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ABSTRACT
Evolutionary Robotics offers a promising medium in the automated
design of adaptable robots - where hand-designed models are un-
feasible. The potential of this field is encapsulated in its ability to
produce complex behaviors for teams of co-operative robots;Multi-
robot Systems. In implementing these systems, it is necessary to find
viable trade-offs between functionality and complexity. An evalua-
tion of Multi-robot Systems with multiple objectives will allow for
a more nuanced understanding of these different trade-offs. This
review surveys the literature on the mechanisms used to evolve
Multi-robot Systems with a specific focus on NEAT, HyperNEAT
and multi-objective Evolutionary Algorithms, as implementation
methods. These techniques are presented along with various appli-
cations of Evolutionary Robotics.

1 INTRODUCTION
For many problems in the field of robotics, cooperation among
multiple robots is more suitable than the use of a single expensive
robot. Multi-robot Systems (MRS) [27] - sets of coordinated robots
operating in common environments - have been applied to problems
such as completion of tasks in dynamic hazardous spaces [34] and
mapping of unexplored environments [57]. However, specifying the
complex and cooperative behaviour policies used in these systems
via traditional analytical methods is generally unfeasible [27, 41].
As such, the field of Evolutionary Robotics (ER) [21] presents a
paradigm for the automated design of robust and adaptable MRS.

In general, ER is the application of evolutionary-inspired meth-
ods to the automatic design of autonomous robots [29]. These
methods have been found to facilitate the evolution of both robot
controllers and morphologies (both separately [30, 49, 52, 72] and
simultaneously [6, 61, 62]). Consequently, it is highly applicable to
the field of MRS which often requires the evolution of both con-
trol policies for cooperative behavior as well as the evolution of
morphological (sensory) configurations [74]. Indeed, embodied cog-
nition [13] posits that intelligent behavior emerges not just from
the brain (controller), but from the interplay between the brain,
body (morphology) and environment [53]. This idea is corroborated
by contemporary work in ER [17].

A common approach to the design of controllers in ER is through
neuroevolution (NE) [25], which has proven to be useful for con-
troller design tasks across various disciplines [14, 33]. MRS that
employs neuro-evolution techniques include collective construc-
tion tasks [74], robot soccer [20] and video games[60]. However,
neuro-evolution approaches typically do not take into account the
inherent issue of trade-offs in these examples. In many real-world

tasks, every solution contains various trade-offs between function-
ality and complexity. For example, the most sophisticated solution
could elegantly overcome some problem; however, this will usually
not be feasible or cost-effective.

A way to interpret the trade-offs and dynamics of these different
facets is through multi-objective optimization techniques [22, 23].
Such techniques allow the modeling of different optimal solutions
that encompass various trade-offs in relation to multiple objectives
[71].

This literature review provides an overview of the significant
NE mechanism used in ER, namely NEAT [68] and HyperNEAT
[67]. Subsequently it explores the aggregation of NE and multi-
objective optimization techniques. Finally, the larger taxonomy of
ER is reviewed with a focus on the evolution of controllers and
morphologies separately and simultaneously.

2 NEURO-EVOLUTION
Evolutionary Computing (EC) covers a broad range of meta heuris-
tic techniques that are influenced by Darwinian principles of natu-
ral selection [23]. EC uses a stochastic population based approach,
where a population of solutions compete for survival and reproduc-
tion based on their ability to satisfy environmental requirements
[7]. These requirements, collectively known as the fitness function,
indicate how well a solution is performing at the task. The process
begins with an initial population (generation) and iteratively selects
the better performing candidates for reproduction and selection
into the next generation [24].

The potential of an evolutionary approach is evident by exam-
ining the sophistication and diversity of organisms in nature [21].
Furthermore, EC has a wide range of applications [24]. One success-
ful application is the designing of a University lecture and event
schedule which is known to be a highly constrained and difficult
problem [51]. Procedures within EC are known as Evolutionary Al-
gorithms (EA) and there exists multiple variants, including Genetic
Algorithms [42], Genetic Programing [10] and Evolution Strategies
[7].

Neuro-evolution [25] is an approach that unifies two biologically-
inspired techniques, EA and Artificial Neural Networks [58]. The
next section will address these two techniques and how the combi-
nation of their respective advantages makes NE especially effective
for controller design in MRS [21].

