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ABSTRACT
This is a study on the benefits of imposing a cost on morphologi-
cal (sensory configuration) complexity while evolving controller-
morphology couplings for co-operative robot teams. Namely, we
investigate whether indirect-encoded evolutionary mechanisms
discern simpler morphology for competent team behaviour when a
cost is imposed on morphological complexity. Moreover, we are in-
terested in the relationship between task (environmental) difficulty
and the degree of morphological complexity. Towards this end, we
report a novel method, HyperNEAT-M, for co-evolving controller-
morphology couplings for robot teams - with additional support
for multi-objective optimization as to allow for a cost of complex-
ity to be imposed. Results indicate that constraining complexity
induces simpler morphologies with negligible differences in task
performance. Moreover, robot teams consistently favour simpler
morphologies across tasks of varying difficulty.

1 INTRODUCTION
Towards a future in which robot design is fully automated, an open
problem in cooperative Evolutionary Robotics (ER) [17] is how best
to co-evolve robot controllers and morphologies to produce optimal
sensory-motor configuration [11, 37, 53, 54, 62]. Co-evolutionary
methods are particularly effective for the design of Multi-Robot
Systems (MRS) [34]. In these systems robots interact via emergent,
collaborative behavior. This is applicable to a number of real-world
cooperative tasks [26, 36, 44]. Indeed, recent work attests to a direct
correlation between improved task performance and increasing
the extent to which robot design is left to evolutionary methods
[9, 13, 27].

Common approaches to deriving behaviour-morphology cou-
plings are direct [27, 52] and indirect [62] encoded neuro-evolution
[64], falling within the more general class of stochastic optimisa-
tion methods that take inspiration from natural evolution. Recent
literature shows that by evolving organisms in silico with an indi-
rect encoded neuro-evolution method, artificial evolution naturally
induces a selection pressure that favors solution complexity, be-
yond what is required to handle the environmental scenario [4].
Moreover, it was shown that imposing a cost on complexity (as is
thought to occur in natural evolution [22, 43]) causes evolution to
produce solutions which are only as complex as the environment
requires them to be [3, 32, 42].

These findings could have important implications for robot de-
sign. Namely, constraining the complexity of evolved robot mor-
phologies could provide solutions with cheaper, fewer and more
desirably configured parts (such as sensors). This may result in
reducing time and costs spent on the overall design process. Indeed,

a number of studies corroborate the benefits of imposing an evolu-
tionary cost on complexity for single-robot systems [3, 42]. This
area of research could facilitate more cost-effective MRS design
since redundant morphological complexity amplifies costs as the
number of required robots increases. However, to the best of our
knowledge, no such investigation has been conducted for MRS.

To facilitate this research, a chosen evolutionary method should
allow for a cost of complexity to be incorporated into the optimiza-
tion process. In lieu of standard single-objective neuro-evolution
[23] techniques which are typically employed for ER research, multi-
objective neuro-evolution techniques are designed to optimize mul-
tiple conflicting objectives simultaneously, taking into account the
trade-offs among the objectives [18, 20]. This is especially suitable
for robotic system design as many real-world problems contain
various trade-offs and optimal trade-offs are contingent on the
problem domain. An obstacle to this research is that prominent
neuro-evolution methods, notably Neuro-evolution of Augment-
ing Topologies (NEAT) [59] and HyperNEAT [58], are designed
for single-objective optimization. Several attempts to extend these
methods for multi-objective optimisation are reported in the litera-
ture, but for the most part are without quantitative support for nor
preservation of the core innovations of the original methods [2].
One such exception is NEAT-MODS [2] which is intended to be used
in this work to facilitate the imposition of a cost on complexity.

This work is an inquiry into the potential benefits of imposing a
cost on morphological complexity in the indirect co-adaptation of
controller and morphology for homogeneous MRS. Namely, we are
interested in (1) producing cheaper sensory (morphological) config-
urations without reducing task performance and (2), investigating
what degree of sensory complexity is necessary for environments
of varying difficulty. Towards this end, we establish a novel method
HyperNEAT-M that extends HyperNEAT to evolve the controller in
addition to the sensory-configuration. This method is compared to
HyperNEAT-M-MODS which integrates HyperNEAT-M with NEAT-
MODS to allow for additional selection pressure towards morpho-
logical simplicity. We utilize collective gathering [39] - a benchmark
task in cooperative robotics [38] - to quantify task performance.
The potential benefits of constraining morphological complexity
are not limited to a single problem domain, and so we focus on the
capacity to perform the benchmark task. We define morphological
complexity as an abstraction of the design costs associated with ad-
ditional and more powerful sensors. This work evolves behaviorally
and morphologically homogeneous MRS due to the increased com-
putational complexity required for heterogeneous robots.



