
Literature Review for Propositional Typicality Reasoning
Andrew Howe-Ely
HWLAND004

University of Cape Town

ABSTRACT
Defeasible reasoning is an extension to reasoning in propositional
logic that is able to deal with exceptions to general rules. Using this
we can make statements such as "Birds typically fly, but penguins
don’t" and reason about them. Propositional Typicality Logic (PTL)
is a recently proposed extension that allows the notion of typicality
to occur anywhere in a propositional statement, rather than in
just the antecedent. Reasoning in propositional logic amounts to
computing entailment. In defeasible reasoning the Rational Closure
is the key concept for entailment. Two forms of entailment have
been proposed for PTL, which build upon entailment in defeasible
reasoning, namely LM-Entailment and PT-Entailment.

This paper discusses the theory of propositional logic and meth-
ods of computing entailment in a defeasible setting. Examples of
the different statements that can be made in each setting are given
as well as how conclusions are drawn. LM and PT-Entailment are
discussed with the practical implementation of a reasoner in mind,
using one of them: PT-Entailment. The two forms of entailment
have advantages and disadvantages, with more investigation still
to be done.

1 INTRODUCTION
The Propositional Typicality Reasoning (PTR) Project will explore
the theory of Propositional Typicality Logic (PTL) [4], and the
implementation of an algorithm for reasoning in PTL. PTL is a
recently proposed logic that builds on thework done on defeasibility
and on propositional logic. The challenge of this new language is
to develop the theory of how to reason in it.

The notion of typicality and moreover defeasibility allows us to
handle exceptionality in a logical system. Typicality adds an addi-
tional operator that allows more expressivity to this end. However,
some results from defeasible reasoning do not hold, and a new form
of entailment is needed in order to reason. Two forms of entailment
have been put forward as candidates for reasoning in PTL. The
work of the PTR project has been divided between the two forms
of entailment for PTL, with the implementation of a reasoner using
each.

This review will discuss the topics of propositional logic, de-
feasible reasoning and PTL, as well as entailment in PTL and the
implementation of these algorithms.

Propositional logic is a fundamental concept in mathematics that
has been studied for centuries. The concepts it includes are vital
to the field of Computer Science, and particularly in the fields of
knowledge representation and Artificial Intelligence. Propositional
logic has been formalised as a language that joins statements to-
gether in a way that is either entirely true or false. From this we can
reason about things, and draw conclusions from a set of assump-
tions. Entailment is the mechanism of reasoning in propositional

logic, the next section of this review will explain the basic theory
leading up to that.

Defeasible reasoning is an extension to propositional logic where
exceptions to rules are allowed to occur. This is done by saying
something is typically the case, and therefore having room for
exceptionality without contradiction. This way to write statements
leads to a different form of entailment and the literature about
this topic is discussed in the third section. Allowing for exceptions
means we can describe things in a more interesting way, as well as
providing a way to reason formally in a manner that humans can
informally do very easily.

Another form of defeasible reasoning is introduced in PTL. A
new operator is defined in this language, which is an extension of
propositional logic. Since this is a newly proposed language there
is ongoing and recent research into how to reason in it. The moti-
vation behind PTL is to create a more expressive language that can
hopefully capture exceptions and typical behaviour in more ways,
as well as reason about these more expressive statements. Different
forms of entailment have been proposed in order to compute rea-
soning in this language. These are essentially two algorithms that
will be explored and developed in the PTR project. The practical
part of the project will also be discussed where a reasoner needs to
be developed.

2 PROPOSITIONAL LOGIC
Propositional logic is a logical system that builds up sentences us-
ing atomic propositions that are either True or False. These atoms
are joined with logical connectives to build more complex formu-
las. For the purposes of this review we will be basing the use of
propositional logic on the work found in Ben-Ari, Chapter 2 [1].
However, many different books and papers on this topic exist in the
literature. Classical propositional logic will provide the basis for the
other topics explored in this paper. Propositional logic allows us to
make statements about the world and reason about them. This is
particularly important in the field of knowledge representation.