2.1 Mechanisms of Neuro-evolution
2.1.1 Evolutionary Algorithms. Evolutionary Algorithms (EA)

utilize a Darwinist inspired approach to selection and exploration



Figure 1: Evolutionary Algorithm pseudo-code [23]

of a search space [7]. Exploration is achieved through reproduction
with two variation operators, recombination and mutation. These
simulate the production of novel and varied solutions [59]. Recom-
bination is a binary mating operator applied to better performing
candidates (parents’ genotypes), where the exchange of information
generates one or more new candidates (children). Mutation slightly
modifies one candidate which results in some new candidate. Some
selection methodology is used to choose which candidates form the
next generation. Examples of this include elitism [8], which chooses
the better performing candidates from both parent and children
populations, or selecting all children. The algorithm terminates
once either a desired solution has been found or some specified
threshold has been met [23, 24]. Figure 1 provides a brief overview
of algorithmic structure of an EA.

Within an EA’s problem context, candidate solutions are referred
to as phenotypes [23], a core component of an EA is encoding these
phenotypes into simpler structures known as genotypes. Geno-
types can then be decoded into their respective phenotypes for
evaluation with the fitness function. The means by which a phe-
notype is represented as a genotype is the defining characteristic
between differing EAs [7]. For example, Genetic Algorithms use a
bit-string representation [42]. Variation operations can be imple-
mented simply through bit-flipping and bit-exchanging algorithms.
Consequently, they are one of the more popular EAs. Other rep-
resentations include Genetic Programing [10] and Evolutionary
Strategies [7] which use tree encodings and vector encodings, re-
spectively. The representation chosen is dependent on the domain
of the problem.

The literature shows that EAs are particularly efficient at finding
the global optimization in large, noisy and discontinuous search
spaces [23, 51]. Moreover, they also have the unique capability of
evolving novel solutions without human bias [21]. A particularly
powerful phenotype is presented in Artificial Neural Networks.
[75].

2.1.2 Artificial Neural Networks. Artificial Neural Networks
(ANN) [58] are processing models inspired by neural activity in the
brain. This activity occurs from neuro-chemical communication
between neurons and through synapses in the brain . An ANN’s
structure consists of layers of multiple processing units (neurons)
interconnected via directed links (synapses). A synapse consists
of a numeric weight which determines the strength of the connec-
tion. The input layer is the first layer in an ANN and receives it’s

input from the environment. Similarly, the output layer is the final
layer of an ANN and produces the output. The output actuates the
controllers’ behavior. All intermediate layers are known as hid-
den layers. In most cases, each neurons output is computed by an
activation function of the weighted sum of its input [25, 43].

ANNs can approximate non-linear target functions, are proficient
in dealing with large search spaces, and can be built using recurrent
connections such that previous input patterns can effect current
output [75]. Consequently, they provide a powerful and robust
manner of implementing controllers [28]

Traditionally, an ANN is trained by adjusting the synapse’s
weights in order to approximate some function. This process can
be performed through a supervised learning approach, such as
back-propagation which attempts to minimize the error function
between the actual output and desired output of a network [43].
However, back-propagation is not ideal in applications where the
error function is non-differentiable. So, another approach is by
means of unsupervised learning algorithms such as EAs[75].

Neuro-evolution is the unsupervised learning approach of train-
ing ANNs using EAs [25]. In NE, an optimal solution is derived
by evolving a population of ANNs (phenotypes). ANN genotype
encodings traditionally consist of the concatenation of its synapses’
weight values contained in either a binary representation or real-
valued vector[75]. Every genotype within a population is decoded
into their respective ANNs which then executes some task. A fit-
ness value is then determined for each ANN. The fittest members
of the population are then chosen and variation operations (recom-
bination and mutation) are applied which result in the new child
population.

There are two broad types of NE, direct encodings and indirect
encodings [40]. Direct encoding is defined by a one-to-one map-
ping of phenotype and genotype. The explicit relationship between
representation makes direct encoding far simpler and more natural.
In contrast, an indirect encoding utilizes a higher and more com-
pact level of abstraction. The genotype defines some function to
construct the phenotype. Indirect encoding is more representative
of genetics [75].

Other cogent optimization methodologies that are worth com-
paring to NE include traditional Reinforcement Learning(RL) [69],
Particle Swarm Optimization(PSO) [54] and ANN back-propagation
training techniques [58].

RL refers to a wide range of machine learning algorithms that
improve some solution based on behaviorist psychology such as
operant conditioning [43]. A solution policy explores an environ-
ment and maps states to actions based on numerical reward signals
that serve as feedback [69]. However, within the domain of MRS
its search space increases drastically with respect to the number
of agents. NE is also shown to be more robust and exhibits better
exploration behavior [59].

PSO is another such algorithm that iteratively improves a popu-
lation of candidate solutions (particles) that move around a virtual
search-space [54]. Particles are modeled after the collective behav-
ior exhibited by entities in nature, such as termites or ants. Where
a particle’s migration is influenced not only by its local best known
position but also the best known position of other particles [36].
In comparison to NE, PSO performs efficiently but requires more
candidate solutions and consumes more time [76].
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ANNs can be trained the supervised learning approach of back-
propagation [43, 58]. However, supervised learning is not suitable
for complex control systems where the desired behavior is un-
known.

