inconsistent. The typicality operator can be ignored in the con-
sistency check of each interpretation with the knowledge whilst
all the interpretations are on the first level. This ignoring of the
typicality operator can only be done for moving up interpretations
from the first level of the knowledge base and it can only be done
because nothing will be non-typical on the first level.
For computing the rest of the levels, the implementation runs a
while loop first checking which atoms are not typical on that cur-
rent level. It does this by checking all the previous levels of the
ranked model and returning all the atoms that have been true in
at least one interpretation in any of the lower levels. It then sys-
tematically searches every sentence in the knowledge base for the
typicality operator.. For each sentence that contains the typicality
operator, the atoms (for which the typicality operators apply to)
are checked whether they are typical or not on the level using what
has already been worked out earlier. If the atom being checked is
typical, the typicality operator that refers to that atom is ignored
for the specific level. If the atom being checked is not typical, the
atom is made to be unconditionally false for each sentence which
contains the typicality operator applying to that atom. For example
if p is not typical on the current level and we have the sentence
•p, it gets replaced by p ∧ ¬p. p ∧ ¬p is unconditionally false. This
is done for all the sentences in the knowledge base that contain
typicality operator(s) and all the relevant atoms. Once this is com-
pleted, all the interpretations are checked individually with the new
knowledge base to see if they are consistent.
If an interpretation is not consistent, it is moved up a level. If it is
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consistent, it’s left on the current level. This is repeated until the
level below the current level in the loop is empty. Any interpre-
tations that are remaining are put on the "infinity" level (L∞) and
disregarded. From there, we have a ranked model and all that needs
to be checked is entailment.
To check if a classical sentence entails from the ranked model, the
sentence is checked against each relevant interpretation in the
ranked model (besides L∞). The sentence will have to be consistent
with every relevant interpretation in the ranked model. This check
is done by passing in the negation of the sentence and the interpre-
tation to the SAT-Solver. If it produces False, then it is consistent
and if it produces True then it doesn’t.
To check if a sentence that contains typicality entails from the
ranked model, a similar process is followed. The implementation
first returns for each level what atoms are most typical on that level.
The next step in the process is to check which atoms the typicality
applies to in the sentence being checked. Then the same process
as above for a classical sentence is followed, except only for the
relevant interpretations on the level for which the atoms are most
typical.

5.4 Testing
Simple knowledge bases were tested with the implementation. They
were either compared with the theoretical results the algorithm
should produce, or with Andrew’s implementation (which should
also produce the same ranked model as one of its models).
In the case of comparing with Andrew’s ranked model, the ranked
models produced were compared and if PT Entailment only pro-
duced one ranked model, entailment of specific intuitive sentences
were compared as well. PT Entailment does take longer computa-
tionally than LM Entailment and so larger knowledge Knowledge
Bases weren’t able to be compared.
The implementation was also tested to see if it could reproduce the
LM-Minimal Model result for the example Knowledge Base shown
in Booth et al [2]. The implementation successfully replicated the
LM-Minimal Model that was theoretically produced.
A couple of examples of knowledge bases and the ranked models
produced in LM Entailment are shown below.

5.4.1 Example 1: Tweety Example.
The Knowledge Base for the Tweety Example in PTL is as follows:
K =["p → b", "•b → f ", "•p → ¬f "]. Where p, b and f stand for
Penguins, birds and flying respectively.
The LM-Minimal model produced is shown in Figure 2. The first
value represents the boolean value for penguin. The second value
represents the boolean value for bird and the third value represents
the boolean value for flying. This ranked model is the same ranked

L∞ : 100 101
L2 : 111
L1 : 010 110
L0 : 000 001 011

Figure 2: The LM-Minimal Model for the tweety example

model that is produced in the KLM-Approach. This is correct as

the sentence •b → f is equivalent to b |∼ f and similarly with the
sentence •p → ¬f and p |∼ ¬f .
From this Ranked Model, the implementation was able to entail that
p → ¬ • b or that penguins are not typical birds. This corresponds
to the intuition of the problem.