Atomic propositions are typically denoted by symbols like p or q.
The connectives used are: ¬ (negation, or Not), ∧ (conjunction, or
And), ∨ (disjunction, or Or), → (implication) and ↔ (equivalence).
There are other operators but they are not necessary for our pur-
poses. These connectives are also referred to as Boolean operators,
where negation is a unary operator with one operand and the rest
are binary operators. ⊤ (top, meaning unconditionally true) and ⊥

(bottom, unconditionally false) are also connectives used to define
the language. The operators ¬ and ∧ can be used to define the rest
of the Boolean operators. For example, the formula p → q would
be a propositional sentence reading p implies q or if p then q. p is
called the antecedent and q is the consequent. We call a finite set
of sentences in a language a knowledge base.

An interpretation of a formulaA is a function that assigns a truth
value to every atom in A. If we have p and q as atoms in formula,

then there are four interpretations where p and q are either True
or False, or 1 or 0 depending on the notation used. If there are n
atoms in a formula there will be 2n interpretations.

An example of an interpretation over a set of variables p and
q would be if p was False and q was True, represented either as
01, or as {¬p,q}. The negation of p represents p being false. Over
an interpretation the whole formula can be evaluated as True or
False. A truth table is a way of showing the different interpreta-
tions and evaluations. The following truth table shown in Figure 1
demonstrates p → q.

p q p → q

T T T
T F F
F T T
F F T

Figure 1: A truth table for p → q

We call a formula satisfiable if it evaluates as True for some
interpretation of the atoms. We call this satisfying interpretation
a Model for A. From this we come to the concept of logical conse-
quence in propositional logic. For a set of formulasU , A is a logical
consequence ofU if and only if every model ofU is a model of A.
This is denoted by U |= A. This is also referred to as entailment,
and is how reasoning is done in propositional logic.

The meaning of the operators with respect to interpretations are
as follows: ¬A is true in an interpretation if A is false in it. A ∧ B is
true if both A and B are true in the interpretation. A ∨ B is true if
one or both of A and B are true in the interpretation. A → B is true
if A is false or if B is true. This operator is also called a conditional.
A ↔ B is true in an interpretation if both A → B and B → A are
true.

The propositional language used, and enriched, in later sections
is typically defined in a standard way as follows: P is a finite set of
propositional atoms. p,q, . . . are used as meta-variables for atoms.
Propositional sentences are denoted by α , β, If α is in P it is a
sentence. If α is a sentence then so is ¬α . If α and β are sentences
then so are α ∧ β , α ∨ β , α → β and α ↔ β . L denotes the set of
all propositional sentences.

An example from the literature, namely Booth et al. [3], recur-
sively defines sentences as: α ::= p | ¬α | α ∧ α | ⊤ | ⊥. The other
Boolean connectives (∨,→,↔, . . .) are defined in terms of ¬ and ∧.

Reasoning in propositional logic amounts to computing entail-
ment. For this reason, entailment is the most important part of
reasoning in propositional logic. The following example will illus-
trate reasoning using entailment. In the literature this is called the
Tweety example. First let our knowledge baseK = {p → b,b → f }.
b represents being a bird, p a penguin and f being able to fly. The
sentences can be interpreted as meaning penguins are birds and
birds fly. From this we can reason that K |= p → f , i.e. that pen-
guins fly. Say we now add to our knowledge base the sentence
p → ¬f , meaning penguins do not fly. Figure 2 shows a table of
different interpretations and whether they are a model for each
statement and the knowledge base itself, for this example.

