
Propositional Typicality Reasoning (PTR)
A review on Literature Relating to Propositional Typicality Logic and Reasoning

Guy Green
University of Cape Town

Department of Computer Science
guygreen1995@gmail.com

ABSTRACT
Classical Propositional Logic is the basis of most other logics. While
it is relatively simple compared to other Logics, it has always had
the problem of being less expressive and capable of handling excep-
tions than other languages.

There has been a move to try and make additions to Classical
Propositional Logic to attempt to make it more expressive and bet-
ter at handling errors.

The suggestions discussed in this paper are the addition of De-
feasibility to Propositional Logic with the defeasibility operator
and Propositional Typicality Logic (PTL) which is the addition of a
Typicality operator to Propositional Logic. The idea of entailment
is also discussed in each of these.

There is a particular focus on PTL and reasoning ad this is what
the project is on. There are two types of entailment in PTL: PT-
Entailment and LM-Entailment. There is a particular focus LM-
Entailment and how it deals with the impossibility result that rea-
soning in PTL has.

KEYWORDS
Propositional Logic, Defeasibility, Typicality, Entailment

1 INTRODUCTION
Propositional Typicality Logic (PTL) is a (recently) proposed addi-
tion to the classical propositional logic. It suggests adding a typical-
ity operator (•). It allows for additional expressibility and exception
handling. With the new proposed language, come challenges with
the entailment and reasoning.

This Literature review will focus on the related topics to PTL and
reasoning. The topics investigated and discussed will be Classi-
cal Propositional Logic, Defeasibility and Propositional Typicality
Logic:

Classical Propositional Logic is the basis of PTL and so under-
standing how the language and the different concepts (for example:
entailment) work in the basis language is incredibly crucial in un-
derstanding PTL and reasoning for PTL.

Defeasibility adds on the idea of exception handling to Classical
Propositional Logic but is not as expressive as PTL. It is created
by adding a defeasibility operator (|∼). With Defeasibility added
to Propositional Logic, it has been found that reasoning is well-
understood and behaves well, which unfortunately is not the case

when it comes to PTL.

PTL is an extension on Defeasibility. PTL is created by adding
the typicality operator to Classical Propositional Logic. Defeasibil-
ity in Propositional Logic is the equivalent to having the typicality
operator just on the antecedent. The difference between the defea-
sibility operator and the typicality operator is that one of them is a
binary operator and the other is an unary operator respectively.

Two algorithms have been defined to calculate the entailment for
PTL. The two algorithms are LM-entailment and PT-entailment.
The project proposed, Propositional Typicality Reasoning (PTR)
is to focus on implementing these two algorithms for entailment
of PTL, The algorithm that will be focused on in this paper is LM-
Entailment and PT-Entailment will be focused on by my project
partner.

2 CLASSICAL PROPOSITIONAL LOGIC
Classical Propositional Logic 1 is a logic system that is considered
to be the basis of all the other logic systems [1]. Understanding
Propositional Logic is, therefore, crucial in understanding the other
Logic Systems

2.1 Concept
In Propositional Logic, everything can be reduced down to sen-
tences which are made up of expressions which are known as
atomic propositions (atoms) and then operators in-between them.
Whatever is on the left-hand side of the operator is called the an-
tecedent and whatever is on the right hand side of the operator is
called the consequent. These sentences make up a Knowledge Base
from which reasoning can be used to determine whether or not
other sentences are true. The atomic propositions are expressions
which only have a value of True or False depending on an inter-
pretation hence the name. Atoms are referred to using lower-case
letters. Sentences in which all the atoms within the sentence have
been assigned truth values of either true or false are called inter-
pretations.

In Propositional logic there are many different operators, but there
are five bases operators from which you can make the rest. This
paper will focus on these five operators. They are negation (¬), con-
junction (∧), disjunction (∨), implication (→) and equivalence (↔).
Each of these operators can be used in combination with atoms to
make sentences. All of the operators are binary except for negation,
which is unary.

1Everything in this section was taken from the Ben-Ari textbook, Chapter Two [1]



The negation operator (¬) is used before an atom and just means
not or the negation of what ever it is in front of. So for example, ¬p,
just means that this sentence is only true if p is false. The negation
operator has an interesting property. The interesting property is
that you can put it in front of any valid sentence in the language
and that will still make a valid sentence in the language.