Essentially, NE is one of the most effective methodology for
producing complex controllers. This is due to the general applica-
bility of NE, its operation in continuous search spaces, and possible
applications to a broad range of network architectures, includ-
ing recurrent networks [28, 40]. Consequently, NE is a promising
methodology for solving design problems for MRS [41]. The fol-
lowing sections discuss the more notable NE algorithms.

2.2 Conventional Neuro-evolution
Conventional Neuro-evolution(CNE), is the simplest approach to
evolving an ANN [65]. In this approach the topology and activation
function of an ANN are defined a priori. A direct encoded schema,
such as binary representation, is then used to evolve the synapse
weights of an ANN [75].

However, this approach suffers from several issues, one of which
is premature convergence [40]. Another issue is the Competing
Conventions Problem [65]. This occurs when similar solutions can
be expressed through different genotypes. For example, two ANNs
that differ only by inverted hidden nodes. The recombination of
these solutions often results in duplicated structure and thus poor
performing children [25]. Moreover, the synapse weights of ANN
are not the defining characteristic of how well an ANN performs.
Rather, it has been shown that the topology of an ANN plays a role
too [68]. An promising alternative to conventional neuro-evolution
is to evolve topology as well.

2.3 Topology and Weight Evolving Artificial
Neural Networks

Topology andweight evolving artificial neural networks (TWEANNS)
[65] provide an automated method of searching for an ideal topol-
ogy and weight. This saves the designer time and has also been
shown to be more effective than any human designed topologies.
However, TWEANNS still suffer from the Competing Conventions
Problem and two additional difficulties, namely protecting innova-
tion and initial population specification [65].

Innovative ANNs arise from the addition of a new connection
or node to the structure of an ANN. These initially perform poorly
as they still require training to optimize [65]. Thus, it is necessary
to protect innovative ANNs and allow them this optimization time
before they can fairly compete on a global scale.

The third issue of TWEANNS is the creation of an initial popula-
tion of candidate solutions. A random approach is not ideal as it can
lead to infeasible solutions. For example, a lack of synapses between
layers. Moreover, there is the potential of the initial solutions being
too complex and more minimalistic solutions being lost [65].

There have been multiple attempts to subvert these issues. One
such example is Symbiotic Adaptive Neuro-evolution (SANE) [44],
which evolves neurons and topology separately. An ANN is formed
by assigning neurons to a topology. This assignment process is
based on the adequacy of a neuron’s previous interactions with a
specific topology. The assembled ANN is then evaluated. Topolo-
gies are assigned these evaluations and neurons are assigned the

N -best evaluations they participated in, where N is pre-defined.
This approach was demonstrated to evolve satisfactory and diverse
networks swiftly [44]. However, SANE is unable to evolve recurrent
networks [28]. This is a significant drawback as many interesting
and complex tasks, especially within MRS, require some form of
recurrent memory.

The most well known and effective TWEANN algorithms that
attempt to solve these problems are Neuro-evolution of Augment-
ing Topologies (NEAT) [68] and HyperNEAT [67]. The difference
between the two techniques being that NEAT uses direct encodings;
whereas HyperNEAT uses indirect encodings.

2.3.1 Neuro-evolution of Augmenting Topologies. NEAT [68] is a
direct encoded genetic algorithm that is based on three fundamental
principles:

(1) Historical markings which offers a solution to the competing
conventions problem,

(2) Speciation to protect innovative solutions, and
(3) Complexification in order to favor minimalistic solutions.

NEAT adapts a genetic encoding schema that represents ANNs
with a list of connection genes. Each one of these genes refers to
the connection of two node genes and stores other pertinent infor-
mation such as the weight and whether a connection is enabled. A
connection gene also specifies an innovation number which is a his-
torical marker that represents the gene’s origin. NEAT assigns these
markings by keeping track of a counter called a global innovation
number. When a novel gene appears in the system (through mu-
tation), the global innovation number is incremented and assigned
to the gene. The genetic encoding representation paired with the
process of historical marking allows for similar genes to be lined
up during the recombination process. This inherently solves the
competing conventions problem as recombination methods can be
applied sensibly.

However, the addition of novel genes to a solution causes an
initial decrease in overall fitness. These solutions require additional
time to optimize before being able to fairly compete with other op-
timized solutions. NEAT solves this problem by allowing organisms
to compete with similar organisms rather than the entire popula-
tion. Thus, speciation is used to categorize solutions based on their
topology. The comparing of topologies can be done trivially through
the use of historical markings. In every generation, the process of
speciation occurs. The process first randomly selects a group of so-
lutions from the previous generation. These solutions represent the
species and are referred to as representative solutions. All solutions
are then iteratively placed in a species based on their topological
similarity with the representative solution. Competitions are then
performed within a species which accordingly protects innovation.
Innovation is further protected through the use of explicit fitness
sharing where species share a single aggregated fitness value. This
ensures that species remain reasonably small and thus cannot take
over the population.