We investigate two hypotheses :

(0) Imposing a cost on morphological complexity on indirect evolu-
tionary processes results in selection for simpler morphologies
with negligible adjustments of task performance for MRS.
This hypothesis is based on previous research which concurs
that indirect evolutionary processes tend to induce selec-
tion pressure for increased complexity [4]. Moreover, related
research demonstrated that increasing morphological com-
plexity does not result in higher task performance [61, 62].

(1) Increasing environmental complexity does not require an in-
crease in morphological complexity for Multi-Robot Systems
Similar works have demonstrated that for single-robot sys-
tems, adding a cost on complexity results in a relationship
between environmental complexity and morphological com-
plexity [4, 5, 42]. However, this hypothesis is based on vari-
ous studies, within the field of MRS, that have implicated that
increasing task complexity does not necessarily correlate to
increasing morphological complexity [27, 61, 62].

2 BACKGROUND
2.1 Neuro-evolution
Neuro-evolution (NE) [23] is a sub-field of machine learning that
unifies two biologically-inspired techniques: Evolutionary Algo-
rithms (EAs)[20] and Artificial Neural Networks (ANNs)[33]. NE
exploits the meta heuristic approach of EAs, to generate and evolve
ANNs[50, 64], culminating in one of the most effective method-
ologies for producing complex and novel controllers [25, 51, 65].
Two particularly powerful NE algorithms are Neuro-evolution of
Augmenting Topologies (NEAT) algorithm [59] and HyperNEAT
[58] which not only evolve the synapses of the ANN but also its
topology.

2.1.1 Neuro-evolution of Augmenting Topologies. NEAT [59] is
a direct encoded genetic algorithm that is based on three funda-
mental principles: (1) Historical markings allowing for appropriate
recombination, (2) speciation to protect innovative solutions, and
(3) complexification to favor minimalistic solutions.

NEAT adapts a genetic encoding schema that represents ANNs
as a list of connection genes. A connection gene stores pertinent
information including an innovation number - a historical marker
that represents the gene’s origin. These markers allow for sensible
recombination, as genes can be matched and appropriately chosen
from the respective parents. However, the addition of novel genes
to a solution causes an initial decrease in overall fitness. These
solutions require additional time to optimize before being able to
fairly compete with other solutions. NEAT solves this by ensuring
competition for selection is held within groups of similar organisms
(species) rather than the entire population. Speciation is used to
categorize solutions based on their topology and synapses which
can be achieved trivially via historical markings. The final principle
element of NEAT is complexification, where the initial population
of solutions are uniform and contain no hidden layers. This en-
sures that all additional complexity is justified and gives NEAT
a performance advantage over related approaches, such as SANE
[25, 35].

Figure 1: Querying a CPPN with a substrate to produce a connec-
tivity pattern in space. Each potential connection (node pair) in the
substrate topology on the left is passed to the CPPN, which calcu-
lates a weight for that pair. If the weight computed for a poten-
tial connection satisfies a certain threshold, then that connection
will be ’painted’ in n-dimensional space (two dimensional in this
instance) [58].

NEAT has shown to be a particularly powerful methodology for
multiple ER and MRS applications such as evolving autonomous
cars [63], simulating video games [52] and others [28].

2.1.2 HyperNEAT. HyperNEAT [58] is an extension of NEAT. Its
key innovation is its ability to exploit the physical underlying struc-
ture inherit to the problem [57]. HyperNEAT utilizes a generative
indirect encoding schema where the genotype representation of an
ANN is a connective Compositional Pattern Producing Network
(CPPN) [57]. CPPNs represent connectivity patterns as functions
of Cartesian space. They are graph structures internally similar to
ANNs but differ in their utilization of multiple activation functions.
The composition of these functions allows complex, repetitive and
regular patterns to be produced. Moreover, the structure allows
neuro-evolution methods specifically NEAT to evolve CPPNs.

ACPPN is decoded into anANN through the painting of synapses’
connections on an a priori defined substrate. A CPPN achieves this
by accepting the Cartesian co-ordinates of two nodes from the
substrate and outputting a weight for the respective connection.
However, a connection is only solidified if the weight produced
is above a certain threshold [58]. Thus, a two-dimensional con-
nectivity pattern (ANN) can be represented by a CPPN’s spatial
pattern in a four-dimensional hypercube. This is presented in figure
1. This process is specifically advantageous as it allows for compact
representation of large ANNs.

