
Multi-Robot Systems, Complexity and Multi-Objective
Neuroevolution in Evolutionary Robotics: A Review

Alexander Furman
University of Cape Town
Cape Town, South Africa
alex.cleo@gmail.com

ABSTRACT
Evolutionary Robotics employs principles of natural evolution for
automatic robot design. The field has opened new doors to previ-
ously unapproachable design problems in engineering as well as
theoretical questions in the natural and cognitive sciences. State-
of-the-art methods combine neuroevolution techniques such as
Neuroevolution of Augmenting Topologies with multi-objective
evolutionary optimisation algorithms such as Non-dominated Sort-
ing Genetic Algorithm II and Strength Pareto Evolutionary Algo-
rithm II. Current research on the development and use of these
methods corroborates the advantages of seeking optimal trade-offs
in solving ER design problems, which are often multi-objective
optimisation problems. One particularly applicable domain for the
use of these methods is the automatic design of control policies
and morphological parameterisations for multi-robot systems. In
multi-robot systems, robot teams coordinate to complete tasks via
complex emergent behaviours which are not easily specified by
hand. Furthermore, these tasks often require multiple conflicting
criteria to be met (such as low energy expenditure as well as high
task performance). This literature review overviews the literature
on evolutionary robotics and multi-objective neuroevolution, iden-
tifying a literary gap - namely the largely unexplored use of multi-
objective neuroevolution for multi-robot system design, as well
as lack of quantitative support for various current multi-objective
neuroevolution approaches.

1 INTRODUCTION
Evolutionary Robotics (ER) is the development of autonomous
robots via artificial evolution [24], for a variety of objectives [22].
As a method of inquiry for research in natural and cognitive sci-
ence, ER allows researchers to evolve and study artificial agents in
silico1, where generations of observable evolution can take place
in just hours or minutes. This has opened the door to previously
unapproachable topics, notably in evolutionary theory, that lack
experimental control in the real world. Such topics, to which ER has
already contributed, include the evolution of cooperation [57, 85],
communication [27, 89], predator-prey behaviour [59, 62], morpho-
logical complexity [5, 6, 12] as well as embodied cognition [17]. In
the engineering domain, ER facilitates the automatic design and
optimisation of robots for non-linear control tasks where the hand-
specification of models and controllers is unfeasible. For many
simple control tasks, hand-specified models and controllers are suf-
ficient, such as a linear control law for the common thermostat [31].
Other control problems are characterised by irregularity and large

1In simulation.

solution space, where the control strategy is often not only imprac-
tical to model mathematically, but is not known to the designer
at all. In such cases, the methods of ER facilitate the automatic
discovery of the optimal control strategy [31]. For instance, in multi-
robot systems [26] requiring robot teams to coordinate together
to complete tasks, ER has been used to produce complex coopera-
tive interactions among team members for collective construction
tasks [61, 86] as well as for deriving ’microscopic’ individual rules
for the emergence of macroscopic collective behaviour in swarm
robotics [35, 71]. Neuro-evolution [31, 90] techniques are often the
methodical basis for approaching control problems in ER [22], but
are typically designed to optimise a single objective. However, many
optimisation problems, especially in ER, require the optimal trade-
off among multiple objectives. In this regard, a designer might seek
the optimal configuration for a robot team which not only max-
imises task performance but also minimises energy consumption.
Such trade-offs are also studied in the field of evolutionary biology
[55, 69]. Why do some organisms have larger brains but smaller
bodies? Why do we observe varying degrees of morphological com-
plexity in organisms across different environments and terrains?
Explorations of such questions via ERmust capture the fact that evo-
lution is largely characterised by trade-offs. As such,multi-objective
neuro-evolution is an area of interest in the contemporary literature
[1].

This paper reviews the literature on ER. The covered works
include those which explore the relationships between controller,
morphology and other variables, principally in the context of, but
not limited to, multi-robot system design. We also review recent
implementations of multi-objective neuro-evolution that have been
presented - specifically those based on the NEAT algorithm [79].

2 MULTI-OBJECTIVE NEURO-EVOLUTION
This section provides an overview of Neuro-evolution and Evolu-
tionary Multi-Objective Optimisation [92], followed by a review of
multi-objective neuro-evolution approaches that incorporate the
NEAT [79] method of neuro-evolution.

2.1 Neuro-evolution
Neuro-evolution combines the relative strengths of Artifical Neural
Networks and Evolutionary Algorithms to provide a robust parallel
search of the space of candidate network solutions for a given
problem. As such, it is an effective controller design technique for
non-linear problem spaces where other common approaches fail
[31]. This section details the components and generic procedure
of neuro-evolution, followed by a review of preeminent neuro-
evolution algorithms.



2.1.1 Artificial Neural Networks. Artificial Neural Networks
(ANNs) are universal function approximators that take inspira-
tion from biological nervous systems [31]. Structurally, an ANN is
a set of connected neurons or computational nodes which process
inputs to produce outputs. Typically, an ANN is trained such that
weight values associated with node edges (which influence the re-
lationship between input and output data) are adjusted until the
network outputs sufficiently minimise some cost function which
describes how close the network’s output is to the optimal result.

Each artificial neuron receives input values returned by other
artificial neurons, which it passes through a weighted summation
function and an activation function before returning an output (an
activation) that can be received by other neurons as input. The
activation function within each node of an ANN is an abstraction
of the biological neuron’s rate of action potential firing through
the cell, and constrains how the neuron’s inputs relate to its output.
In the simplest case, an activation function is binary (that is, the
Heaviside Function), such that a neuron is either firing an output
or not (1 or 0). In practice, more complex activation functions such
as Sigmoid are preferred, providing a range of smooth outputs that
closely reflect changes to weight values in the network. An ANN
can be feedforward such that data flows exclusively from input
to output, or recurrent where feedback connections provide the
network with information from previous activations.

ANNs have been shown to functionwell as controllers for various
tasks in engineering, especially in robotics [22].

2.1.2 Traditional Training Methods. ANN controllers are com-
monly trained via Supervised and Reinforcement based techniques
[31]. Supervised Learning methods, such as gradient descent back-
propagation [2], require the designer to compile labeled training
data (correct input-output pairs), so that the margin of error be-
tween the labelled data and the network’s outputs during training
can be propagated backwards through the network and the weights
can be adjusted accordingly for more accurate output. For complex
problems where the control policy is not known, the designer often
cannot compile labeled training data. In such cases, Reinforcement
Learning [81], which does not require labelled training data, might
be preferred. In this class of training, the ANN controller learns via
empirical interaction with the environment to maximise positive
reinforcement feedback for performing goal-oriented behaviours.
However, while this class of methods has proven successful for
tasks such as robot arm grasping [45] and single quadrotor obstacle
avoidance [91], it tends to fail in themulti-robot domain due to large
state space and the credit assignment problem [52]. Unsupervised
Learning is a third class of methods which relaxes the requirements
of training data and well-observable environments, relying solely
on correlations among the input data. Neuro-evolution algorithms
conventionally fall into this category [31].