5.4.2 Example 2: Flying Fish Example.
The Knowledge Base for the Flying Fish Example in PTL is as fol-
lows: K =["•b → f ", "e → ¬ • f ", "e → ¬b", "•f → w"]. Where
b, f, e and w stand for birds, flying, flying fish (Exocoetidae is the
scientific name) and wings respectively.
The LM-Minimal model produced is shown in Figure 3. The first
value represents the boolean value for bird. The second value rep-
resents the boolean value for flying. The third value represents the
boolean value for flying fish and the fourth value represents the
boolean value for wings. From this model, if you try to entail if

L∞ : 1010 1011 1110 1111
L1 : 0100 0110 0111 1000 1001 1100
L0 : 0000 0001 0010 0011 0101 1101

Figure 3: The LM-Minimal Model for the Flying Fish example

flying fish have wings, it produces false as the answer which on
the face of if would make sense, as the knowledge base says that
Flying Fish are not typical flying things and typical flying things
have wings. In this case it is not inferring whether or not Flying
Fish have wings as it does not mention what non-typical flying
things may have.

5.5 Format
In the implementation, atoms can only be single letters. The opera-
tors are represented as follows:

• Disjunction (∨): "|"
• Conjunction (∧): "&"
• Implication (→): ">"
• Negation (¬): "−"
• Typicality (•): "∗"

Sentences are represented as strings and knowledge bases are rep-
resented by lists of these strings.
The implementation takes knowledge bases and test sentences in
this form and would need to convert it into a format the SAT solver
would understand.
The sentences would need pairs of bracket around the relevant an-
tecedent and the consequence for each operator to work properly
as well.

5.6 Limitations
The implementation does have many limitations. They include:

(1) Atoms can only be a single letter
(2) The typicality operator can only apply to one letter
(3) The conversion not completely accurate for very large sen-

tences
(4) Sentences need extra brackets that would not be necessary

for understanding to do the conversion correctly
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(5) There is no equivalence operator coded in the implementa-
tion

For some of these there is a way around it still using the implemen-
tation. For example, for the equivalence operator, a ↔ b is exactly
the same as (a → b) ∧ (b → a), which the implementation can
handle.
A possible solution to the typicality operator only applying to one
letter is to create a new letter (or atom) which is defined as the
equivalent of your need. The typicality operator can then be applied
to this new letter.The solution discussed above would need to be
used to be able to represent the equivalence operator.
Limitation in terms of testing also exist: the bigger the knowledge
bases get, the more difficult it becomes to create theoretical answers
to compare to what the algorithm creates and the more computa-
tionally expensive it becomes to run the implementation. However,
this is beyond the scope of the paper as this is a proof of concept of
an implementation of LM Entailment.

6 CONCLUSIONS
To conclude, it has been shown that it is possible to reduce an
Entailment check in PTL to a series of Classical Entailment Checks
for LM-Entailment. These classical entailment checks can then be
effected by a SAT-Solver of choice.
A proof of concept of LM Entailment in PTL has also been shown.
However, difficulties do occur with the conversion to the SAT-Solver
format and, once having produced the ranked model, producing
sample Knowledge Bases and sentences that are able to test all of
the properties of entailment in PTL also becomes an increasingly
difficult problem.
There are also limitations of the current implementation. One of
the consequences of the limitations of the current implementation
is that there can only be twenty six different atoms as atoms can
only be single letters. This limits this implementation in the sense
that large knowledge bases with more that twenty six atoms are
not able to be tested on this implementation. It also limits the use of
the solution proposed for the limitation of the typicality operator
applying to only one atom. This is because each time the solution
is used, a new atom needs to be created.
It can be seen that LM Entailment satisfies all of the suggested
postulates except Strict Entailment. LM Entailment has also been
shown to be less computationally expensive than PT Entailment,
but it does limit some of the conclusions that would want to be
made with PTL.
Whether to use LM or PT Entailment in PTL would be determined
by the context of the problem.

6.1 Future Work
Obvious future work can be related to addressing each of the five
limitations of the implementation mentioned above. With the main
limitation being that atoms can only be single letters.
Future work can also include exclusively working on creating
Knowledge Bases and theoretical results that test all of the proper-
ties of entailment in PTL.
The computational complexity in terms of space and time of the im-
plementation was not considered at all in this proof of concept, so
a possible extension is to make the implementation more efficient.
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