In this study, HyperNEAT is selected over NEAT for its increased
learning capacities and ability to exploit the geometric regularity
andmodularity of a problem. In the chosen collective gathering task,
the geometric features include the sensory configuration, resources
(blocks) as well as the relative position and direction of other robots.
The numerous advantages of HyperNEAT for multi-agent tasks
are demonstrated in its applications to related areas of research,
such as for RoboCup Soccer [16], Pursuit-Evasion [37] and collective
construction [47, 61].

2.2 Multi-objective Evolutionary Algorithms
Within the research area of MRS, tasks may require multiple com-
peting objectives to be simultaneously optimized [18], a question
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arises of how to consolidate them. Moreover, designers seek to
understand the trade-offs between the various objectives and hand
pick their preferred solution [60].

Multi-objective Evolutionary Algorithms (MOEA) [10] are an in-
creasingly popular solution to this problem. State-of-the-art MOEAs
produces a set of Pareto-optimal solutions that embody optimal
trade-offs between several objectives [1, 20]. A candidate solution
is Pareto-optimal if there exists no other solution that could perform
better at a single objective, without decreasing the performance of
other objectives [18]. EAs are a favorable method for solving multi-
objective problems as they naturally process families of solutions
and thus can generate, in one run, a set of solutions. Moreover, EAs
are efficiently able to process discontinuous and concave pareto-
fronts [14].

However, NEAT and HyperNEAT were developed for single op-
timisation problems. With an increased demand for MOEAs, inte-
grating these has become an active focus of contemporary research
[2]. It is important to note that such an implementation will alter
the core NEAT structure which HyperNEAT is built upon. Thus,
any multi-objective NEAT integration can trivially be extended
to HyperNEAT. A core issue in this integration is maintaining
the principle structure of NEAT while simultaneously preserving
core features from state-of-the-art MOEs mainly NSGA-II [56] and
SPEA-II[66]. The main contentious issue is the selection mecha-
nism - NEAT requires selection be done through speciation while
MOEAs require a form of non-dominance sorting (mainly NSGA-II).
Furthermore, successful MOEAs maintain the principle of elitism,
where parent solutions and child solutions compete for the next
generation [56]. This ensures that pareto-optimal solutions are car-
ried through to each generation. The literature points to various
integration strategies:

2.2.1 Augmenting the Fitness Function. One prominent early
strategy is the alteration of the fitness function to take into account
a solution’s pareto-optimality. This is demonstrated in the NEAT-PS
algorithm [63], which adapts the Pareto-strength value approach
from SPEA-II into the fitness function. NEAT-PS was successfully
utilized to find the optimal trade-offs between comfort (fewer lane
changes) and speed (more lane changes) in vehicle controllers [63].
A contention with such a technique is since NEAT does not fol-
low an elitist strategy, NEAT-PS does not either. Consequently,
Pareto-optimal solutions from previous generations are not stored.
Another alternative worth mentioning, is a single fitness function
that assigns appropriate weights to each objective [14]. However,
this is not ideal for contradictory objectives as trade-offs are not
taken into account.

2.2.2 Genotypic diversity function. More modern works have
opted to remove NEAT’s selection process, and consequently spe-
ciation, in order to incorporate core NSGA-II functionality [4, 52].
Subsequently, an additional genotypic diversity function is added in
order to protect innovation, which is traditionally achieved via spe-
ciation. There are three fundamental concerns with this algorithm.
(1) whether the removal of speciation damages the credibility of
NEAT. (2) there may be issues that arise from a genotypic diversity
function. In particular, solutions may advance through generations
for their novelty as opposed to their ability to perform well at the
task. (3) the increase in dimensionality of the objective space is

Figure 2: HyperNEAT-M CPPN: The CPPN maps the Cartesian co-
ordinates of two nodes from the substrate to a connection weight
along with a sensory configuration (a sensory type, orientation,
range and FOV value).

not ideal for already complex problems [2]. Such an algorithm was
implemented by a key work that heavily influenced this paper [4]
and other alternative papers that require a multi-objective version
of NEAT [30, 31, 52].

2.2.3 NEAT-MODS. In contrast, a recent paper by Abramovich
et al. [2] presents NEAT Multi-objective Diversified Species (NEAT-
MODS), an elitist multi-objective NEAT structure that is able to
consolidate both NSGA-II selection process while still maintaining
all core principles of NEAT including speciation. Additionally, the
paper demonstrated that NEAT-MODS was substantially more ef-
fective than NEAT-PS [2]. Although other papers have claimed to
have also implemented a version of NEAT that also achieves this
[12], none have presented the algorithmic structure with compar-
ative testing to alternative methodologies. This paper [2], to the
best of our knowledge, is the only well-formulated and generic
multi-objective NEAT alternative. Consequently, this work adopts
a version of this algorithm for multi-objective HyperNEAT. A more
in depth discussion on the algorithm can be found in ??.