2.1.3 Controller Neuro-evolution. Neuro-evolution is the use of
Evolutionary Algorithms (EAs) to construct ANNs, and is commonly
used to discover optimal ANNs for complex control tasks charac-
terised by inaccessible training data and large state space [? ]. EAs
are one generic technique within the family of evolution-inspired
global optimisation methods that comprise the field of Evolutionary
Computation [24]. Over some number of generations, an EA itera-
tivelymodifies and combines (via mutation and crossover operators)

Figure 1: The generic scheme of an Evolutionary Algorithm
both in principle (left) and in the context of Evolutionary
Robotics (right) [23].

portions of each of a population of candidate solutions (individuals)
to some problem or task, until a solution of high enough quality -
measured by a fitness function that the designer specifies - is dis-
covered. Figure 1 illustrates the generic scheme of an EA, both in
principle and in the context of ER.

More specifically, the EA applies mutation and crossover to the
genotype - the underlying encoding - of each candidate solution.
The solution encoded by a given genotype is known as a phenotype
and, in general, this genotype-phenotype mapping is referred to as
representation.

Different instances of EAs are namely classified according to
their representation schemes. One such instance, a Genetic Algo-
rithm (GA), uses strings (traditionally of binary digits) to represent
genotypes [24].

The typical neuro-evolution approach exploits the fact that ANNs,
especially in the context of controller design, can naturally conform
to the genotype-phenotype mapping of a generic GA. In a direct
encoding scheme, the genotype (i.e. binary string) exactly specifies
the phenotype (i.e. the ANN’s topology). For example, a connectiv-
ity matrix, which can be succinctly represented by a binary string,
can encode the topology of a network [90]. On the other hand, in
an indirect encoding scheme, not every detail of the phenotype is
specified in the genotype, but can be derived from it. Typically, the
genotype specifies rules for constructing a phenotype [33]. Rewrit-
ing systems such as Lindenmayer-Systems [48], where production
or replacement rules are repeatedly applied to some initial string to
produce complex strings and objects, are often the basis of indirect
encodings. While indirect encoding allows for more compact repre-
sentation than direct encoding, it can be disadvantageous. Indeed,
indirect encodings implicitly restrict the phenotype search space
to the class of network topologies that their rules expand to, and
the general quality of this search space might be suboptimal [79].

Via the iterative process of a GA, a population of genotypes
encoding candidate ANNs can be evolved [90] to produce an op-
timal ’solution’ controller for some problem, and this process is
referred to as neuro-evolution [31]. Notably, some neuro-evolution
approaches encode just the weights to be evolved, leaving topology
fixed. Conventional Neuro-evolution is one such example, where the
encoding scheme is simply a concatenation of the numerical weight
values in the network [73]. Other approaches specify both weights
and topology in the genotype, allowing both to be evolved [79].

2



2.1.4 Neuro-evolution of Augmenting Topologies (NEAT). NEAT
[79] is a direct-encoding neuro-evolution method which evolves
both connection weights and topology, and has been used to evolve
ANN controllers in various domains [60]. NEAT is based on three
principal ideas: historical marking, speciation and complexification.

Historical Marking (or innovation numbers) is an ordered num-
bering system for new structural innovations during evolution.
Whenever a parent genotype is mutated, a record is kept of that
mutation. This allows for structural comparison of individual net-
works in a given population without the need for computationally
expensive graph traversal. If two individuals both have a given
innovation number in their records, then they both share the topo-
logical characteristic corresponding to that innovation number (for
example, a connection between node two and node four). Hence,
individual networks can be compared structurally by simply iter-
ating through the records and noting which innovation numbers
they have in common. This innovation made NEAT the first ap-
proach capable of feasibly evolving topology in addition to weights.
Additionally, it provides a solution to the Competing Conventions
Problems [79], which holds that applying crossover to genotypes
which encode the same phenotype results in child networks of poor
quality. Cheap topological comparison of networks via historical
marking records allows such crossover to be avoided.

Speciation (or niching) groups individual ANNs with similar
topologies into their own species using a compatibility function
(which uses historical markers for comparing structure). Each species
represents a unique behaviour (or innovation) that might be a step
towards the optimal solution (controller). Conventionally, crossover
between ANNs takes place only within species (i.e. there is no inter-
species breeding). A key benefit of speciation is the protection of
new innovations. Since mutation tends to decrease the fitness of a
candidate solution in the short run, the solution should be given
time to refine itself over a number of generations, rather than im-
mediately comparing it to older solutions in the broader population
with higher fitness but less potential in the long run. This benefit is
enabled by the use of explicit fitness sharing, which sets each geno-
type’s fitness to the representative fitness of the species it belongs
to.

Complexification is the idea that ANN solutions should start off
with minimal topologies and grow incrementally, complexifying
over the evolutionary process and forming a desirable solution.
This idea contrasts with the choice of random starting topologies
which was more common in prior neuro-evolution approaches to
NEAT [79]. Thus, each candidate ANN in NEAT starts off minimally
with just the specified input nodes, output nodes, and no hidden
layers.

2.1.5 HyperNEAT. HyperNEAT [78] is an extension of NEAT.
Its key innovation is its ability to take geometric properties of the
task problem into account during the search for the optimal ANN
controller. For example, a controller for a circular robot with sensors
on its perimeter could conceivably benefit from information about
the physical placement of its sensors, such as how close they are to
one another. It might, for instance, yield optimal performance to
always activate the two nearest sensors to the current sensor that is
detecting something. Such geometric information about the actual
agent for which a controller is being produced cannot be directly

exploited by the conventional NEAT algorithm, which might only
realise this information near the final generations of evolution, if
at all.

In contrast to NEAT, HyperNEAT uses an indirect encoding
scheme based on Compositional Pattern Producing Networks (CPPNs)
[77]. A CPPN [77] is a function of n Cartesian dimensions which
outputs a pattern in n-dimensional space. CPPNs differ from ANNs
internally in that they are connected graphs of multiple different
activation functions, while ANNs use a single specified activation
function. Through this composition of functions, complex regular
patterns can be produced by querying a CPPN for each point in
the Cartesian space independently, where each output specifies
what should exist at that point in n-dimensional space. For a given
node pair in the substrate, a connection between that pair in n-
dimensional space only exists if the weight returned by the CPPN
for that pair satisfies a certain threshold. This process is illustrated
in Figure 2.