Interpretations Is a model for
p b f p → f ¬p K

1 1 1 Yes
1 1 0
1 0 1 Yes
0 1 1 Yes Yes Yes
1 0 0
0 1 0 Yes Yes
0 0 1 Yes Yes Yes
0 0 0 Yes Yes Yes

Figure 2: A table of models for K = {p → b,b → f ,p → ¬f }

Since whenever an interpretation is a model for K it is a model
for each of the two statements shown, they are logically entailed
by K . Using classical entailment we reason that K |= ¬p. In other
words, a conclusion from this is that there are no penguins, since
classical logic does not allow for exceptions. However, we still
have the conclusion that penguins fly, since entailment in propo-
sitional logic is monotonic and we do not lose conclusions even
when we add new information. Clearly this is rather restrictive
when thinking about reasoning intelligently, since we want to be
able to handle exceptionality. This example will be revisited in the
following sections.

Reasoners that use propositional logic compute using this form
of entailment. More will be discussed about these in the implemen-
tation section.

3 DEFEASIBLE REASONING
Defeasible reasoning extends reasoning in propositional logic by
being able to deal with exceptions to rules. This allows for the
creation of statements that were not previously able to make in
classical propositional logic. Recall the Tweety example from propo-
sitional logic, where given an exception that penguins do not fly
lead us to conclude there are no penguins. With defeasibility we
say that birds typically fly, and then conclude that penguins are
simply exceptional birds that do not fly. In order to do this a new
connective is introduced: |∼. This is a new type of conditional. The
statement a |∼ b reads as: if a, then typically b. This approach is
referred to as the KLM approach and was investigated in Kraus et
al. [12].

Much of the literature discusses the property of non-monotonicity
that defeasibility possesses. Monotonicity informally means given
a set of statements in a knowledge base, if we add more statements,
we do not lose any consequences. This is not a characteristic that
defeasible reasoning should have since conclusions should be re-
tracted in the case of new conflicting information.

The following example is to compare the Tweety example from
propositional logic and use it in defeasible reasoning. Let our knowl-
edge base be K = {b |∼ f ,p → b}. Interpreted as: birds typically
fly, and penguins are birds. From this we would conclude that pen-
guins typically fly, using ranked entailment. However, if we add
the sentence p |∼ ¬f to our knowledge base (penguins typically do
not fly) we retract the previous conclusion that penguins typically
fly, since now penguins are not typical birds, but rather exceptional

2

ones. This is a display of non-monotonic reasoning, as we retracted
a conclusion after the addition of new information and is what is
required from defeasible reasoning.

The |∼ operator is said to be a preferential conditional since it has
the following properties, put forward by the authors Kraus et al.:
Reflexivity (Ref), Left Logical Equivalence (LLE), Right Weakening
(RW) and Cautious Monotonicity (CM).

(Ref) α |∼ α (LLE)
|= α ↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β , α |∼ γ

α |∼ β ∧ γ
(Or)

α |∼ γ , β |∼ γ

α ∨ β |∼ γ

(RW)
α |∼ β , |= β → γ

α |∼ γ
(CM)

α |∼ β , α |∼ γ

α ∧ β |∼ γ

Another property that |∼ has is Rational Monotonicity (RM).
From this we can say it is a rational conditional.

(RM)
α |∼ γ , α ̸ |∼ ¬β

α ∧ β |∼ γ

In Lehmann and Magidor [14] ordered structures called ranked
interpretations are used to reason with the defeasible conditional.
A ranked interpretation is an ordering of different interpretations
and can be written as a partition (L0, . . . ,Ln). The valuations lower
down in the ordering are the ones that are more typical. We say a
ranked interpretation is a ranked model of some set of conditionals
if it entails every conditional in that set. A new preference relation
⊴LM is defined in Lehmann and Magidor’s work. This forms a
partial order over ranked interpretations. The intuition is that the
ranked interpretation with the most typical valuations possible at
the bottom of the ranking should be preferred. Using this order
there is shown to be a unique minimal ranked interpretation among
all the ranked models. Reasoning in this KLM framework is thought
of as deriving new conditionals from a set of conditionals C. The
Rational Closure of the set C gives us a form of entailment for
defeasibility. This is not the only form of entailment for defeasibility
but it is the one that the rest of the paper will build on.