The final principle element of NEAT is complexification. It is
based on the concept that structures should start out as minimalist
as possible and grow in complexity as they evolve. Consequently,
the initial population of solutions are uniform and contain no hid-
den layers. This ensures that all complex solutions are justified and
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Figure 2: Creating two-dimensional Connectivity Patterns
in HyperNEAT

gives NEAT a performance advantage over other approaches, such
as SANE [28, 44].

NEAT has been successfully used in many ER and MRS applica-
tions such as, evolving autonomous cars [72] and simulating video
games [60].

2.3.2 HyperNEAT. HyperNEAT [67] is an extension of NEAT
which allows the evolution of large ANNs by exploiting geometrical
patterns in the ANN controller and task environment. HyperNEAT
utilizes an indirect encoding schema for TWEANNS. The genotype
representation of an ANN is a connective Compositional Pattern
Producing Network (CPPN). CPPNs are compact ’abstractions of
development’ that are able to generate complex and repetitive pat-
terns [66]. They have a similar structure to that of ANNs but differ
in their ability to utilize multiple activation functions compared to
ANNs’ utilization of just one.

A CPPN is able to compactly represent extremely large structures
by mapping co-ordinates from a space of few dimensions to a space
of many. This ability allows a CPPN to produce complex ANNs.
Prior to this production, a substrate (grid of nodes on a Cartesian
plane), needs to be specified. A CPPN then accepts the Cartesian
co-ordinates of any two nodes in the substrate and returns a weight.
A connection is made between these two nodes only if the weight
produced is above a certain threshold [67]. Thus, a two-dimensional
connectivity pattern is represented by a CPPN’s spatial pattern in
a four-dimensional hypercube. This is presented in figure 2.

There are two main advantages for using a CPPN as an indirect
encoding [67]. The first advantage is that complex and large ANNs
can be represented in a more compact form. This is particularly
important for the modeling of natural phenomena such as the brain
where there are approximately 100 trillion connections. Secondly,
CPPNs possess the unique ability to exploit the physical underlying
structure inherit in the problem. This is also evident in biology with
the structure of a physical body being exploited in the construc-
tion of its brain. For example, the symmetry and regularity of an
organism’s eyes is reflected in its neural organization.

HyperNEAT’s foundations lie in CPPN-NEAT [66] where the
principles of the NEAT algorithm are easily extended to evolve
CPPNs. In HyperNEAT, the substrate configuration is designed
a priori based on the problem. A population of CPPNs are then
iteratively queried to produce connections within a substrate which

results in an ANN. Each ANN is evaluated based on some fitness
function. The next generation of CPPNs are then produced based on
the NEAT algorithm [67]. It is important to clarify that HyperNEAT
can be extended to more than two dimensions.

Evolvable-substrate HyperNEAT [55] is a recently developed
extension of HyperNEAT. It is particularly promising as it deduces
the optimal placement of nodes on a substrate. Thus, it further
widens the varieties of discoverable structures.

HyperNEAT has been applied successfully as a technique to
evolve controllers, both for MRS and for single-agent robots [56,
73, 74]. Moreover, The principle elements of CPPNs, symmetry, reg-
ularity and compactness, offer the potential of being able to model
morphologies [66]. In such algorithms CPPN-NEAT is used and the
values returned by the CPPN define the placement of morphological
segments on the robots body[6, 16].

3 MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS

Within the research area around optimization problems, tasks may
require multiple competing objectives. Since these objectives may
be conflicting, a question arises of how to consolidate them.

Multi-objective Evolutionary Algorithms (MOEA) [12] are an
increasingly popular solution to this problem. More robust MOEAs
produces a set of Pareto-optimal solutions that embody optimal
trade-offs between several objectives [1, 23]. A candidate solution
is Pareto-optimal if there exists no other solution that could perform
better at a single objective, without decreasing the performance
of other objectives [22]. Pareto-optimal solutions are identified
through the concept of domination. A solution is said to dominate
another solution if it is superior in relation to one objective and
performs no worse in all others. The solutions that are not domi-
nated by any other solutions are the known as the Pareto front and
are considered the best solutions. EAs are a favorable method for
Pareto-optimal problems as they work with a population of solu-
tions and can thus return a set of best solutions. Moreover, EAs are
efficient at handling continuity and concavity of the Pareto-optimal
solutions. Within the field of robotics, MOEAs have become increas-
ingly popular as they allow designers to understand the trade-offs
between various solutions and hand pick their preferred trade-off
[71].