For HyperNEAT to exploit geometric information, the designer
first hand-specifies a substrate network whose topology resembles
the geometry of the task (for example, nodes placed and connected
to form a circle, representing a circular robot agent and its sensor
placement). The substrate is then mapped onto a Cartesian plane,
such that each node has a coordinate, and passing the coordinates
for each potential connection to the CPPN yields a weight value for
the edge between those nodes. Thus, HyperNEAT is able to choose
which connections in the substrate exist in the n-dimensional space,
as well as set their weights, such that a candidate ANN can be drawn
from the space as a function of substrate geometry. In all other
respects, HyperNEAT closely resembles the usual NEAT algorithm.

Note that since HyperNEAT uses the NEAT algorithm to evolve
CPPNs, it is an extension of the more general CPPN-NEAT approach
[77] which can be implemented in a number of different ways.

2.2 Evolutionary Multi-objective Optimisation
A multi-objective problem (MOP) consists of multiple (often con-
flicting) objectives that must be optimised simultaneously [20]. A
day-to-day example is minimising cost while maximising comfort
when purchasing a new car. Solving a MOP typically yields a set
of solutions, where each solution represents one possible ’com-
promise’ or trade-off among the objectives. The set of trade-off
solutions is generated according to the notion of Pareto Optimality,
which states that any solution to a MOP is Pareto Optimal if none
of the objective functions can be better optimised without degrad-
ing another of the objective functions in value. To address the fact
that different solutions will perform better for different subsets of
the objectives, the concept of dominance is used for performance
comparison of solutions. A solution x* dominates another solution
x if the following conditions hold [23]:

(1) the solution x* is not worse than x with respect to all objec-
tives;

(2) the solution x* is strictly better than x with respect to at least
one objective.

The set of trade-off solutions exists on the Pareto Frontier, and a
Pareto Improvement is a change to some solution which improves
at least one of the objective functions in value without degrading
any other objective function [20].

3



Figure 2: Querying a CPPN with a substrate to produce a con-
nectivity pattern in space. Each potential connection (node
pair) in the substrate topology on the left is passed to
the CPPN, which calculates a weight for that pair. If the
weight computed for a potential connection satisfies a cer-
tain threshold, then that connection will be ’painted’ in n-
dimensional space (two dimensional in this instance). Note
the presence of different activation functions in the differ-
ent CPPN nodes, as well as the fact that not all potential con-
nections in the substrate (left) are chosen by the CPPN to
exist in the space (right) [67].

Mathematical programming is commonly the basis of methods
for solving MOPs [32, 54], but has certain limitations depending
on the context of the problem, such as the requirement of differ-
entiable objective functions. EAs provide an alternative basis for
solving MOPs, and are desirable in this context as they allow multi-
ple solutions in the Pareto-optimal set to be discovered in a single
evolutionary run. The most appropriate trade-off solution in the set
can then be established via human decision after optimisation. EAs
also tend to better handle continuity and concavity on the Pareto
Front. Thus, in contrast to the historical trend of mono-objective EA
design, the design ofMulti-objective Evolutionary Optimisation Algo-
rithms (EMOAs) is a contemporary area of interest in the literature
[20].

While in mono-objective EAs the objective and fitness functions
tend to be identical, multi-objective optimisation requires the fitness
function to take multiple objectives into account. Generally, an
EMOA uses either Aggregation-based, Criterion-based, or Pareto-
based fitness assignment [93]. The remainder of this section covers
two Pareto-based state-of-the-art EMOAs:NSGA-II [21] and SPEA-II
[94].

2.2.1 SPEA-II. Zitzler et al. proposed SPEA-II [94] as an im-
proved version of the original Strength Pareto Evolutionary Algo-
rithm (SPEA) [95]. As SPEA-II is based on SPEA, we briefly cover
SPEA here:

SPEA begins with an initial population of solutions and an empty
archive (external non-dominated set). At each generation, all non-
dominated solutions in the population are copied to the archive.
If the archive grows beyond a certain threshold, it is pruned via
a clustering technique which preserves the non-dominated front.
Each solution in both the population and archive is then assigned

a fitness value. In the archive, the fitness value assigned to a solu-
tion is known as its strength value and represents the number of
solutions in the population that it dominates. In the population,
the fitness value assigned to a solution is computed by summing
the strength values of all solutions in the archive that dominate
it. When fitness assignment is completed, the mating phase be-
gins. Binary Tournament Selection [70] is used to select individuals
from the union of the population and archive, where each solution
in the archive has a higher chance of selection than any solution
in the population. Crossover and mutation is applied to solutions
in the population, and the resulting population replaces the old
population, marking the end of the current iteration [93].

SPEA-II improves on SPEA as follows [94]:

(1) The fitness scheme takes into account, for each solution,
both the number of solutions that dominate it and that it is
dominated by. Without this improvement, solutions in the
population that are dominated by the same archive members
will have the same fitness values, and it is possible for every
solution in the population to have the same fitness if there
is only one solution in the archive.

(2) Incorporation of nearest neighbour density estimation allows
for increased efficiency and diversity during the search.

(3) A truncation technique for guaranteeing the preservation of
boundary solutions.

2.2.2 NSGA-II. Deb et al. proposed the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [21] as the forerunner to NSGA [76],
to which it is significantly different. NSGA-II addresses the follow-
ing weaknesses of NSGA: computationally complex non-dominated
sorting, lack of elitism and requirement of specified sharing parameter.

For each solution in the population, NSGA-II determines the
solutions that it dominates as well as the solutions it is dominated
by (that is, it computes each solution’s non-domination rank). It
then estimates the crowding distance for each solution in the popu-
lation. A solution’s crowding distance is the density of solutions
surrounding that solution in the population. During selection, both
non-domination rank and crowding distance are taken into account.
During the application of genetic operators, an elite mechanism
combines the best parent solutions with the best child solutions.

2.3 Multi-objective Neuro-evolution
Neuro-evolution techniques can be designed or modified to employ
EMOAs for the evolution of ANNs. This section reviews recent
work in this area, focusing on implementations using the NEAT
neuro-evolution algorithm. A notable challenge in this domain is
the preservation of core NEAT innovations, such as speciation,
when EMOAs (commonly NSGA-II and SPEA-II) are designed to
control the main evolution loop and perform selection themselves.

A NEAT-like algorithm was first combined with an EMOA in
the implementation of MM-NEAT by Schrum and Miikkulainen for
evolving complex non-player-character behaviour in a video game
[74]. A modified version of NSGA-II was employed and conven-
tional features of NEAT, including crossover, speciation and fitness
sharing, were excluded in the implementation. Rather, for crossover
a similar method to the (µ + λ) strategy [7] was employed, and a
custom elitist mechanism was used for selection.

4



Other approaches have focused on directly extending NEAT to
support an EMOAwhile attempting to preserve its core innovations
[1, 6, 16, 41, 80, 83].