The conjunction operator (∧) is used between two atoms and just
means that the sentence is only true if both the antecedent and the
consequent are true. So for example, p ∧ q, as a sentence will be
true only if both p and q are true and if either of them are false or
both of them are false, the sentence would be considered false.

The disjunction operator (∨) is also used between two atoms and
just means that the sentence is on only true if one of the atoms are
true. So for example, p ∨ q, as a sentence will only be true if either
of p or q are true or both and the only condition that would make
the sentence false is if both p and q are false.

The implication operator (→) is also used between two atoms and
just means that if the antecedent is true, then the consequent must
be true. For example, p → q, means that if p is true then q must be
true. It also follows from that statement that ¬q → ¬p.

The equivalence operator (↔) is also used between two atoms
and just means that if the antecedent is true, then the consequent
must be true and vice versa. So that means that the two atoms
will have an equivalent value. For example, p ↔ q, means that the
sentence is only true if p and q are both true or both false.

The rest of the operators that are used in Classical Propositional
Logic can be made by using combinations of these five bases opera-
tors and so they are not needed to help define Propositional Logic
and, therefore, are also not needed in PTL.

So for the tweety example (which is used in many papers as an
example), the sentences would look like this

b → f (1)
p → b (2)
p → ¬f (3)

where b means birds, f means fly and p means penguins. For this
example there are eight interpretations, with each atom either hav-
ing a value of 1 or 0 to denote true or false respectively

Propositional Logic is a relatively simple and easy to compute logic
system, but its downfalls come in terms of exception handling and
expressibility. Because Propositional Logic is relatively binary and
rigid, it struggles with exception handling and expressibility, which
is what we need to describe and model the real world. Therefore,
something needs to be introduced into propositional logic to make
it more applicable to describe the real world.

2.2 Entailment
Entailment is the idea of reasoning from a knowledge base. So
considering a knowledge base, K , it is a just a set of sentences,
which can be considered the "rules" of the knowledge base. Testing
whether or not another sentence follows from those rules is the
process of entailment or reasoning. It produces an answer of either
True or False. Either it entails from a knowledge base or it doesn’t.

To test whether a sentence, A entails from a knowledge base, we
look at the all the different ways that values can be assigned to the
atom in the knowledge base or in other words we look at all the
interpretations (defined in section 2.1) of the knowledge base. We
consider every interpretation that makes the Knowledge Base, K ,
true. The set of interpretations that make a knowledge base true is
called a model. If for every interpretation that makes the knowledge
base, K , true, it also makes the sentence, A true, then we say the
sentence is entailed from the knowledge base. The notation for
entailment is K |= A. For an example in terms of the actual atoms
and sentences: if we have the sentence, p → q, we look at all the
interpretations that make the knowledge base true and if in every
interpretation that p is true, q is also true then it follows that the
sentence entails from the sentence. And if it doesn’t, the sentence
does not entail from the knowledge base.

Building on this idea of whether or not a sentence entails from
a knowledge base, there comes a nice and well-behaved definition
for entailment for Classical Propositional Logic. A sentence, α , en-
tails from a Knowledge Base, K , if and only if the set of models of
the knowledge base, K is a subset of the the set of models of the
sentence, α . The notation for this is given asK |= α iffm(K) ⊆ m(α).
Propositional logic is a monotonic language. This means that if you
add sentences to the knowledge, you don’t lose any conclusions
from the knowledge base itself.

Looking at entailment using the method and definition shown
above for the it tweety example shown in section 2.1, first thing
that is needed is to look at the interpretations of the knowledge
base, K . The interpretations of the knowledge base are the set
{111, 110, 100, 011, 001, 000, 101, 010} where the first number repre-
sents the truth value for the atom Bird, the second number repre-
sents the truth value for the atom Penguin and the third number
represents the truth value for Fly. Now we have to take out the
interpretations that make all the statements not true for the knowl-
edge base. The set that is left that make all the statements in the
knowledge base true is {000, 101, 001}. This set is the model of that
knowledge base.

For this example, two sentences are going to be checked if they en-
tail from the knowledge base. The two sentences are p → f and ¬p.