It is also possible to produce a single Pareto-optimal solution
through aggregating multiple objectives into a single objective
fitness function [22]. This is conventionally achieved through using
aweighted sum of all objectives. However, this approach has various
drawbacks. Firstly, a trial-error approach is required to find the
optimal weight. Further, in some cases, certain optimal solutions
cannot be found [45].

There exists multiple algorithms that attempt to provide MOEAs.
While there are many implementations, two prominent ones can be
identified. The rest of this section reviews these MOEAs and goes
on to discuss multi-objective NEAT and HyperNEAT.

3.1 The Non-dominated Sorting Genetic
Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was pro-
posed by Srinivas and Deb and was one of the first prominent
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MOEAs [64]. In each generation of this algorithm, all non-dominated
candidates are clustered into a single category and are subsequently
removed from the population. This process is repeated until all solu-
tions have been categorized. Variation operators are then assigned
based on the order of the categories determined. However, this
algorithm is not very efficient as it requires high computational
complexity to categorize candidates [19].

In 2001, Deb et al., proposed NSGA-II [19], a more efficient vari-
ation of NSGA. The algorithm is based on a principle of sorting
as well as a density estimation. A solution is ordered based on the
number of solutions that dominate it and the number of solutions it
dominates. The density estimation takes into account how spread
out all the solutions are. Selection and variation are based on novel
and pareto-optimal solutions. NSGA-II is one of the most efficient
MOEAs and in recent years has become the benchmark for other
MOEAs [18].

3.2 The Strength Pareto Evolutionary
Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) [78] is another
popular technique within MOEA algorithms. SPEA is based on
elitism and embodies this by implementing an archiving technique.
An archive contains all non-dominated solutions that have existed
in previous generations. For each generation, a solution is evaluated
based on the dominance relationship with the archived population,
this value is known as the Pareto Strength. This approach effectively
keeps track of all optimal solutions while ensuring their variance.
However, if the archive becomes too large too quickly, the search
may slow down due to a reduction in selection pressures [18].

SPEA2 [77] was thus presented as an extension of SPEA to sub-
vert this problem. SPEA2 utilizes a mechanism that reduces the size
of the archive to be below a certain threshold. This mechanism also
incorporates more efficient density estimation techniques.

3.3 Multi-objective NEAT and HyperNEAT
NEAT and HyperNEAT are two of the most prominent NEAs. How-
ever, they were developed for single optimization problems. With
an increased demand for MOEAs, integrating these has become
an active focus of contemporary research. A core issue in this in-
tegration is maintaining all the principle features of NEAT. This
section provides a brief time-line of some of the more prominent
multi-objective NEAT and HyperNEAT implementations.

A seminal work in this domain was NEAT-PS [72] produced by
Willigen et al. in 2013. NEAT-PS attempted to incorporate the Pareto
Strength approach from SPEA-II into NEAT. This was achieved
through augmenting the fitness function of NEAT to use an adapta-
tion of the Pareto-strength value approach in SPEA2. Subsequently,
the fitness function was plugged into the original NEAT algorithm.
This work successfully used NEAT-PS to find the optimal trade-
offs between comfort (fewer lane changes) and speed (more lane
changes) in vehicle controllers [72]. However, since NEAT does not
follow an elitist strategy, NEAT-PS does not either. Consequently,
Pareto-optimal solutions could be lost.

In 2014, Bongard and Auerbach implemented a multi-objective
HyperNEAT implementation in their research surrounding mor-
phological complexity in robots [6]. The algorithm replaced the

speciation and selection principles of NEAT with a NSGA-II im-
plementation. Subsequently, an additional fitness function based
on genotypic diversity was included in all experiments. This addi-
tional function was meant to protect the innovation that speciation
brings in HyperNEAT. There are two fundamental concerns with
this algorithm. The first is that the algorithm does not address its
removal of speciation. This could result in decreasing the reliability
of the algorithm. Secondly, there may be issues that arise from the
genotypic diversity function. In particular, solutions may advance
through generations for their novelty as opposed to their ability to
perform well at the task.

Another multi-objective HyperNEAT algorithm was produced
by Cheney et al. in 2015 [16]. This paper looked at the training of
soft robots (explained in 4.2) to attain two conflicting objectives;
namely, escaping a partially enclosed box and, increasing in size.
The algorithm used is said to be a novel implementation that main-
tains NEAT’s speciation principle. However, the algorithm is not
the focus of the paper and thus very little detail is shared on this
implementation. Furthermore, comparisons to other methods are
not supplied.