NEAT-PS [83] incorporates the Pareto Strength approach used
in SPEA-II [94] into NEAT, computing a single scalar fitness value
for each candidate solution and passing that value to NEAT. While
the implementation was found to perform well on a task requiring
a Pareto front of autonomous passenger driving preferences to
be produced, it should be noted that by transforming the multi-
objective performance vector into a scalar score, NEAT-PS cannot
guarantee monotonic evolution of the different objectives [1].

Auerbach and Bongard [6] extend CPPN-NEAT [77] to support
multiple objectives by replacing the standard speciation mechanism
for selection with NSGA-II. To account for the removal of specia-
tion, the implementation included a genotypic diversity objective
based on the compatibility function used for NEAT speciation. Like
speciation in NEAT, the genotypic diversity objective allowed so-
lutions in different areas of the solution space to evolve without
directly competing with all other solutions, and was found to per-
form well. Szerlip and Stanley [80] and Lehman et al. [41] similarly
combine NEAT and NSGA-II for multi-objective support using di-
versity objectives. However, these works focused on diversity in
the behaviour space2 rather than the genotype space.

Another more recent behaviour-focused approach which com-
bines elements of NEAT and NSGA-II, and does not use genotypic-
diversity based speciation nor crossover, is theMap-Elites algorithm
[58].

More recent efforts have focused on the preservation of NEAT’s
conventional speciation mechanism [1, 16].

Cheney et al. [16] implement a multi-objective version of NEAT
which is reportedly the first such implementation to preserve spe-
ciation. Instead of removing or replacing speciation and adding a
genetic diversity objective, this implementation performs a Pareto
ranking of the solutions within each NEAT species, followed by
traditional Tournament Selection, as in SPEA-II [94], for selection
based on each ranking. However, the authors neglect to provide a
thorough treatment of, nor any quantitative support for, the algo-
rithm.

Abramovich and Moshaiov present another approach, NEAT-
MODS3, to multi-objective NEATwhich includes speciation [1]. The
approach is largely analogous to NEAT with minor adjustments to
accommodate for multi-objective optimisation. Namely, NEAT and
NEAT-MODS differ at the selection phase. NEAT-MODS performs
selection in the following two phases: (1) Selecting Species for Next
Generation and (2) Selecting Individuals from Selected Species. The
first phase uses crowd distance and non-domination rank based
sorting (as in NSGA-II) as part of the species selection process. In
the second phase, each selected species is sorted internally (again
using crowd distance and rank based sorting). Individual selection
from each species is then performed using a serial species progression
scheme. This scheme iteratively selects the first individual in each
sorted species, after all of which it selects the second individual in
each species, and so on (note that the algorithm accounts for species
having different lengths). As such, the scheme produces a diverse set

2See Novelty Search [42].
3’MODS’ stands for ’Multi-Objective Diversified Species’

of trade-off solutions without sacrificing the benefits of speciation.
Intra-species reproduction takes place as in conventional NEAT,
except that the superiority of the better parent is defined by an
index in the sorted species that they both belong to. NEAT-MODS
was tested on a single-robot (Khepera [56]) sensor-based obstacle
avoidance task, and was found to produce a wider-accumulated
pareto-front than NEAT-PS [83]. We note, however, that NEAD-
MODS and NEAT-PS have not been directly compared in a mutual
task domain.

3 EVOLUTIONARY ROBOTICS
The reviewed works in ER are categorised according to three fun-
damental design patterns in ER research: controller evolution, mor-
phology evolution, and the simultaneous evolution of controller and
morphology. That is, the first section covers research in which con-
troller design is left to artificial evolution while morphology is
hand-designed and fixed, the second section covers research which
focuses on the evolution or automatic design of morphology or
substrate, and the final section treats the concurrent evolution of
controller and morphology.

3.1 Evolution of Control
Following from seminal work in 1992 by Beer and Gallagher in
which genetic algorithms were successfully used to evolve arti-
ficial agent controllers for simple locomotion tasks [10, 19, 46],
evolution of controllers for robots with fixed morphologies was a
pervasive theme in the literature for much of the 1990s. For instance,
a 1992 paper by Franceschini et al. [28] used a genetic algorithm to
evolve the connection weights for a fixed-morphology six-legged
insect like robot for a simple locomotion task, and a 1994 paper by
Floreano et al. [27] used a genetic algorithm to evolve a physical
Khepera-like [56] robot for a navigation and obstacle avoidance
task. The applicability of genetic algorithms to multi-robot system
design was also a growing area of interest at this time. In 1997, for
instance, Jeong and Lee [38] used a genetic algorithm to evolve
cooperative behaviour in a multi-robot system for a soccer playing
task. Moreover, various works have used neuro-evolution to evolve
collective behaviour in multi-robot systems. Nitschke et al. [63], for
instance, use CONE (collective neuro-evolution) to evolve collec-
tive behaviour for a multi-rover task requiring sensory detection
of ’points of interest’ in a virtual environment.

Recently, Watson and Nitschke [87] used HyperNEAT to investi-
gate the relationship between the complexity of fixed robot sensory
configurations and evolved controllers in yielding optimal task per-
formance for a multi-robot collective construction task. While the
robot team was homogenous in terms of both controller and mor-
phology during each of the six experiments, ANN controllers were
evolved using HyperNEAT and a set of sensory configurations (mor-
phologies) which varied in complexity (namely number and range
of sensors) were manually specified by the researchers. In each
experiment, a controller was evolved for one of the sensory config-
urations. It was found that minimal sensory configurations were
optimal for evolving collective team behaviours that maximised
task performance; namely, increasing morphological complexity
did not increase task performance. While Watson and Nitschke
[88] recently extended this work by evolving both controller and

5



sensory configuration4, they have not yet explored the potential
benefits of team heterogeneity, which has been found to produce
better performance [61].

Outside the domain of multi-robot systems, van Willigen et al.
[83] implemented NEAT-PS to evolve autonomous vehicle con-
trollers while selecting for both speed and comfort [84]. This would
allow vehicle drivers to toggle their driving preferences in real-time,
depending on whether their current preference is speed (ie: many
lane changes, frequent changes in velocity) and comfort (fewer
lane changes, constant velocity). Results indicated that NEAT-PS
is suitable for evolving a set of controllers that perform well on
different areas of the Pareto Front, providing a range of controllers
for different ’driving preference settings’.

Risi and Stanley [68] evolved controllers for simulated quadrupeds
using HyperNEAT. Specifically, Risi and Stanley focus on the trans-
ferability of evolved controllers to different morphologies. In the
experiment, a set of hand-designed morphologies (namely differing
by leg length) are passed as substrate inputs to HyperNEAT, such
that the evolved CPPN functions as a quadruped controller which
performs well on a diverse set of never-seen morphologies. Results
showed that HyperNEAT is indeed capable of producing effective
controllers for never-seen morphologies. An interesting extension
of this work would be to evolve both morphology and controller
simultaneously instead of evolving controllers with hand-designed
morphologies, in which case multi-objective optimisation might
have some benefit (such as to select for both morphological simplic-
ity and controller task performance). While no such extension of
this particular experiment has been conducted, similar experiments
are reviewed in Section 3.3.