3 METHODS
Two main methods are used to allow for the co-evolution of mor-
phology and controller with one objective (task performance) and
two objectives (task performance and morphological simplicity).
The first method, HyperNEAT-M extends HyperNEAT to evolve the
controller in addition to the sensory-configuration - specifically the
number of sensors and their respective Sensor Type, Field of View,
Range, Orientation and Bearing. The second method, HyperNEAT-
MODS, is a multi-objective version of HyperNEAT-M allowing for
an additional cost on complexity to be imposed.

3.1 Co-evolution of Robot Morphology and
Controller

The related NEAT-M method [27] co-evolves controller and mor-
phology by directly encoding a morphology genotype which is
evolved in parallel to the usual controller genotype. HyperNEAT-M,
however, indirectly encodes controller and morphology in a single
CPPN genotype.
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While a HyperNEAT CPPN computes only a connection weight
value as a function of two Cartesian points (that is, two connected
nodes), a HyperNEAT-M CPPN computes a sensory configuration
constituted by five additional values: range, bearing, field of view
(FOV), orientation and type as shown in figure 2. This is achieved by
adding additional output nodes to the CPPN, similarly to another
study [48] which encodes additional ANN parameters directly into
the CPPN. The sensory configuration is computed by converting
numerical CPPN output ([-1,1]) to a sensory parameter. More specif-
ically, for categorical configurations (sensor type) we associate out-
put ranges with a sensor type. Numerical sensory configurations
(range, Bearing, Field of View (FOV), Orientation) are computed
by normalizing the CPPN output against the range of the sensory
parameter in accordance with the sensor type. For example, if the
CPPN outputs 0.2 for a bearing value and the bearing range as-
sociated with the specific sensor type is [-2,2] then the bearing
parameter will be computed as 0.4 (0.2 normalized to the range
[-2,2]). Subsequently, each connection in the resulting network
(phenotype) encoded by the CPPN stores a sensory configuration
and the usual connection weight. Note that the bearing (that is, the
location on the robot body) of a given sensor directly corresponds to
the Cartesian co-ordinate of an input node on the substrate which
receives environmental input from that sensor. This is illustrated
in Figure 2, where X 1 coordinate and Y 1 coordinate constitute
the Cartesian co-ordinate (on the physical robot body) of a given
sensory input node.

The final configuration for each sensory input node is established
by traversing the outgoing connections and setting the sensory
parameters from connection with the highest weight. It is important
to note that a sensor (input node) is only configured if there exists
at least one outgoing connection.

3.2 Multi-Objective Co-evolution of Robot
Morphology and controller

HyperNEAT-M-MODS supersedes the core foundation of HyperNEAT-
M (NEAT) with NEAT-MODS, an NSGA-II based MOEA designed
to adhere to the principles of NEAT while simultaneously allowing
auxiliary objectives [2]. This is accomplished by augmenting the se-
lection process of NEAT, to follow an elitist strategy of considering a
combined population of the current offspring and respective parent
solutions. This combined population is sorted via a non-domination
sorting and crowding-distance as in NSGA-II. As well as placed into
respective species. Subsequently, the selection process then occurs
in two phases:

(1) Selecting Species for the Next Generation: A sorted list
of selected species is produced by traversing the ordered so-
lutions. Additionally, NEAT-MODS incorporates a bound on
the number of selected species. This bound maintains global
elitism while favoring diversity in the selection process.

(2) Selecting Individuals from the Selected Species: The fi-
nal phase of the process aims to produce a new parent pop-
ulation from the selected species. Each selected species is
re-sorted (based on NSGA-II’s sorting mechanism) and a
serial progression technique is applied. The serial progres-
sion technique, attempts to iteratively scan through each
species and select a solution, until a final parent population

has been selected. Thus, speciation is maintained as well as
pareto-optimality.

A more thorough treatment of the algorithm can be found in the
associated paper [2].

4 EXPERIMENTAL DESIGN
Two experiments are designed to investigate the implications of
adding a cost to morphological complexity for co-evolved MRS.
Firstly, experiment SO employs HyperNEAT-M with selection pres-
sure based solely on task performance. Secondly, experiment MO
adopts HyperNEAT-M-MODS in the handling of selection pressure
for both task performance and morphological simplicity. Similar to
related works [27, 47], we administer the experiments in a collective
gathering simulator for teams of homogeneous robotic agents. Each
experiment is run in three environments with varying degrees of
collaboration (defined as task complexity) needed to complete the
task. This section outlines the configurations used to conduct the
above experiments.