In contrast, a recent paper by Abramovich et al. presents a
generic multi-objective NEAT implementation and compares its
performance to NEAT-PS [2]. The proposed algorithm is named
NEAT Multi-objective Diversified Species (NEAT-MODS). NEAT-
MODS considerably augments the selection mechanism while still
maintaining the fundamental principles of NEAT. The selection
mechanism considers both parents and offspring and sorts them
using the NSGA-II non-dominating sorting algorithm. The best
solutions are then chosen to be the representative candidates for
speciation as in NEAT. The rest of the population is then placed in
their appropriate species based on their non-dominance relation.
Within each species, the solutions are again sorted based on the
non-dominating sorting algorithm. The next generation is then se-
lected based on the best available individuals in a serial progression
of the species. When comparing this algorithm to NEAT-PS, it was
found to be substantially more effective [2]. A reason for this could
be the elitism aspect of NEAT-MODS and its selection process that
favors novelty and diversity.

From reviewing the literature, it can be seen that there is still a
substantial amount of research that needs to be done in the domain
of multi-objective NEAT and the general domain of multi-objective
neuro-evolution. Moreover, these methods have rarely been applied
to MRS applications.

4 EVOLUTIONARY ROBOTICS
Evolutionary Robotics (ER) [29] is a biologically influenced tech-
niquewhich employs evolutionary algorithms for design of physical
(morphological) and control structures of robots. ER is a prominent
field within robotics as it subverts the constraints of traditional
human intuitive design. It presents optimal designs through intelli-
gently exploring large and complex solution spaces. ER is therefore
better equipped at designing non-linear, robust and adaptable mor-
phological and control structures as well as handling uncertainty
of behavioral requirements [28]. In many cases, ER methods are
able to find solutions that would be unintuitive to humans [3].
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A key component of ER research is how the environment, mor-
phology and controller inter-operate to influence the design of the
architecture while considering trade-offs [21]. This section presents
a collection of research within this domain and classifies them based
on the three major ER subfields- evolutionary controllers, evolu-
tionary morphology and the co-evolution of both controllers and
morphology.

4.1 Evolutionary Controllers
During the 1990’s, evolutionary computation techniques dominated
much of the research around controller design for a fixed morphol-
ogy [25, 29]. One of the more renowned works is that of Beer
and Gallagher which successfully makes use of neuro-evolution to
mimic the adaptiveness and versatility of locomotion in insects [11].
Other works in this era focused on the evolution of controllers for
Khepera robots with fixed sensory configurations [35, 47, 48, 63].

However, there were few works that attempted to addresses the
role of the environment in relation to the complexity of the con-
troller itself. One such work, was in 1998 where Odagiri et al. [49]
evolved a Khepera robot with static sensors in four increasingly
complex maze environments. The results reflected a direct corre-
lation between environmental complexity and control structure
complexity. This pivotal work and others in this era paved the way
for controller based ER. However, there was room for improving on
NE techniques with a specific focus on more complex environments.

In the 2000’s the advent of NEAT and HyperNEAT subverted
many previous issues around NE and they became the most promi-
nent and effective techniques within this domain [67, 68]. The
potential of these methodologies is shown in Stanley and Risi’s
[56] publication on their successful creation of a controller that can
be adapted to unique and novel derivatives of a morphology. Hy-
perNEAT is used in this experiment which accepts hand-designed
morphologies and outputs a controller.

Another relevant HyperNEAT study is Watson and Nitschke’s
evaluation of the degree of sensory configuration complexity needed
to successfully evolve a controller for homogeneous MRS collective
construction [73]. The morphologies were designed a priori and
HyperNEAT was used to create controllers. An interesting outcome
of this research, was that task performance did not sufficiently
increase with more complex sensory configuration. An extension
of this research could evaluate if this holds true in heterogeneous
systems.

More modern approaches attempt to combine this domain with
a multi-objective approach. A seminal work is that of Willigen’s
[72] which evolved autonomous vehicle controllers for both speed
and comfort using NEAT-PS, an extension of NEAT with multi-
objective support. We treat NEAT-PS in greater depth in section
3.3. The aim of Willigen’s work was to allow autonomous vehicle
passengers to prioritize different ’driving experience’ parameters
based on individual needs. However, NEAT-PS outputs a single
solution which intelligently weights objectives into a single fitness
function.

4.2 Evolutionary Morphology
One notable challenge within the ER field is the design and selec-
tion of a specific morphology for a given problem domain [29]. EAs

have been demonstrated as successful in this aspect as they are able
to obtain solutions that are in some cases unintuitive to humans.
A distinguished example is the use of a genetic algorithm to auto-
matically find novel antenna designs. The designs produced were
on average 55% more effective than would otherwise have been
developed [31]. Furthermore, the throughput of designs exceeded
that of traditional engineering techniques.