3.2 Evolution of Morphology
Seminal work by Karl Sims in 19945 demonstrated the use of artifi-
cial evolution for both controller and morphology [75], in lieu of the
fixed-morphology trend that had prevailed hitherto [34]. However,
the caliber of parallelised computing resources used by Sims at the
time was largely inaccessible to researchers in the field, and so it
was only several years later that comparable results were attained
[3]. Nevertheless, the work of Sims inspired new interest in the
evolution of morphology alone and, more generally, was seminal
in establishing the field of Artificial Life [3].

Studies have for the most part dealt with the evolution of rigid
structures. Early work by Funes and Pollack [29], for instance,
demonstrated the evolution of solid structures, such as crane arms
and bridges, made out of LEGO bricks. Parker et al. [65] conducted
similar research on the evolution of LEGO block-based solid struc-
tures, and both studies contributed to later work on the evolution
of LEGO robot body morphologies with a fixed controller for a
wheeled locomotion task [66]. Similar work for a robot motion task
was conducted by Lichtensteiger and Eggenberger [47], where evo-
lution parameterised6 the positions of 16 light sensors on the body
of a fixed-controller robot. Specifically, the motion task required
the robot to avoid some obstacles but purposely collide with others.

4We cover this extended work in Section 3.3
5We elaborate on the work of Sims in section 3.3.
6We place more focused attention on parametric evolution in Section 3.3, namely in
comparison to topological evolution.

Figure 3: Constructing morphology with a CPPN. The CPPN
(left) is queried for each potential voxel in the hypercube
(right), such that the output of the CPPN for some potential
voxel defines the presence of that voxel in the hypercube. If
the CPPN output for some voxel falls above a certain thresh-
old, that voxel is excluded from the hypercube. In this exam-
ple, the different colours represent different material types
for voxels in the hypercube, as determined by the output
of the CPPN. Note how the CPPN’s exclusion of potential
voxels (that fell above the threshold) from the hypercube al-
lows included voxels to accumulate and formmorphological
structure [18].

Recent studies have employed instances of CPPN-NEAT [77]
for the evolution of morphology. While HyperNEAT, one such
instance of CPPN-NEAT, is principally concerned with the evolu-
tion of controllers that exploit morphological geometric properties,
CPPN-NEAT can also be implemented to construct organisms and
structures as a function of voxels (arrays of three-dimensional co-
ordinates) that are passed to it. In general, a bounded area (fully
comprised of potential voxels) can be defined, such that passing a
potential voxel to the CPPN produces an output which defines the
presence of that voxel in hypercube space. This process is illustrated
in Figure 3.

Auerbach and Bongard [4], for instance, use CPPN-NEAT to
evolve rigid robot morphologies that capture relationships between
physical structure and controller. This was conducted as ground-
work for later research in which both controller and morphology
are evolved [5].

A developing trend in the contemporary literature is work on
the evolution of soft rather than rigid structures. Hiller and Lipson
[36] conduct the first instance of such research, evolving amor-
phous7 robots, using CPPN-NEAT, that are able to locomote via the
expansion and contraction of the materials that morphologically
comprise them. This research was a step forward for the use of ER
in modeling and exploring the continuous properties of biological
systems, possibly paving the way for novel methods of inquiry into
classical evolutionary theory and other topics. Additionally, while
controller evolution has traditionally been the focal point of emerg-
ing behaviours in ER, this research demonstrates that interesting
7Soft

6



behaviours can emerge from the interaction between morphology
and environment.

In a 2014 paper, Cheney et al. [17] use CPPN-NEAT to evolve soft
electrophysiological robots where behaviour is actuated principally
by electrical signals charging through the tissue cells of the soft
morphology, rather than by a controller. Interesting and complex
behaviours were found to emerge directly from the morphologies of
the robots, such that control was interlaced with physical structure.
We note one potentially crucial limitation of this work: Namely,
the researchers specified a fitness function for CPPN-NEAT which
incentivised both minimising amount of conductive tissue as well as
maximising distance traveled for a simple locomotion task. Thus,
two objectives were being optimised, yet a single-objective imple-
mentation of CPPN-NEAT was employed. Henceforth, a valuable
extension of this work could employ a multi-objective implementa-
tion of CPPN-NEAT for finding the optimal trade-off between the
objectives.

Cheney et al. conduct a similar study of morphology-actuated
behaviour in soft robots in a 2015 paper which evolves morphology
for a task requiring evolved robots to escape from partially-enclosed
boxes via tight apertures [16]. Results indicated high suitability of
the evolved soft robots to the aperture escape task. The researchers
implemented a novel multi-objective implementation of CPPN-
NEAT for the experiment, selecting for both maximum number of
voxels outside the enclosed box (ie: squeezing as much of the mor-
phology outside of the box as possible) and maximum morphology
size (ie: evolving creatures that were as large as possible).

3.3 Control and Morphology
This section reviews research on the evolution of both controller
and morphology. Namely, we differentiate between parametric and
topological evolution [3]. Parametric evolution is principally con-
cerned with the configuration of a morphology model, such as the
placement of sensors on an otherwise fixed morphology. On the
other hand, topological evolution evolves the complete morphology.
While the seminal work of Sims [75] on the topological evolution
of both organism brain (controller) and body (morphology) was
only accurately reproduced within several years of being presented,
research on parametric evolution was sooner in motion [3].

3.3.1 Parametric Evolution of Control and Morphology. Much
of the work in this domain has dealt with the evolution of sensory
parameters, such as the number, placement and sight range of robot
sensors.8

In a 1996 paper by Balakrishnan and Honavar [8], the sensor
placements and sight ranges for a simulated Khepera-like [56]
robot with a fixed number of sensors (n=8) were evolved. Both the
robot and a set of ’boxes’ were placed in a two-dimensional grid
environment, and the robot was tasked with pushing the boxes to
the edges of the environment. In addition to the sensory parameters,
the connection weights for an ANN controller with a mostly fixed
topology was evolved for the box-clearing task. During evolution
of sensor positions, a sensor switch was implemented such that
the mutation operator - with extremely low probability - could
disable sensors. A particularly interesting result was the observation
8However, there has also been work on other morphological parameters such as body
size, wheel radii and joint ranges [25, 50].

that, even without a cost for having extra sensors - the highest
performing individuals always disabled some of the sensors. This
indicated a potential strength of having fewer sensors over the
complete available set, which could improve the cost-effectiveness
and performance of real life implementations (that is, physical
robots).