For p → f (Sentence A), it has the same possible interpretations
as the knowledge base. But the set of interpretations that make
the sentence true is different to the model of the knowledge base.
The set of interpretations that makes Sentence A true is as follows:
{000, 111, 100, 011, 001, 101}. This is the model for the Sentence A.
As can be seen,m(K) ⊆ m(A) is true and so it can be said thatK |= A.

2



For ¬p (Sentence B), It also has the same possible interpretations as
the knowledge base. But the set of interpretations that make the sen-
tence true is different to both the model of the knowledge base and
of Sentence A. The set of interpretations that makes Sentence B true
is as follows: {100, 001, 000, 101}. This is the model for Sentence B.
As can be seen,m(K) ⊆ m(B) is true and so it can be said thatK |= B.

Intuitively, this says that Penguins can fly and there are no Penguins
which is not what is trying to be said or what correlates to what
happens in the real world. The additions to Classical Propositional
Logic are to try to help and deal with the concept of exception han-
dling and expressibility. These additions help Propositional Logic
deal with situations like Penguins not being able to fly but still
being a bird.

3 DEFEASIBILITY
To try deal with the problem Classical Propositional Logic has of
lack expressibility and not being able to handle exceptions, the
idea of defeasibility has been suggested as an addition to Classical
Propositional Logic. Adding Defeasibility to Propositional Logic
helps with dealing with examples like the tweety example. Defea-
sibility was first investigated by Kraus et al [13]. It was called the
KLM-Approach. With the idea of defeasibility, do come challenges
with entailment and reasoning, but there have been shown to be
well-understood and well-behaved algorithms to solve this. The
concept of entailment was with Defeasibility and Conditionals was
first investigated in Lehmann and Magidor [14].

3.1 Concept
Defeasibility in propositional logic just includes the addition of
one binary operator which is called the Defeasibility Operator (|∼).
The idea of the Defeasibility Operator is to attempt to deal with
exceptionality and, therefore, to try and make Propositional Logic
more expressive.

The Defeasibility Operator (|∼) is a binary operator and, there-
fore, is between two atoms or sentences. It just means that if the
antecedent is true then, typically, the consequent is true but not
always. So for example, p |∼ q means that if p is true, then typically
q is true but there are some exceptional cases where q is not true.

So for the tweety example, the sentences with Defeasibility added
would look like this

b |∼ f (4)
p → b (5)
p |∼ ¬f (6)

Each of the atoms mean the same thing as in the previous section
and there are the same number of interpretations.

This introduces the idea of exception handling, but still has its
own problems in terms of expressibility. It also creates some prob-
lems with entailment and makes the algorithm you use to entail
integral in how much information you can entail from it.

Before starting with understanding entailment for Propositional
Logic with the Defeasibility, a new structure called Ranked Interpre-
tations. Ranked interpretations were first investigated in Lehmann
and Magidor (1992) [14]. The concept of Ranked Interpretation has
been adapted slightly since then with the papers Booth and Paris
(1998) [6] and Giordano et al (2012) [9]. Ranked Interpretations di-
vides the different interpretations into different levels of typicality
and ranks them. These levels are called partitions. The lower the
partition is, the more typical the interpretations that are contained
in the partition. From that it follows that the higher the partition
is, the more exceptional the interpretations are that are contained
in the partition. Partitions are generally denoted by L0,L1...,Ln−1
where n is the number of partitions.

3.2 Entailment
Entailment brings new challenges when dealing with defeasibility.
The idea of entailment in Propositional logic is no longer good
enough to properly reason with the idea of defeasibility. It is also
important to note that with adding defeasibility to Propositional
Logic comes, the property of monotonicity falls away when reason-
ing from a knowledge base.

The idea of a Rational Closure (Lehmann and Magidor (1992)) [14]
is introduced to attempt to solve the problem of Entailment with
Defeasibility. There are two methods using the rational closure to
attempt to solve the entailment problem with defeasibility. The
two methods are the Rational Closure algorithm and the Rational
Closure Minimality Model solution.