Most of the early papers in this domain defined morphology as
the connection of modular static structures with rotational joints
to form complete functional systems [3, 61, 62]. LEGO blocks were
a particularly popular apparatus as they were able to transfer easily
from simulation to real world. Research employing LEGO blocks
was able to successfully evolve structures such as bridges, chairs
and towers for multiple different objectives including stability and
height [26, 52].

However, a key criticism in this area is the limitation of having a
predefined set of components to choose from. Consequently, in 2001,
Hornby and Pollack proposed L-Systems as amore flexible approach
to generating morphologies [32]. L-Systems are a formal grammar
rewriting tool, developed by Biologist and Botanist Lindenmayer to
model plant and cellular development [38]. In Hornby and Pollack’s
work, they exploited L-Systems as genetic encodings for an EA
and successfully evolved simulated creatures for locomotion. These
creatures displayed far more complex and regular morphologies
than previous works [32].

The work within rigid morphologies was also revolutionized
by the development of HyperNEAT. The adoption of CPPN-NEAT
to evolve morphologies is a growing trend [4–6, 66]. One such
example was produced by Auerbach and Bongard, which success-
fully evolved robots for locomotion using HyperNEAT [4]. The
CPPNs produced were efficiently converted into three-dimensional
morphological structures. Their subsequent work evolved both
morphology and controller using HyperNEAT [5].

In 2010, Hiller and Lipson shifted the focus of research in the evo-
lution of morphology from rigid to soft robotics [30]. The defining
property of soft robots is their ability to contract and expand their
amorphous physical form. This has various real word advantages
such as their increased robustness, ability to conform to uneven sur-
faces and efficient stress redistribution [16]. However, they follow
a more probabilistic model of control in comparison to their rigid
body deterministic counterparts. Hillel and Lipson employed three
different types of morphological materials which yielded different
qualities of volumetric expansion and contraction. The evolved
robots made use of these materials for locomotion in order to scoot,
bounce and flop [30]. A notable finding in this research is that be-
havior is not only affected by controller and morphology but also
by material representation. Cheney et al., followed on from this
research by noticing how these findings coincided with biology
where parts of cognition are physically embedded in animals [17].
They created soft electro-physiological robots inspired by the elec-
trical properties of cardiac tissue. Morphological materials were
formed by different types of electrical conductors. Electric signals
were then propagated throughout the physical bodies and governed
the behavior (control) of the robots. CPPN-NEAT [66] was used
to produce the evolved morphologies which themselves exhibited
complex and interesting forms of locomotion. This paper [17] was
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one of the first to challenge the traditional disjoint between mor-
phology and control in ER. However, further research could be
conducted using a multi-objective optimization algorithm rather
than a shared fitness function.

Another study on soft robots was by Bongard et al., which inves-
tigated the performance of these robots with a better suited task
to match their unique capabilities [16]. The study used a multi-
objective CPPN-NEAT implementation to evolve a soft robot mor-
phology in a semi enclosed box. The two main objectives were
to maximize morphological size as well as developing capability
to reach outside the box. Results showed that many robots were
able to go further than just reaching outside of the box but rather
escaping from it. However, further research needs to be done into
the way environmental parametric changes affect results, such as
box and hole size. Furthermore, as mentioned above in Section 3.3,
their NEAT multi-objective algorithm was not tested in comparison
to other algorithms.

A key work that deals with the relationship between morpholog-
ical complexity and environment is that of Auerbach and Bongard
in 2014 [6]. The research was formed around the ’arrow of complex-
ity’ hypothesis which states that systems within an evolutionary
context increase in complexity over time. In order to further ex-
plore this idea, the study investigated the role that environment
plays in morphological complexity. Consequently, the study used
50 different icy environments that differed in complexity. Two main
experiments were carried out in these environments. The first one,
evolved morphologies for a single objective, locomotion. The re-
sults showed that morphological complexity increased regardless
of the environment. The second experiment added a second objec-
tive, producing as simple morphologies as possible. In this case, a
direct correlation between an increase in morphological complexity
and environmental complexity was found. Thus, the research con-
cluded that ’the arrow of complexity’ holds when there is no cost
on complexity. However, when there is a cost to complexity (as in
nature), there is a proportional relationship between environment
and complexity. This work could be furthered by evaluating if this
conclusion holds true for MRS. It is also important to mention that
the controller evolved concurrently with the morphology in this
study. However, the experimental design ensured simplicity of the
controller to maintain the research’s focus on morphology. Thus,
subsequent studies could investigate the role of various trade-offs,
such as energy expended in these environments.