Similar work was conducted by Mark et al. [51] in 1998, also
incorporating simulated Khepera-like robots. Morphologically, the
robots were circular with simple vision sensors and two wheels for
movement. Evolution was used both for the production of network
controllers as well as for the parameterisation of sensory view an-
gles and number of sensors. The evolved robots were evaluated
on two separate tasks. The first task placed a set of robots in an
environment containing obstacles and ’lamps’. Each robot had an
initial ’energy level’ which was spent by moving and interacting
with other robots and obstacles, and gained by dwelling in the
light of a lamp. Additional energy was spent if two robots collided,
and a robot ’died’ if its energy level fell below a threshold. The
second task required a single robot to navigate obstacles in order to
reach a target. Despite computational limitations rendering mostly
inconclusive results, other researchers have since conducted simi-
lar work. For instance, in an experiment which evolved Khepera
sensory parameters and the weights for a fixed topology ANN con-
troller, Buason et al. [15] simulated a predator/prey situation to
investigate the impact of variable sensory parameters on evolution.
Notably, a trade-off between speed and view angle was discovered,
such that the prey robots preferred speed over vision.

Recently, Watson and Nitschke [88] investigated the evolution
of both sensory parameters and control for a collective construc-
tion task, extending their work in [87] which evolved control but
not morphology. HyperNEAT was used for evolution, and results
demonstrated that evolution is capable of producing optimal sen-
sory paramaterisations as well as cooperative behaviour for the
specified collective construction task. We note that the only mor-
phological characteristic which was evolved was number of sensors
rather than placement or range of sight. Additionally, the authors
have yet to explore the use of heterogenous (robots with different
configurations) rather than homogenous (robots with universal
configuration) teams in this ongoing work.

3.3.2 Topological Evolution of Control and Morphology. Sims
[75] presented a system for evolving virtual creatures capable of
behaviours such as swimming jumping and walking. Creatures
were evaluated together on a ’box grabbing competition’, and each
was morphologically composed of solid cuboid body segments
connected by different joint types (such as ’twist’ and ’rigid’). Neu-
ral controllers, which were co-evolved with morphology using a
genetic algorithm (incorporating a graph-based genotype repre-
sentation), actuated the joints by sending specific output values to
simulated muscles (effectors). Additionally, three types of sensors
were implemented: joint-angle sensors for proprioception, contact
sensors for collision detection, and photosensors. Additionally, un-
like for the case of traditional ANNs, each node in the evolved
networks could be activated by a range of functions, as in the case
of CPPNs [77].

The first successful reproduction of Sims’ work on standard hard-
ware was by Taylor and Massey [82] in 2000, where the controllers

7



and morphologies of virtual creatures were evolved for swimming
and locomotion tasks. Another reproduction of the work was pre-
sented in 2004 [64], in which spheres were used instead of cuboids
and the performance task was for virtual creatures to ’fight’ one
another such that they touched the root nodes of their opponents
before their own root nodes were touched.

Krah [39] implemented a system based on Sims’ graph-encoding
which used an extension of NEAT to evolve creatures for tasks such
as swimming, jumping, walking and phototaxis. Lehman and Stan-
ley [44] extended this work, using multi-objective novelty search
[43] to evolve a diverse range of creatures capable of locomotion,
rather than converging to a single creature (optimum).

In addition to graph-based encodings based on the work of Sims9,
other encodings have been explored for the topological evolution
of controller and morphology. One such example is the work of
Hornby and Pollack [37], which employed the first use of L-Systems
for the co-evolution of controller and morphology. Other encoding
approaches which have been used include direct encoding [13, 49]
and developmental encoding [11, 14].

In a recent study employing CPPNs for encoding, Auerbach and
Bongard [6] conduct an ER-based inquiry of the arrow of complexity
hypothesis [9], which posits that the complexity of an organism
tends to increase with evolutionary time. Specifically, the authors
investigate why this positive relationship between morphological
complexity and evolutionary time is not always observed (why,
for instance, do single-celled organisms still exist at this point in
evolutionary time?).

Two sets of experiments were conducted, each of which eval-
uated evolved organisms on a locomotion task in fifty different
environments of varying complexity. For the first set of experi-
ments, the virtual organisms were evolved using a single-objective
implementation of CPPN-NEAT, where evolution only selected
for locomotive ability. For the second set of experiments, a multi-
objective implementation of CPPN-NEATwas used to evolve virtual
organisms, where evolution selected for both locomotive ability
and simple morphology, thereby incurring a cost on morphological
complexity.

Results of the experiments showed that virtual organisms be-
come more complex with evolutionary time if there is no cost in-
curred on being morphologically complex, regardless of whether
the environment is complex or simple. However, incurring a cost on
being morphologically complex causes organisms to remain simple
in simple environments over evolutionary time, but become more
complex in complex environments over evolutionary time. These re-
sults corroborate the conjecture that the arrow of complexity might
only occur when a complex morphology is necessary to survive or
perform well in the environment. More generally, this work is a
seminal example of the applicability of ER to the field of biological
evolution.

4 CONCLUSIONS
In general, the field of Evolutionary Robotics (ER) has broadened
considerably since its inception in the 1990s. On the engineering
side of the field, the general focus has shifted from evolving con-
trollers (brains) for individual robots to the evolution of both robot

9For additional graph-based encoding re-implementations of Sims’ work, see [40, 53]

controllers and morphological (body) parameterisations, namely
for use in multi-robot systems where the emergence of cooperative
team behaviour facilitates task completion. From the perspective
of the natural sciences, the principal use of ER has shifted from
reproducing the first seminal works in the field of Artificial Life to
exploring questions in domains such as evolutionary biology [55]
and embodied cognition [30].

Current research on the development and use of state-of-the-
art multi-objective evolutionary methods for ER has demonstrated
the benefit of finding optimal trade-offs for multi-criteria prob-
lems rather than converging to a single optimum. On one hand,
this is enabling designers to evolve cheaper and better-performing
task-completing robots, such as by off-loading complexity of the
morphology onto the controller and vice-versa. On the other hand,
it is enabling scientists to investigate evolutionary trade-offs and
questions of complexity that are observed in nature.

However, we notice gaps in this body of the literature. Firstly,
these state-of-the-art methods, namely multi-objective implementa-
tions of widely-used neuro-evolution algorithms, are often sparsely
documented and tend to lack quantitative support. Secondly, these
methods are seldom applied to multi-robot systems in which they
are potentially highly applicable.

As such, avenues for future research could include placing greater
detail on quantifying existing and novel approaches tomulti-objective
neuro-evolution, as well as applying these approaches to a wider
variety of applicable fields, pertinent examples of which are multi-
robot systems [26] and swarm robotic systems [72].

8



REFERENCES
[1] Omer Abramovich and Amiram Moshaiov. 2016. Multi-objective topology and

weight evolution of neuro-controllers. In Evolutionary Computation (CEC), 2016
IEEE Congress on. IEEE, 670–677.

[2] Shun-ichi Amari. 1993. Backpropagation and stochastic gradient descent method.
Neurocomputing 5, 4-5 (1993), 185–196.