The Rational Closure algorithm creates a ranked structure of the
sentences in a knowledge base. The ranked structure is a similar
concept to ranked interpretations but using sentences from the
knowledge base. But instead of having the lowest partition be the
most typical interpretations, the lowest partition are the most excep-
tional sentences in the knowledge base. And the highest partition is
made up of the most typical sentences. The most typical sentences
are generally the Classical Propositional Logic sentences that do
not contain the defeasibility operator. The sentences that do contain
the defeasibility operator are ranked based on the exceptionality of
the antecedent. Once the ranked structure is completed the idea is
to convert all the defeasible sentences to classical sentences. And
then from that if we trying to reason whether a certain sentence is
true or entails from the knowledge base, We check if the antecedent
of that sentence follows from the knowledge base. If it does, then
we can just use normal entailment process as Classical Proposi-
tional Logic. If not, then we "throw away" the most exceptional
or the lowest partition of the ranked structure and check again if
the antecedent follows. This process is repeated until either a True
or False result is produced. An example of the Ranked sentence
structure is shown in Figure 1. it is important to note that not much
could be entailed from this particular example but if we added the
sentence b |∼ w (birds typically have wings). This sentence would
be in the partition L2 and we would be able to entail p |∼ w from
the structure.

To use the Rational Closure Model Minimality Solution, a ranked

3



L∞ : p → b

L2 : b |∼ f

L1 : p |∼ ¬f

Figure 1: A ranked Sentence Structure for the tweety example

interpretation structure needs to be created for the knowledge base.
To derive the ranked interpretation structure, the first thing that
needs to be done is to look at all the interpretations of the knowl-
edge base. From this set of interpretations, we eliminate or remove
any interpretations that violate any of the Classical Propositional
Logic sentences without the defeasibility set. With this reduced
set, we place all the interpretations on the partition L0. We then
look at all the defeasible sentences and focus on the one in which
the antecedent is the least exceptional. We then only look at the
typical interpretations of the least exceptional antecedent. All of
those interpretations stay on the partition, L0, and rest of the in-
terpretations move up a partition to L1. The same process is the
continued with regards to the next least exceptional antecedent of
the defensible sentences and the most exceptional interpretations
with regards the antecedent moving up a partition. This process is
repeated until no interpretations are needed to move up a partition.

It has been shown that once the ranked structure of interpreta-
tions is derived, that this is the minimal model that can be created
from the knowledge base.The LM-preference relation (⊴LM) is the
notation to show the minimal model. From this ranked interpreta-
tions structure, checking whether a sentence with the defeasibility
operator entails from the knowledge base is relatively simple con-
cept. All that is needed is to check the most typical partition or
lowest partition that the antecedent of the sentence appears in and
if the classical sentence (replace the defeasibility operator with the
implication operator) is shown to be true on that partition, it entails
otherwise it doesn’t. Checking classical statements, the classical
statement must be true for every ranked partition. Entailment in
PTL extends this idea of ranked interpretations and this algorithm

To show how to create the ranked interpretation structure for the
Rational Closure Minimality Model Solution works (as this is what
is being extended in for entailment in PTL), the Tweety Example
shall be used. The first step is to look at all the interpretations
of the Knowledge base. The set of all interpretations, as shown
above, is the set {111, 110, 100, 011, 001, 000, 101, 010}. Following
the algorithm, we first remove all the interpretations that violate
the classical sentence which is p → b. There are only two inter-
pretations that violate this, which are 011 and 010. Now we have
a set of six interpretations. These six interpretations are placed
into the partition, L0 for now. We now look at the most typical
antecedent of all of the sentences with a defeasible operator in
them. The most typical antecedent is b in this case. Only the most
typical interpretations of b stay in L0 and the rest are moved up to
L1. So what remains in the L0 is the set {000, 001, 101}. Now we
look at the next most typical antecedent, which in this case is p and
we look at the most typical cases of p. The most typical cases of
p remain in L1 and the rest move up to L2. This is our last step as
there will be only one interpretation in L2 which means it is the

most typical interpretation in that partition. The structure that is
created is shown in Figure 2 .

L2 : 111
L1 : 100 110
L0 : 000 001 101

Figure 2: A ranked interpretation Structure for the tweety ex-
ample

4 PROPOSITIONAL TYPICALITY LOGIC (PTL)
Propositional Typicality Logic (PTL) is a recently suggested answer
to attempt to make Propositional Logic more expressive. Proposi-
tional Typicality Logic was first investigated in Booth et al [5]. With
PTL being more expressive, come new challenges with entailment.
Entailment in PTL was first investigated in Booth et al [3]. PTL is a
relatively new addition and so there is not much literature on it.