4.3 Evolution of Control and Morphology
The seminal work produced by Karl Sims in 1994 can be consid-
ered the founding work in the field of controller and morphology
co-evolution [61, 62]. Sims produced two renowned papers that
presented a novel system for evolving the morphology and con-
trol of virtual creatures in a three-dimensional environment. The
first paper evolved creatures capable of producing numerous be-
haviors such as walking and jumping [62]. The second evolved
creatures to compete against one another based on their ability
to capture a cube [61]. A creature’s morphological structure was
defined by rigid cuboids. Sims adapted an evolutionary algorithm
which used a directed graph as the genotype representation for
both the morphology and control structures. The use of a directed

graph allowed for flexible and efficient methods of its conversion
to physical structures. However, there was a lack of previous work
around using a directed graph as the genotype and thus Sims cre-
ated his own genetic variation operators. A core component of
SimâĂŹs research involved the creation of a custom designed phys-
ical simulator. The work produced by Sims was groundbreaking
for the time and many attempts were made to extend the research.
However, it took several years before an equally advanced and
computationally powerful simulator was implemented. The first
successful extension of Sims was by Taylor and Massey in 2000
which implemented creatures comprised of cylinder segments as
opposed to cuboids [70]. Many extensions which followed created
more effective evolutionary methods and explored different con-
trol tasks [15, 37, 50]. One notable implementation is that of Krcah
which employed an extension of NEAT [33].

Despite the groundbreaking and fascinating work that Sims’
framework (and its extensions) were able to produce, they were
not applicable to a real-world context. Mechanical structures that
could produce similar creature movement and joint materials do
not currently exist [3]. This concept is referred to as the Reality
Gap [46]. It suggests that the transfer from simulation to reality
often leads to poor results and in some cases is infeasible [22].

One technique to overcome the Reality-Gap is to only evolve a
select number of robot behaviors and physical features that can
be applied to the real world [22, 46]. Such an approach is refereed
to as Parametric Evolution [3] which evolves certain properties of
robots, rather than the topological approach mentioned in previous
sections. However, much of this work was still inspired by Sims.

The most prevalent parametric approach is the configuration
of a robot’s sensory system. An early work in this domain was
produced by Balakrishnan and Honavar in 1996 [9]. Wherein, the
placement and radius of eight sensors on a robot were evolved to
optimize its ability to shift boxes in a two-dimensional environment.
The robot controller was implemented using neuro-evolution and
allowed for sensors to be turned off. However, the robots were not
penalized nor rewarded for turning off their sensors. A relevant
outcome of this experiment was that some of the more capable
robots turned off certain sensors regardless. An extension of this
work could potentially explore the reasons behind this.

Another significant experiment was conducted by Mark et al.
in 1998 [39]. In this experiment, both the number and angle of
view of optic sensors were evolved for a robot. These robots were
placed in a simulated iterative environment and were tasked with
keeping their energy level from decreasing to below a specified
threshold. Energy levels decreased naturally over time or when
robots crashed. Energy levels increased when a robot interacted
with a light form. The relevance of this paper lies in its ability
to train robots to use reduced amounts of energy. This offers a
particularly fascinating insight into how we can understand trade-
offs. However, this experiment [39] was not able to be carried out
due to inefficient amount of computational resources.

Similar to the disciplines discussed in the previous sections, more
recent papers in this domain tend to utilize the capabilities of NEAT
and HyperNEAT. In 2015 Watson and Nitschke explored the opti-
mization of the number of sensors for heterogeneous MRS [74]. In
this paper two sets of MRS were produced for a collective construc-
tion task. The first set was hand-designed while the second set was
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produced by HyperNEAT. A compelling outcome of this research
was that the controllers produced by HyperNEAT were able to
better adapt to morphological change than the hand-designed set.
An extension of this research could evaluate if this outcome holds
true for morphologically heterogeneous robot teams.

5 CONCLUSIONS
Evolutionary Robotics has been able to produce innovative robots
for the completion of complex tasks. It has successfully been able
to investigate various fields such as MRS for collective gathering,
swarm robotics and evolutionary processes. The advent of advanced
NE methods has laid the foundations for ER’s vast progress in the
last few years. However, there is still much progress to be made in
ER. This literature review has identified two main fields that have
the potential to be investigated further.

Firstly, multi-objective algorithms for NEAT and HyperNEAT
are not yet fully developed. There are various algorithms which
take multiple objectives into account. However, there have been
few successful attempts to incorporate these techniques into NEAT
and HyperNEAT. There have been even fewer which conclusively
maintain the principles of all these methods. Moreover, there is
little research conducted on the application of these in MRS.

Secondly, few research studies have explored the relationship
between morphological and controller complexity and task perfor-
mance. The field can be further expanded to include other trade-offs
such as energy consumption. Furthermore, more progress on some
established multi-objective versions of NEAT and HyperNEAT will
provide investigators with a better understanding of the trade-offs
in various problem domains, for example, complex behaviours in
MRS.

Therefore an opening exists in the literature surrounding these
two issues, specifically in the domain of MRS.
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