[3] Joshua E Auerbach. 2013. The Evolution of Complexity in Autonomous Robots.
Technical Report. University of Vermont.

[4] Joshua E Auerbach and Josh C Bongard. 2010. Evolving CPPNs to grow three-
dimensional physical structures. In Proceedings of the 12th annual conference on
Genetic and evolutionary computation. ACM, 627–634.

[5] Joshua E Auerbach and Josh C Bongard. 2011. Evolving complete robots with
CPPN-NEAT: the utility of recurrent connections. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation. ACM, 1475–1482.

[6] Joshua E Auerbach and Josh C Bongard. 2014. Environmental influence on the
evolution of morphological complexity in machines. PLoS computational biology
10, 1 (2014), e1003399.

[7] Thomas Back, Frank Hoffmeister, and Hans-Paul Schwefel. 1991. A survey of
evolution strategies. In Proceedings of the fourth international conference on genetic
algorithms, Vol. 2. Morgan Kaufmann Publishers San Mateo, CA.

[8] Karthik Balakrishnan and Vasant Honavar. 1996. On sensor evolution in robotics.
In Proceedings of the 1st annual conference on genetic programming. MIT Press,
455–460.

[9] Mark A Bedau. 1998. Four puzzles about life. Artificial life 4, 2 (1998), 125–140.
[10] Randall D Beer and John C Gallagher. 1992. Evolving dynamical neural networks

for adaptive behavior. Adaptive behavior 1, 1 (1992), 91–122.
[11] Josh Bongard. 2002. Evolving modular genetic regulatory networks. In Evolution-

ary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, Vol. 2. IEEE,
1872–1877.

[12] Josh Bongard. 2011. Morphological change in machines accelerates the evolution
of robust behavior. Proceedings of the National Academy of Sciences 108, 4 (2011),
1234–1239.

[13] Josh C Bongard and Chandana Paul. 2000. Investigating morphological symmetry
and locomotive efficiency using virtual embodied evolution. In From Animals
to Animats: The Sixth International Conference on the Simulation of Adaptive
Behaviour. Citeseer.

[14] Josh C Bongard and Rolf Pfeifer. 2003. Evolving complete agents using artificial
ontogeny. In Morpho-functional Machines: The new species. Springer, 237–258.

[15] Gunnar Buason, Nicklas Bergfeldt, and Tom Ziemke. 2005. Brains, bodies, and
beyond: Competitive co-evolution of robot controllers, morphologies and envi-
ronments. Genetic Programming and Evolvable Machines 6, 1 (2005), 25–51.

[16] Nick Cheney, Josh Bongard, and Hod Lipson. 2015. Evolving soft robots in tight
spaces. In Proceedings of the 2015 annual conference on Genetic and Evolutionary
Computation. ACM, 935–942.

[17] Nicholas Cheney, Jeff Clune, and Hod Lipson. 2014. Evolved electrophysiological
soft robots. In ALIFE, Vol. 14. 222–229.

[18] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. 2013. Unshackling
evolution: evolving soft robots with multiple materials and a powerful generative
encoding. In Proceedings of the 15th annual conference on Genetic and evolutionary
computation. ACM, 167–174.

[19] Dave Cli, Philip Husbands, and Inman Harvey. 1993. Evolving visually guided
robots. InMeyer, JA., HL Roitblatt, and SWWilson (1993) FromAnimals to Animats2.
Proceedings of the Second International Conference on Simulation of Adaptive
Behavior. MIT Press/Bradford Books, Cambridge Ma. Citeseer, 374–383.

[20] CA Coello Coello. 2006. Evolutionary multi-objective optimization: a historical
view of the field. IEEE computational intelligence magazine 1, 1 (2006), 28–36.

[21] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[22] Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, and Agoston E Gusz
Eiben. 2015. Evolutionary robotics: what, why, and where to. Frontiers in Robotics
and AI 2 (2015), 4.

[23] Stephane Doncieux and Jean-Baptiste Mouret. 2014. Beyond black-box opti-
mization: a review of selective pressures for evolutionary robotics. Evolutionary
Intelligence 7, 2 (2014), 71–93.

[24] A. Eiben and J. Smith. 2003. Introduction to Evolutionary Computing. Springer,
Berlin, Germany.

[25] Ken Endo, Takashi Maeno, and Hiroaki Kitano. 2002. Co-evolution of morphology
and walking pattern of biped humanoid robot using evolutionary computation.
Consideration of characteristic of the servomotors. In Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference on, Vol. 3. IEEE, 2678–2683.

[26] Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. 2004. Multirobot systems: a
classification focused on coordination. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 34, 5 (2004), 2015–2028.

[27] Dario Floreano, Sara Mitri, Stéphane Magnenat, and Laurent Keller. 2007. Evo-
lutionary conditions for the emergence of communication in robots. Current
biology 17, 6 (2007), 514–519.

[28] Nicolas Franceschini, Jean-Marc Pichon, and Christian Blanes. 1992. From insect
vision to robot vision. Phil. Trans. R. Soc. Lond. B 337, 1281 (1992), 283–294.

[29] Pablo Funes and Jordan Pollack. 1999. Computer evolution of buildable objects.
Evolutionary design by computers 1 (1999), 387–403.

[30] Arezou Ghane and Kate Sweeny. 2013. Embodied health: A guiding perspective
for research in health psychology. Health Psychology Review 7, sup1 (2013),
S159–S184.

[31] Faustino John Gomez. 2003. Robust non-linear control through neuroevolution.
Ph.D. Dissertation.

[32] Salvatore Greco, J Figueira, and M Ehrgott. 2005. Multiple criteria decision
analysis. Springer’s International series (2005).

[33] Frederic Gruau. 1993. Genetic synthesis of modular neural networks. In Proceed-
ings of the 5th International Conference on Genetic Algorithms. Morgan Kaufmann
Publishers Inc., 318–325.

[34] Sameer Gupta and Ekta Singla. 2015. Evolutionary robotics in two decades: A
review. Sadhana 40, 4 (2015), 1169–1184.

[35] Sabine Hauert, Jean-Christophe Zufferey, and Dario Floreano. 2009. Evolved
swarming without positioning information: an application in aerial communica-
tion relay. Autonomous Robots 26, 1 (2009), 21–32.

[36] Jonathan D Hiller and Hod Lipson. 2010. Evolving Amorphous Robots.. In ALIFE.
Citeseer, 717–724.

[37] Gregory S Hornby and Jordan B Pollack. 2001. Body-brain co-evolution using
L-systems as a generative encoding. In Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation. Morgan Kaufmann Publishers Inc.,
868–875.

[38] Il-Kwon Jeong and Ju-Jang Lee. 1997. Evolving cooperative mobile robots using
a modified genetic algorithm. Robotics and Autonomous Systems 21, 2 (1997),
197–205.