4.1 Experimental Platform
The experimental framework used is a Mason based MRS simulator
1, developed for a collective gathering task with various configura-
tions of task complexity. The robotic agents within the simulator
are modeled after the Khepera III [29] robots and allow for varying
sensor configurations. The simulator functions as a medium to de-
termine the fitness of evolved morphology and controller solutions.

4.1.1 Collective Gathering Task. Collective Gathering requires a
team of robots to locate distributed resources in a bounded environ-
ment and transport them, via cooperative pushing, to a predefined
zone [39]. The task was selected for its pertinence in real-world
MRS applications such as toxic waste clean-up [44]. Moreover, col-
lective gathering is a well established benchmark task in ER and
acts as a performance indicator for various evolutionary design
techniques [38, 39].

4.1.2 Environmental Configuration. The experimental frame-
work, displayed in figure 3, simulates a bounded two dimensional
continuous environment with a target area for the robots to place
collected resources (blocks). Three different types of blocks (small,
medium and large) are randomly distributed within the environ-
ment. Larger blocks increase the degree of task complexity by
requiring cooperative pushing. The transportation of small blocks
require a single robot, medium blocks require two or more robots
and large blocks require three or more robots. Correspondingly,
each block type has a reward value (defined in table 2) and the
fitness of a team of robots is defined by the total value of blocks
that are in the target area at the end of the simulation.

The distribution of block types in an environment defines the
task complexity. Within environments that contain mainly small
blocks, robots are able to work concurrently and with minimum
cooperation. Such environments have significantly lower task com-
plexities than environments with more medium and large blocks
where robots are required to work cooperatively to complete the
task.

1 https://cs.gmu.edu/~eclab/projects/mason/
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Neuro-Evolution Parameters
Generations per experiment 250

Trial evaluations per phenotype 5
Population size 150

Initial Connection Density 0.9
Substrate Input Nodes / Output Nodes 5 / 2

Simulation Parameters
Time steps per simulated trial evaluation 10000

Repititions of each experiment 5
Robot team size 20

Robot size (diameter) / Gripping distance 0.004 / 0.002 (Portion of environment size)
Initial robot / block positions Random (Outside gathering zone)

Environment width x height / Gathering zone size 1.0 x 1.0 / 0.5 x 0.2
Small / Medium / Large block size (Width / Height) 0.01 x 0.01 / 0.015 x 0.015 / 0.02 x 0.02

Ultrasonic sensor Range / FOV (0.0, 1.0]/(0.0,π )
Infrared Proximity Range / FOV (0.0, 0.4]/( π6 ,

5π
6 )

Colour Sensor Range / FOV (0.0, 0.4]/( π6 ,
5π
6 )

Low Res Camera Range / FOV (0.0, 0.8]/( π9 ,
8π
9 )

Sensor Orientation Range [ π2 ,
π
2 ]

Table 1: The neuro-evolution and simulator parameters

Figure 3: left: The configuredHyperNEAT substrate thatmodels the robotic agent geometry. middle: A top-down view of the simulated robotic
agents with the sensory parameter configurations. right: An instance of the simulation environment for collective gathering. Robots search
for randomly distributed type small, medium, and large blocks. The coloured semi circles represent the range and FOV of the robots.

4.1.3 Robot Configuration. The class of robotic agents utilized is
a team of homogeneous robots. Specifically, all robots are controlled
by the same ANN controller and sensory configuration, tasked with
cooperating in order to complete the collective gathering task. The
robots are modeled after the Khepera III robot as shown in figure
3. This model was chosen as they are prominent within the ER
research field [24, 40, 41, 55] and allow for sensory modification.

The behavior of a robot is governed by the collaboration be-
tween its controller and sensor configuration. Each input node of a
controller is associated with a sensor. The sensors feed appropriate
data into the controller’s input layer and outputs it to two wheel
motors. The motor wheels control a robot’s direction at a constant
speed.