To reason using the Rational Closure there are essentially two
approaches. The first is an algorithm to determine if a conditional
follows from a knowledge baseK . The second is the rational closure
construction, which builds the unique minimal ranked model. The
Rational Closure algorithm is first established in Lehmann and
Magidor [14], and then another more detailed approach based on
the former is put forward in Booth and Paris [5]. The algorithm
determines whether, given a conditional assertion a |∼ b, it is
entailed by a knowledge base K . A ranking of sentences in the
knowledge base based on their exceptionality is produced, with the
classical statements being put on their own level, L∞. Sentences are
put into different levels depending on their exceptionality, with the
less exceptional sentences being put on the lower levels. Defeasible
sentences are converted into classical implications. If the antecedent
of the statement being checked by the algorithm is False from the
knowledge base, the highest level of exceptionality is dropped from

the ranking. The algorithm checks if the sentence is entailed by the
knowledge base once this condition is met.

From this, the algorithm finds whether the statement is True or
False in the knowledge base. For more detail on the algorithm see
the papers mentioned.

Figure 3 shows a ranking of the sentences in the knowledge
base K = {b |∼ f ,p → b,p |∼ ¬f ,b |∼ w} when using the rational
closure algorithm.w represents the property of having wings, with
the rest of the sentences the same as before. Using the algorithm;
the statement that p |∼ w is entailed by this knowledge base.

L∞ : p → b

L1 : p |∼ ¬f

L0 : b |∼ f b |∼ w

Figure 3: Ranking sentences in K

The Rational Closure construction on the other hand creates a
ranked model of interpretations. As mentioned before this model
is shown to be the unique minimal model. To construct this: first,
interpretations that contradict the classical statements are removed.
Then each interpretation is put on the lowest level, then moved
up if the interpretation is deemed an exceptional case based on
the defeasible sentences in the knowledge base. Once no more
interpretations can bemoved up a level the construction is complete.
Figure 4 shows an example of a ranked interpretation which is the
minimal ranked model, using the Tweety example. Computing
entailment from this model is then a fairly simple computation.

L2 : 111
L1 : 100 101
L0 : 000 010 110

Figure 4: A ranked interpretation for P = {b, f ,p}.

4 PROPOSITIONAL TYPICALITY LOGIC
In Booth et al [4] a new logic for reasoning about typicality is intro-
duced. Propositional Typicality Logic (PTL) enriches propositional
logic with a typicality operator. The operator is a unary operator
that says that something is the typical case. Unlike the binary de-
feasible |∼, the • operator can be placed anywhere in the formula.
This makes PTL more expressive than defeasible reasoning. The
Tweety example from before would now read as: typical birds fly.
The notation for a statement •a → b, says the most typical a im-
plies b. The statements •p → q and p |∼ q are equivalent. But now
another example could also have •p → •q, which makes PTL more
expressive. In the original introduction to PTL slightly different no-
tation is used, with a (a bar) representing typical a. The language of
PTL is that of propositional logic but with the • operator included.

Though PTL is more expressive, we cannot use the same form
of entailment as in the defeasible case. Booth et al. [3] show that
ranked entailment is not appropriate for PTL. The paper also lists
eleven different postulates that a consequence operator could satisfy.
A consequence operator is a mapping which relates to a given form

3

of entailment. For a given entailment, its consequence operator
gives the set of statements in a given knowledge base which are
entailed by that knowledge base. It is shown that these postulates
cannot all be satisfied at once. This impossibility result leads to two
new forms of entailment to be proposed. The paper also states that
rather than a negative result this should be interpreted that as an
indication that a language as expressive as PTL allows more than
one form of entailment. Entailment in this logic must of course be
defeasible and non-monotonic, in the sense that conclusions can
be retracted when new information is added.