4.1 Concept
PTL is just the addition of the typicality operator (•) to Classical
Propositional Logic. Originally the typicality operator was sug-
gested to be a bar (for example: ā) [5] but was changed to the
typicality operator above in later literature. The typicality operator
is a similar concept to the Defeasibility operator except the typi-
cality operator is a unary operator as opposed to the Defeasibility
operator which is a binary operator. This allows typicality to be
used both on the side of antecedent as well as the consequent.

The typicality operator (•) only takes one operand. It just means
that typically or most of time the operand is true. For example, •p
means that typically p is true. And as an extension, •p → •q means
typically p implies typically q. As an example to show the similarity
between Defeasibility and PTL: the sentence •p → q in PTL has
exactly the same meaning as the sentence p |∼ q with Defeasibility
in Classical Propositional Logic.

So for the tweety example, the sentences would look like this:
•b → f (7)
p → b (8)
•p → ¬f (9)

This doesn’t seem like it has added much expressibility, but if you
add a sentence like, •b → •w (Typical birds have typical wings),
you get an idea on how expressive PTL can be.

The typicality operator being unary instead of binary makes PTL
more expressive than Defeasibility in Propositional Logic. PTL is
very expressive and good at exception handling. With this in mind,
it is the best form of Propositional Logic (at the moment) to try to
describe and model situations in the real world. PTL also still has
the property of being non-monotonic

4.2 Entailment
With the expressibility of PTL, it seems natural to expect difficulty
with entailment. And PTL doesn’t disappoint.

4



Entailment for Defeasibility presents challenges when used for
PTL. Booth et al [3] puts forward ten postulates that the conse-
quence operator needs to meet simultaneously for the algorithms
in Entailment for Defeasibility to produce well-behaved and proper
answers. The ten postulates are inclusion, cumulativity, ampliative-
ness, defeasibility, Conditional Rationality, Single Model, Extends
Rational Closure, Strict Entailment, Conditional Strict Entailment
and Classical Entailment, and Typical Entailment. Each of these
concepts are defined in Booth et al [3]. In Booth et al [4] put for-
ward 9 postulates with most of the postulates being the same with a
couple of them being changed slightly. In both papers, they show an
impossibility result, showing that entailment in PTL cannot meet all
the conditions simultaneously. Instead of taking this as a negative
result, the authors of this paper interpreted this result as there can
be multiple methods of Entailment for PTL of which each method
satisfies a certain subset of these postulates [3]. Two new methods
of entailment are suggested for PTL. They are LM-Entailment and
PT-Entailment.

Both of the methods are extensions of the Rational Closure Model
Minimality Solution with different adaptions to attempt to try to
minimise the number of postulates that the entailment does not
. Each of the methods have their own advantages and their own
disadvantages.

PT-Entailment satisfies Strict Entailment but does not satisfy the
Single Model Postulate and Conditional Rationality, while LM-
Entailment satisfies the Single Model Postulate and Conditional
Rationality, but does not satisfy Strict entailment.

For LM-Entailment, in Booth et al [3], they try to adapt the idea of
a Rational Closure construction to deal with arbitrary knowledge
bases in PTL rather than just Conditional Knowledge Bases.

For LM-Entailment, to start, you do exactly the same as you would
starting the Rational ClosureModel Minimality Solution. The idea is
to still make a Minimal Ranked Interpretation model (⊴LM). There
is just a slight adaption to account for the properties of PTL.So you
first remove all the interpretations that violate any of the classical
sentences and the remaining interpretations are all put into the
first partition L0. You look at all the interpretations that violate
the most typical (or best) interpretations of the knowledge base
and the those interpretations all move up to the next partition (L1).
You the look at the next most typical or best interpretations of the
knowledge base for that model and the interpretations that violate
that model, you move up to the next partition. You continue this
process until either there are no interpretations that violate the
model or you reach a fixed point.

If there are no interpretations that violate the model, then you
have a Minimal model and that is the final ranked structure you
are left with.

The impossibility result for PTL introduces the idea that you can
reach a fixed point. A fixed point is when you are moving up the
all of the interpretations in the partition as they violate the most

typical thing on that specific partition. The idea in LM-entailment is
to just throw away those interpretations and return the remaining
ranked interpretation.