The robotic agent’s sensory configuration is based on the frame-
work defined in related works [27, 47]. Namely, a robot can uti-
lize five types of sensors: an infrared proximity sensor, a colour
proximity sensor, an ultrasonic sensor, a low resolution camera
sensor and a bottom proximity sensor. Furthermore, as shown in

figure 3, each sensor has four different parameters that can be
specified namely Range, Bearing, Field of View, Orientation. In
all experiments, the number of sensors, respective type and pa-
rameter configuration is put under the evolutionary control of
HyperNEAT-M or HyperNEAT-M-MODS. It is also worth noting
that the agents feature additional collective gathering heuristics.
A thorough treatment of the simulator’s heuristics, sensory and
general robot parameters is provided by related works [27, 47], and
our chosen parameters are listed in Table 1.

4.2 Experimental Configuration
4.2.1 Task Configuration. Three environments that demand

varying degrees of task complexity, given in table 2, are defined.
The environments require low, medium and high cooperation based
on the distribution of block types (Environment 1, 2 and 3, respec-
tively). These environmental configurations were chosen based on
related research and facilitate the evolution of optimal emergent
behavior [27]
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Blocks
Small (1) Medium (2) Large (3)

Environment 1 10 5 0
Environment 2 5 5 5
Environment 3 0 5 10

Table 2: Task environments have varying block configurations that
require increasingly higher degrees of cooperation to complete the
task. More specifically, environment 1 requires a lower amount of
cooperation that environment 3. The brackets define a blocks value
as well as the number of robots needed to move a given block.

4.2.2 Fitness Evaluation. In experiment SO, a team’s fitness is
evaluated solely on their collective gathering task performance.
This takes into account the total reward value of blocks collected,
where blocks that require higher cooperation yield progressively
higher reward. A bonus reward is given to teams that collect all
resources within the allocated simulation time (1000 time steps).

Thus, task performance was calculated at the end of each simu-
lation as

f t = 100 × vc
vt
+ 20 × (1.0 − se

st
) (1)

where vc was the sum value of resources gathered, vt the total
value of all resources in the environment, sc the total number of
time-steps elapsed and st the total number of time-steps. A team’s
final fitness is the average task performance evaluated over five
trial simulations. Note, similarly to related works [27], evolution is
halted when a solution converges to maximizes task performance
(collects all resources within half the allocated time steps). However,
such a convergence mechanism is not used for experiment MO.

In experiment MO, f t is maximized in conjunction with mini-
mizing morphological complexity through the use of HyperNEAT-
MODS. The morphological complexity of a homogeneous robot
team reflects the number of sensors n (n ∈ [0, 10]) as well as the
FOV fi and range ri value of each sensor si . More specifically, we
consider that depending on a sensors type (table 1 )fi and ri are
constrained. As such, we allocate each sensor a contribution to
morphological complexity by examining the proportion selected
to the maximum value that could be selected. Thus, morphological
complexity is defined as

C = 100 − 5 ×
n∑
i=1

(
fi − ∧Fi
∨Fi − ∧Fi

+
ri − ∧Ri
∨Ri − ∧Ri

)
(2)

where ∧Fi and ∨Fi are the minimum and maximum FOV value
for Si ’s associated type and ∧Ri and ∨Ri are the minimum and max-
imum range value for si ’s associated type. This effectively mimics
real-world expenditure of a sensory configuration where sensors
with a larger FOV and range are considerably more expensive.

4.2.3 Neuro-evolution Configuration. HyperNEAT is purposed
with a circular substrate (figure 3) to mimic the physical positional-
ity and symmetry of the sensory configuration. Asmentioned above,
the physical position of each input node maps to the bearing param-
eter of the associated sensor. All other respective neuro-evolution
methods can be found in table 1.

4.3 Experiments
This study comprises of six experiments2, where both experiments
(MO and SO) are run in the three environmental configurations (ta-
ble 3. For each experiment we co-evolve controller and morphology
for a population of 150 robot teams over 250 generations. We evalu-
ate each robot team over five trial simulations with each simulation
testing random starting positions of the robots and blocks. Due to
the high computational power and consequently the substantial
amount of time (four days) required to run each experiment, we
run each experiment five times.

Environment
1 2 3

Experiment SO S1 S2 S3
Experiment MO M1 M2 M3

Table 3: The experiment ID’s of the six experiments run in this
study.

5 RESULTS AND DISCUSSION
In this section we present the results of our experiments. The results
support the outlined hypothesis and conclude that the imposition
of a cost of complexity offers numerous benefits for indirect co-
adaptation of controller and morphology for MRS.

5.1 Hypothesis 0:
Imposing a cost on morphological complexity results in selec-
tion pressure for simplermorphologies with negligible adjust-
ments of task performance.