5 ENTAILMENT FOR PTL
Two different forms of entailment are proposed for reasoning in
PTL. Both are generalisations of rational closure. The first is LM-
Entailment and the second is PT-Entailment. Entailment for PTL is
the exact focus of the PTR project, as the project involves exploring
the theory of and the implementation of an algorithm for entailment
in PTL.

The advantages and disadvantages of these two forms of entail-
ment are the different properties they satisfy. Both fulfil some but
not all of the postulates proposed. LM-Entailment satisfies all of the
postulates except for Strict Entailment. PT-Entailment on the other
hand satisfies Strict Entailment but not the Single Model postulate
and Conditional Rationality. For the definitions of these postulates
and other postulates see Booth et al. [3].

The authors contend that the differences between these two
forms of entailment mean that the context should determine which
is appropriate. They mention the ideas of prototypical reasoning
and presumptive reasoning. The distinction between these two is
drawn in Lehmann [13]. However, the details are not important in
the context of PTL.

The Tweety example details what we want from entailment for
PTL. If we have a knowledge base K = {•b → f ,p → b} that
says typical birds fly and penguins are birds. We would expect to
conclude that typical penguins are typical birds, but when adding
that •p → ¬f (typical penguins do not fly) we would retract that
conclusion. This is an example of what is required from entailment
in PTL. Booth et al. [3] show that ranked entailment does not meet
these requirements.

The idea of LM-Entailment is to apply the idea of rational closure
construction to knowledge bases in PTL. The LM-Entailment algo-
rithm uses the ⊴LM preference relation to return a ranked model
of a knowledge base. Its form of entailment is defined such that a
formula α is LM-entailed byK if and only if α is classically entailed
by the ranked model returned by the algorithm.

PT-Entailment is based on a version of minimality derived from
the characterisation of rational closure found in Giordano [9]. The
idea of this form of entailment is to respect the presumption of
typicality, from Lehmann [13]. This informally means we should
assume every situation is as typical as possible.

PT-Entailment defines a new pre-order, ⊴PT. To define this the
authors Booth et al. first define a height function over a ranked
interpretation. The height of a valuation in an interpretation corre-
sponds to the number of the layer it is in, or to ∞. A lower height

corresponds to a more typical valuation. Ordering two ranked in-
terpretations, R ⊴PT R ′, then means that the height of every
valuation in R is lower than the height of every valuation in R ′.

When working with the |∼ operator, ⊴PT is equivalent to ⊴LM
minimality defined for defeasible reasoning. However, using the
typicality operator there is not one unique minimal model due to
its expressivity. A number of minimal models can be given back
with the PT pre-order notion of minimality. The definition of PT-
Entailment is that a formula α is PT-entailed by K if and only if
the PT-minimum of the models of K is a subset of the models of α .

The work on PTL is still ongoing with more investigation into
the issues surrounding entailment to be done.

5.1 PTR Project Roles
In the PTR Project there are two components, one is investigating
the different forms of reasoning and the other is implementing a
reasoner for PTL. The project has been split up between the two
forms of entailment, I will be investigating and implementing a
reasoner for one of the PTL entailment algorithms, namely PT-
Entailment. My partner, Guy Green, will be doing the same but
focusing on LM-Entailment.

6 IMPLEMENTATION
The goal of the PTR project is to implement a reasoner for PTL.
Specifically in my project I will be implementing the PT-Entailment
form of reasoning. One possible approach to implementing the
PT-Entailment algorithm is to use a SAT Solver.