Therefore, the implementation of LM-Entailment in the tweety
example shown in the previous example would actually produce
the same ranked structure as Figure 2.

For more information on how the algorithms work, refer to Booth
et al [3].

The main advantage for PT-Entailment is that it allows for all of
the expressibility of PTL. While for LM-Entailment, the main ad-
vantage is that it satisfies all the conditions needed except Strict
Entailment.This allows Entailment for PTL similarly to Entailment
for Defeasibility in Propositional Logic, but does take away from
the expressibility of PTL.

5 IMPLEMENTATIONS
The focus of PTR is to create implementations of both of PT-Entailment
and LM-Entailment. The separation of the project is outlined in the
introduction. This section will focus on different algorithms and
software that have been used to implement reasoning and entail-
ment with similar languages to PTL.

SAT-solvers take up the majority of reasoning with Propositional
Logic and some of the similar languages. When adding the notion
of typicality, SAT-solvers are still considered to be a good way of
implementing reasoning and entailment.

SAT-solvers were created to solve the Boolean Satisfiability Prob-
lem. The Boolean Satisfiability Problem is just to determine whether
a formula or sentence is satisfiable in Propositional Logic. This has
been shown to be a NP-complete problem by Cook[7].

SAT-solvers are classified into two types of algorithms. The two
types are called complete and incomplete. [11] Complete SAT-
solvers searches the whole solution space for a given satisfiability
problem while incomplete SAT-solvers searches randomly in the
assignment space of the given variable. It is important to note that
Propositional Logic has been shown to be P-Space complete [18].

The most commonly known and used complete SAT-solver algo-
rithm is called the DPLL algorithm [8]. Many advancements and
adaptions have been made on the DPLL algorithm to create more
efficient SAT-Solvers like CryptoMiniSat [12], MiniSat [17], Lin-
geling [2] and many more.Any of the more recent advancements
would be able to be used for the project.

The most commonly known and used incomplete SAT-solver al-
gorithm is the local search algorithm. There have been many ad-
vancements and adaptions on this algorithm as well. Some possible
example algorithms GSAT [16] and NSAT [15]. Any of the more
recent advancements would be able to be used for the project.

It is important to note that reasoning using Ontology reasoners

5



has been tried before using similar languages [10] and this is also a
possibility for our project. We would use Protege for the reasoning.
Another method of reasoning that’s been used on similar languages
is probabilistic reasoning. We will not be using this in our project.

6 CONCLUSIONS
Propositional Typicality Logic (PTL), with the typicality operator
to Classical Propositional Logic, has been shown to be more expres-
sive and better at handling errors than both Classical Propositional
Logic and Defeasibility, but brings through challenges with entail-
ment and reasoning.

This Literature review has focused on the related topics to PTL
and reasoning for PTL. The topics that have been discussed include
Classical Propositional Logic, Defeasibility and Propositional Typi-
cality Logic and reasoning in each of them.

Propositional Logic is the basis of the other languages. Entailment
is the crux of reasoning in Propositional Logic and it has been
shown to show nice results in terms of a definition and algorithm of
entailment and the process has been shown to be well-behaved. The
definition of entailment in Propositional Logic is given as K |= α
iffm(K) ⊆ m(α).

Defeasibility as an addition to Classical Propositional Logic is more
expressive and better at exception handling than Classical Propo-
sitional Logic. The process of Entailment has been shown to be
well-behaved and well-understood with Defeasibility. The literature
also focuses on the non-monotonic reasoning in general. For En-
tailment in Defeasibility there are two suggested algorithms using
a Rational Closure construction. The two methods are the Rational
Closure Algorithm and Rational Closure Model Minimality Solu-
tion. The Rational Model Minimality Solution is what is extended
in entailment for PTL.

While PTL has been shown to be more expressive and better at
exception handling than the other two languages. There are chal-
lenges with entailment. There has been shown to be an impossibility
result to show that the Rational Closure for Deafeasible reasoning is
not good enough for entailment. This result has been interpreted as
saying that there is more than one algorithm for entailment for PTL.