Corroboration of hypothesis 0 requires comparison of solutions
produced with and without a cost on complexity namely experi-
ment SO and MO respectfully. Figure 4 validates the hypothesis
and illustrates that in each environment there exists some solu-
tion on the Pareto front that offers a simpler morphology with
negligible differences in task performance. This difference is due
to the stochastic nature of evolutionary processes. We define this
difference as 10%, the average standard deviation of performance
across all experiments [4, 20]. However, there exists no established
method for statistical comparison of a singular solution (produced
by experiment SO) to a Pareto front (produced by experiment MO).

Traditionally, a single point is compared to an optimal Pareto
front point selected via value judgment or by some selection process
mechanism from the literature [8, 15, 21]. This is not an appropriate
solution for this work as the selection of a point or mechanism is
dependent on the problem domain. Instead, we opt to use a similar
methodology to that of Auerbach and Bongard [4] and compare
singular points to various Pareto optimal solutions elected by well-
established selection process mechanisms. We utilize the following
selection processes process mechanisms:

(1) Max (∨X ): The solution with the best task performance [21].
(2) Mean (X̄ ): The average of all solutions (both objectives) on

the Pareto front [4].

2The source code and experimental framework can be found at https://github.com/
rudolfbono/honours-project.
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Figure 4: Compares the solutions (both objectives) evolved in exper-
iment SO (AVG SO) to experiment MO (Pareto Front) over the three
environments. Specifically, for experiment SO we average the can-
didate solutions produced over all runs and for experiment MO we
perform a non-dominated sorting to all Pareto fronts producing an
optimal Pareto front. Blue, orange and red represent environment
1, 2 and 3 respectfully. The definitions of the labels are outlined in
section 5.2. Note: the simplest morphology (M = 0, equation 2) is
associated with a full sensory configuration. The highest morpho-
logical simplicity (M = 1, equation 2) is associated with no sensory
configuration.

(3) Knee Point (XKP ): The point with the smallest euclidean
distance to the utopia point [15]. The utopia point is defined
as the point where all objectives are maximized.

(4) Epsilon (Xϵ ): A point that maximizes sensory simplicity
without decreasing task performance by more than a negli-
gible difference (10%) from the ∨x [21].

We compute these four points for each resultant Pareto front from
each MO experiment. Two sets of student’s t-tests (table 4) are con-
ducted to compare the results of experiment SO to each of the four
points for each environment. A student’s t-test was chosen as the
Shapiro-Wilk test showed that the data was normally distributed
(p<0.05). The first test analyses significant differences in task per-
formance and shows that, on average experiment SO outperformed
experiment MO by no more than 10 percent, which is within the
range of negligible difference. The second set of t-tests examined
significant differences between morphological simplicity for MO
and SO. Results showed that MO achieved greater morphological
simplicity than SO in all cases (20 to 30 percent). These results
are consistent with related works [61, 62] and imply that applying
cheaper sensory configurations to MRS does not result in reduced
task performance. This is theorized to be a result of the hypothesis
that indirect evolutionary processes tend to favour a complexity
above what is required to perform a task [4]. Thus, similarly to
single-robot systems [3], imposing a cost of complexity can reduce
robotic design costs for MRS without decreasing task performance.
An interesting observation (table 4) is that as environmental diffi-
culty increases experiment SO and MO seem to display increasingly
similar hypothesized means. Why this occurs remains the topic of
ongoing research.

Figure 5: The mean morphological simplicity calculated across gen-
erations for experiment MO and SO. Blue, orange and red represent
environment 1, 2 and 3 respectfully. Darker colours represent exper-
iment MO and lighter colours represent experiment SO. The labels
represent the experiment labels 3. Note: the experiment SO1 con-
verged around the 110th generation

Figure 6: The mean morphological simplicity (and standard error)
of each Pareto selection point across environments.

5.2 Hypothesis 1
Increasing environmental complexity does not require an in-
crease in morphological complexity for Multi-Robot Systems

A corollary of hypothesis 0 is that imposing a cost on complex-
ity produces an approximation of the simplest sensory configura-
tion required for behavioural competence in a given environment.
However, in order to understand how the relationship between
morphological complexity and the environment differs across en-
vironments, we present further analysis (specifically in relation to
experiment MO). Figure 5, illustrates the mean morphological sim-
plicity over generations for both experiment MO and SO in each
environment. We observe that experiment MO produces nearly
indistinguishable selection pressure for morphological simplicity
across all three environments. It is also noted that experiment SO
tends to maintain a bias towards morphological complexity over
evolutionary time which further supports hypothesis 0 and related
works [4]. Figure 6 contributes further insight into morphological
simplicity, in relation to experiment MO, by examining the average
of the four selection points (discussed in section 5.1) across the
three environments. The figure indicates little to no correlation
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Environment 1 Environment 2 Environment 3