SAT Solvers are algorithms that try to solve the Boolean satisfia-
bility problem (SAT). This is determining if there is an interpretation
that satisfies a given Boolean formula. SAT is an NP-Complete prob-
lem, meaning all problems in the complexity class NP are at most
as difficult to solve as SAT. There are two different kinds of main-
stream SAT solvers, according to A survey of SAT Solver, Gong and
Zhou [11]. There are complete algorithms which search the entire
solution space using backtracking, and incomplete algorithms. To
use a SAT solver a Boolean formula must be converted into Con-
junctive Normal Form, which means it is composed of a conjunction
of disjunctions of literals. In other words, it is an AND of ORs.

Complete algorithms either find a satisfying interpretation or
prove that a formula is unsatisfiable, i.e. that there is no interpre-
tation where the formula evaluates as True. One of the most com-
monly used complete algorithms is the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [8]. This has been used as the basis for
most efficient SAT solvers. GRASP is a SAT Solver that used DPLL
but also introduced the Conflict-Driven Clause Learning (CDCL)
algorithm [19]. Based on these advancements a number of more
efficient SAT algorithms were introduced such as MiniSAT [20],
Chaff [15] and Lingeling [2] to name a few. For incomplete al-
gorithms the local search algorithm is the most commonly used.
GSAT [17] and its improvement WalkSAT [18] are local search
algorithms for solving SAT.

In the implementation of the PTR project, a SAT Solver like
the ones mentioned above could be used to develop a reasoner
by reducing the PT-Entailment algorithm into a series of classical
entailment checks. Another approach would be to use an ontology
editor. One such ontology editor is Protege [16]. Either of these

4

approaches could be used in the project to develop a reasoner and
implement PT-Entailment.

7 OTHER APPROACHES
There are also other approaches to defeasibility in logic. Casini [7]
proposes an application of their own approach to rational closure
in the field of Description Logics, which is an important knowledge
representation formalism. Casini et al [6] introduces defeasibility
into OWL Ontologies. Another approach to Typicality is presented
in Giordano et al. [10] where a typicality operator T is extended to
the description logic ALC.

There are other fields of logic that deal with exceptions to rules
in different ways besides defeasibility. For example, probabilistic
logic. However, these approaches will not be dealt with in the PTR
project.

8 CONCLUSIONS
To conclude, two forms of entailment for PTL have been proposed,
these are LM-Entailment and PT-Entailment. Both have advantages
and disadvantages from the properties they fulfil. An implementa-
tion of the two algorithms will be done in the PTR project in order
to develop a reasoner. My own section of the project will focus on
PT-Entailment. The theory of PTL builds upon previous work in
the field of defeasible reasoning explored in this review.

The important concepts from propositional logic were discussed,
including how sentences are built from propositional atoms con-
nected by operators. An interpretation is a possible world where
each atom is either true or false. A model is an interpretation that
satisfies some other sentence. Reasoning in propositional logic
comes down to computing classical entailment, in order to deter-
mine if a sentence follows from a knowledge baseK . The key result
is that a sentence follows from K if every model for K is also a
model for the sentence.

The • operator in PTL allows for more expressive statements
that using the |∼ operator. It is the expressivity of this language
that allows for more than one form of entailment. Either operator is
used in an extension to classical propositional logic. The defeasible
nature of these operators means we can make statements about the
typical case of a scenario. Entailment in either case had to be non-
monotonic. To reason with the defeasible |∼ conditional required
the concept of rational closure, with an algorithm to determine if a
statement follows from a given knowledge base. Another way of
computing entailment is by using the construction of a minimal
ranked model. Though there has been extensive work done in the
field of defeasible reasoning, PTL is relatively new and unexplored
in comparison.

Different approaches to implementing a reasoner for PTL exist,
but the most likely is to use one of the SAT Solvers available. This
will form the practical aspect of the PTR project.

REFERENCES
[1] Mordechai Ben-Ari. 2012. Mathematical logic for computer science (3 ed.). Springer

Science & Business Media.
[2] Armin Biere. 2010. Lingeling, plingeling, picosat and precosat at sat race 2010.