There have been two suggested algorithms for Entailment in PTL.
They are PT-Entailment and LM-entailment. The project proposed
is focusing on the theory and implementations of these two meth-
ods, with my Project Partner focusing on PT-entailment and my
focusing on LM-entailment. LM-Entailment deals with the impossi-
bility result by disregarding some interpretations.

For implementation of these algorithms of entailment, different
SAT-Solvers have been investigated with both the possibility of
Complete and incomplete algorithms being used. The idea of an
ontology reasoner is also a possibility for an implementation of
entailment for PTL. An important result is that propositional logic
has been shown to P-Space complete.

REFERENCES
[1] M. Ben-Ari. 2012. Mathematical Logic for Computer Science (3 ed.). Springer-

Verlag.
[2] A Biere. 2014. Lingeling Essentials, A Tutorial on Design and Implementation

Aspects of the the SAT Solver Lingeling. POS@ SAT 88 (2014).
[3] R. Booth, G. Casini, T. Meyer, and I. Varzinczak. 2015. On the Entailment Problem

for a Logic of Typicality. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI). 2805–2811.

[4] R. Booth, G. Casini, T. Meyer, and I. Varzinczak. 2015. What Does Entailment
for PTL Mean?. In Proceedings of the 12th International Symposium on Logical
Formalizations of Commonsense Reasoning.

[5] R. Booth, T. Meyer, and I. Varzinczak. 2012. PTL: A Propositional Typicality Logic.
In Proceedings of the 13th European Conference on Logics in Artificial Intelligence
(JELIA) (LNCS), L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.). Springer,
107–119.

[6] R. Booth and J.B. Paris. 1998. A Note on the Rational Closure of Knowledge Bases
with Both Positive and Negative Knowledge. Journal of Logic, Language and
Information 7, 2 (1998), 165–190.

[7] SA Cook. 1971. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing. ACM, 151–158.

[8] M Davis, G Logemann, and D Loveland. 1962. A machine program for theorem-
proving. Commun. ACM 5, 7 (1962), 394–397.

[9] L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. 2012. A Minimal Model
Semantics for Nonmonotonic Reasoning. In Proceedings of the 13th European
Conference on Logics in Artificial Intelligence (JELIA) (LNCS), L. Fariñas del Cerro,
A. Herzig, and J. Mengin (Eds.). Springer, 228–241.

[10] L Giordano, V Gliozzi, GL Pozzato, and R Renzulli. 2017. RAT-OWL: Reasoning
with rational closure in description logics of typicality. In CEUR WORKSHOP
PROCEEDINGS, Vol. 1949. CEUR-WS, 306–320.

[11] W Gong and X Zhou. 2017. A survey of SAT solver. In AIP Conference Proceedings,
Vol. 1836. AIP Publishing, 020059.

[12] W Kehui, W Tao, Z Xinjie, and L Huiying. 2011. Cryptominisat solver based
algebraic side-channel attack on present. In Instrumentation, Measurement, Com-
puter, Communication and Control, 2011 First International Conference on. IEEE,
561–565.

[13] S. Kraus, D. Lehmann, and M. Magidor. 1990. Nonmonotonic reasoning, prefer-
ential models and cumulative logics. Artificial Intelligence 44 (1990), 167–207.

[14] D. Lehmann and M. Magidor. 1992. What does a conditional knowledge base
entail? Artificial Intelligence 55 (1992), 1–60.

[15] D McAllester, B Selman, and H Kautz. 1997. Evidence for invariants in local
search. In AAAI/IAAI. Rhode Island, USA, 321–326.

[16] B Selman, HJ Levesque, and DG et al. Mitchell. 1992. A New Method for Solving
Hard Satisfiability Problems.. In AAAI, Vol. 92. 440–446.

[17] N Sorensson and N Een. 2005. Minisat v1. 13-a sat solver with conflict-clause
minimization. SAT 2005, 53 (2005), 1–2.

[18] R Statman. 1979. Intuitionistic propositional logic is polynomial-space complete.
Theoretical Computer Science 9, 1 (1979), 67–72.

6


	Abstract
	1 Introduction
	2 Classical Propositional Logic 
	2.1 Concept
	2.2 Entailment

	3 Defeasibility
	3.1 Concept
	3.2 Entailment

	4 Propositional Typicality Logic (PTL)
	4.1 Concept
	4.2 Entailment

	5 Implementations
	6 Conclusions
	References