Comparing experiment SO and Task
Performance

Morphological
Simplicity

Task
Performance

Morphological
Simplicity

Task
Performance

Morphological
Simplicity

X̄ SO: [5, 10] MO: [5, 10] SO: [5, 10] MO: [10, 20] SO: [1, 5] MO: [20, 30]
∨X SO: [0, 1] MO: [0, 5] = MO: [0, 5] = MO: [5, 10]
Xϵ SO: [5, 10] MO: [0, 5] SO: [1, 5] MO: [5, 10] = MO: [10, 20]
XKP SO: [0, 1] MO: [10, 20] SO: [1, 5] MO: [10, 20] = MO: [10, 20]

Table 4: The superior performing solutions (SO or MO) and subsequent mean difference as a percentage (p<0.05) between SO solutions and
each Pareto selection point. This is calculated for both objectives across the three environments. Note: ’=’ means there was nomean difference
between SO and the selection point.

between environments and morphological simplicity. Moreover, it
can be seen that each selection point correlates differently to each
environment. X̄ and Xϵ maintain consistent morphological sim-
plicity across environments while ∨X and XKP seem to display a
concave and convex relationship respectfully across environments.

These results validate hypothesis 1 and show that there exists no
direct trend between increasing environmental complexity and in-
creased morphological complexity for MRS. We present two propo-
sitions for these findings.

(1) Other works report that evolving different morphological
components (mechanical [5], triangular mesh [4]) induce orthogo-
nal morphological trends to increasing environmental complexity.
However, these works (specifically evolving single-robot systems)
report some sort of trend where our work does not. We suspect that
this is due to nature of MRS who tend to favour simplicity in order
to evolve emergent cooperative behaviour [6, 7, 19, 49]. Moreover,
related work on MRS have reported similar findings that are inline
with this hypothesis [27, 61, 62]. Such a finding could prove promis-
ing for the general fields of MRS [19] and swarm robotics [7] where
cheap sensory configurations are often a critical objective across a
range of dynamic task environments [49].

(2) We theorize that such results are due to increased controller
complexity. More specifically that evolutionary mechanisms re-
act to the imposition of a cost on morphological complexity by
increasing controller complexity. Figure 5 alludes to this as morpho-
logical simplicity remains somewhat constant from generation 50
on-wards. Such a theory is aligned with embodied cognition which
states that intelligent behaviour is derived from the relationship be-
tween controller, morphology and environment [45, 46]. However,
the substantiation of such a theory requires further experiments
and thus these results are preliminary.

5.3 Future Works
Future works aims to further investigate the validity of the two
propositions stated for hypothesis 1. For proposition 1, future works
should investigate the cost of complexity for other collective gather-
ing tasks such as collective construction as well as for single-robot
systems. Thus giving further insight into the relationship between
MRS and task complexity. Proposition 2 requires further analysis
on controller complexity in relation to this study. An extension of
this could also review the inverse, namely the effects on morpholog-
ical evolution when a cost is imposed on controller complexity. We
also suggest future extensions exploring the relationship between
task performance and a cost on complexity for both controller and

morphology. This paper also presented a novel method for evolving
controller and morphology HyperNEAT-M. While similar works
have showed the effectiveness of HyperNEAT-M’s core procedure
[48], future works should further investigate this method against
other comparative co-evolution mechanisms. In relation to the
multi-objective implementation used in this paper, a future works
should compare this implementation with other multi-objective
neuro-evolution methods such as the more widely used genotypic
diversity function.

6 CONCLUSIONS
This research presented an initial contribution to the advantages
of imposing a cost on morphological (sensory) complexity for the
indirect-encoded co-evolution of controller and morphology for
MRS. More specifically, this study compared the impact on both
task performance and morphological evolution when there is a
cost and no cost imposed on morphological complexity in various
environments. Task performance is formalized as the ability to per-
form a collective gathering task and environments differed in the
varying degrees of cooperation required to solve the task. Results
indicated that the imposition of a cost on morphological complexity
leads to cheaper morphologies with negligible difference in task
performance across all environments. It was additionally found that
increasing task complexity does not require an increase in morpho-
logical complexity. Accordingly, this study contributes two main
findings to the related field of MRS and ER. Firstly, constraining
complexity can result in more economical sensory configurations.
Secondly, MRS designs do not require increasingly complex mor-
phologies for more difficult task. This result has important impli-
cations for evolving MRS in dynamic environments that vary in
difficulty. This work also offers preliminary insight into the rela-
tionship between morphology and environment for MRS.
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