FMV Report Series Technical Report 10, 1 (2010).
[3] Richard Booth, Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2015. On

the Entailment Problem for a Logic of Typicality. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI). 2805–2811.

[4] Richard Booth, Thomas Meyer, and Ivan Varzinczak. 2012. PTL: A Propositional
Typicality Logic. In Proceedings of the 13th European Conference on Logics in
Artificial Intelligence (JELIA) (LNCS), L. Fariñas del Cerro, A. Herzig, and J. Mengin
(Eds.). Springer, 107–119.

[5] Richard Booth and Jeff B Paris. 1998. ANote on the Rational Closure of Knowledge
Bases with Both Positive and Negative Knowledge. Journal of Logic, Language
and Information 7, 2 (1998), 165–190.

[6] Giovanni Casini, Thomas Meyer, Kody Moodley, Uli Sattler, and Ivan Varzinczak.
2015. Introducing Defeasibility into OWL Ontologies. In Proceedings of the 14th
International Semantic Web Conference (ISWC) (LNCS), M. Arenas, O. Corcho,
E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P.T. Groth, M. Dumontier,
J. Heflin, K. Thirunarayan, and S. Staab (Eds.). Springer, 409–426.

[7] Giovanni Casini and Umberto Straccia. 2010. Rational Closure for Defeasible
Description Logics. In Proceedings of the 12th European Conference on Logics in
Artificial Intelligence (JELIA) (LNCS), T. Janhunen and I. Niemelä (Eds.). Springer-
Verlag, 77–90.

[8] Martin Davis, George Logemann, andDonald Loveland. 1962. AMachine Program
for Theorem-proving. Commun. ACM 5, 7 (July 1962), 394–397. https://doi.org/
10.1145/368273.368557

[9] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2012.
A minimal model semantics for nonmonotonic reasoning. In Logics in Artificial
Intelligence. Springer, 228–241.

[10] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2013.
A non-monotonic Description Logic for reasoning about typicality. Artificial
Intelligence 195 (2013), 165–202.

[11] Weiwei Gong and Xu Zhou. 2017. A survey of SAT solver. AIP Confer-
ence Proceedings 1836, 1 (2017), 020059. https://doi.org/10.1063/1.4981999
arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4981999

[12] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial Intelligence 44
(1990), 167–207.

[13] Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of
Mathematics and Artificial Intelligence 15, 1 (1995), 61–82.

[14] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Artificial Intelligence 55 (1992), 1–60.

[15] Matthew WMoskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. 2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
annual Design Automation Conference. ACM, 530–535.

[16] Mark A Musen. 2015. The protégé project: a look back and a look forward. AI
matters 1, 4 (2015), 4–12.

[17] Bart Selman and Henry Kautz. 1993. Domain-independent extensions to GSAT:
Solving large structured satisfiability problems. In IJCAI, Vol. 93. Citeseer, 290–
295.

[18] Bart Selman, Henry A Kautz, Bram Cohen, et al. 1993. Local search strategies for
satisfiability testing. Cliques, coloring, and satisfiability 26 (1993), 521–532.

[19] João P. Marques Silva and Karem A. Sakallah. 1996. GRASP&Mdash;a New Search
Algorithm for Satisfiability. In Proceedings of the 1996 IEEE/ACM International
Conference on Computer-aided Design (ICCAD ’96). IEEE Computer Society, Wash-
ington, DC, USA, 220–227. http://dl.acm.org/citation.cfm?id=244522.244560

[20] Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a sat solver with conflict-
clause minimization. SAT 2005, 53 (2005), 1–2.

5

https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1063/1.4981999
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.4981999
http://dl.acm.org/citation.cfm?id=244522.244560

	Abstract
	1 Introduction
	2 Propositional Logic
	3 Defeasible Reasoning
	4 Propositional Typicality Logic
	5 Entailment for PTL
	5.1 PTR Project Roles

	6 Implementation
	7 Other Approaches
	8 Conclusions
	References