[39] Peter Krah. 2008. Towards efficient evolution of morphology and control. In
Proceedings of the 10th annual conference on Genetic and evolutionary computation.
ACM, 287–288.

[40] Nicolas Lassabe, Hervé Luga, and Yves Duthen. 2007. A new step for artificial
creatures. In Artificial Life, 2007. ALIFE’07. IEEE Symposium on. IEEE, 243–250.

[41] Joel Lehman, Sebastian Risi, David DâĂŹAmbrosio, and Kenneth O Stanley. 2013.
Encouraging reactivity to create robust machines. Adaptive Behavior 21, 6 (2013),
484–500.

[42] Joel Lehman and Kenneth O Stanley. 2008. Exploiting open-endedness to solve
problems through the search for novelty.. In ALIFE. 329–336.

[43] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary computation 19, 2 (2011),
189–223.

[44] Joel Lehman and Kenneth O Stanley. 2011. Evolving a diversity of virtual creatures
through novelty search and local competition. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation. ACM, 211–218.

[45] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Research
17, 1 (2016), 1334–1373.

[46] M Anthony Lewis, Andrew H Fagg, and Alan Solidum. 1992. Genetic program-
ming approach to the construction of a neural network for control of a walking
robot. In Robotics and Automation, 1992. Proceedings., 1992 IEEE International
Conference on. IEEE, 2618–2623.

[47] Lukas Lichtensteiger and Peter Eggenberger. 1999. Evolving the morphology of
a compound eye on a robot. In Advanced Mobile Robots, 1999.(Eurobot’99) 1999
Third European Workshop on. IEEE, 127–134.

[48] Aristid Lindenmayer. 1968. Mathematical models for cellular interactions in
development I. Filaments with one-sided inputs. Journal of theoretical biology 18,
3 (1968), 280–299.

[49] Hod Lipson and Jordan B Pollack. 2000. Automatic design and manufacture of
robotic lifeforms. Nature 406, 6799 (2000), 974.

[50] Henrik Hautop Lund, John Hallam, and Wei-Po Lee. 1997. Evolving robot mor-
phology. In Evolutionary Computation, 1997., IEEE International Conference on.
IEEE, 197–202.

[51] Alexandra Mark, Daniel Polani, and Thomas Uthmann. 1998. A framework for
sensor evolution in a population of braitenberg vehicle-like agents. In Artificial
Life VI. 428–432.

[52] Maja J Matarić. 1997. Reinforcement learning in the multi-robot domain. In
Robot colonies. Springer, 73–83.

[53] Thomas Miconi and Alastair Channon. 2005. A virtual creatures model for studies
in artificial evolution. In Evolutionary Computation, 2005. The 2005 IEEE Congress
on, Vol. 1. IEEE, 565–572.

[54] Kaisa Miettinen. 1999. Nonlinear Multiobjective Optimization, volume 12 of
International Series in Operations Research and Management Science. (1999).

[55] William A Mitchell and Thomas J Valone. 1990. The optimization research
program: studying adaptations by their function. The Quarterly Review of Biology
65, 1 (1990), 43–52.

[56] Francesco Mondada, Edoardo Franzi, and Paolo Ienne. 1994. Mobile robot minia-
turisation: A tool for investigation in control algorithms. In Experimental robotics

9



III. Springer, 501–513.
[57] Jean-Marc Montanier and Nicolas Bredeche. 2011. Surviving the tragedy of

commons: Emergence of altruism in a population of evolving autonomous agents.
In European Conference on Artificial Life.

[58] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 (2015).

[59] Geoff Nitschke. 2003. Emergence of Cooperation in a Multiple Predator, Single
Prey Game.. In FLAIRS Conference. 234–238.

[60] G Nitschke. 2012. Behavioral heterogeneity and collective construction. In Pro-
ceedings of the IEEE Congress on Evolutionary Computation. 387–394.

[61] Geoff S Nitschke, AE Eiben, and Martijn C Schut. 2012. Evolving team behaviors
with specialization. Genetic Programming and Evolvable Machines 13, 4 (2012),
493–536.

[62] Geoff S Nitschke and Leo H Langenhoven. 2010. Neuro-evolution for competitive
co-evolution of biologically canonical predator and prey behaviors. In Nature and
Biologically Inspired Computing (NaBIC), 2010 Second World Congress on. IEEE,
546–553.

[63] Geoff S Nitschke, Martijn C Schut, and AE Eiben. 2010. Collective neuro-evolution
for evolving specialized sensor resolutions in a multi-rover task. Evolutionary
Intelligence 3, 1 (2010), 13–29.

[64] Michael JT OâĂŹKelly and Kaijen Hsiao. 2004. Evolving simulated mutually
perceptive creatures for combat. In Artificial Life IX: Proc. Ninth Intl. Conf. on the
Simulation and Synthesis of Life. 113–118.

[65] Gary B Parker, Andrey S Anev, and Dejan Duzevik. 2003. Evolving towers in a 3-
dimensional simulated environment. In Evolutionary Computation, 2003. CEC’03.
The 2003 Congress on, Vol. 2. IEEE, 1137–1144.

[66] Gary B Parker, Dejan Duzevik, Andrey S Anev, and Ramona Georgescu. 2007.
Morphological evolution of dynamic structures in a 3-dimensional simulated
environment. In Computational Intelligence in Robotics and Automation, 2007.
CIRA 2007. International Symposium on. IEEE, 534–540.

[67] Sebastian Risi and Kenneth O Stanley. 2011. Enhancing es-hyperneat to evolve
more complex regular neural networks. In Proceedings of the 13th annual confer-
ence on Genetic and evolutionary computation. ACM, 1539–1546.

[68] Sebastian Risi and Kenneth O Stanley. 2013. Confronting the challenge of learning
a flexible neural controller for a diversity of morphologies. In Proceedings of the
15th annual conference on Genetic and evolutionary computation. ACM, 255–262.

[69] DA Roff and DJ Fairbairn. 2007. The evolution of trade-offs: where are we?
Journal of evolutionary biology 20, 2 (2007), 433–447.

[70] Elizabeth M Rudnick, Janak H Patel, Gary S Greenstein, and Thomas MNiermann.
1994. Sequential circuit test generation in a genetic algorithm framework. In
Design Automation, 1994. 31st Conference on. IEEE, 698–704.

[71] Erol Şahin. 2004. Swarm robotics: From sources of inspiration to domains of
application. In International workshop on swarm robotics. Springer, 10–20.

[72] Erol Şahin. 2004. Swarm robotics: From sources of inspiration to domains of
application. In International workshop on swarm robotics. Springer, 10–20.

[73] J David Schaffer, Darrell Whitley, and Larry J Eshelman. 1992. Combinations
of genetic algorithms and neural networks: A survey of the state of the art. In
Combinations of Genetic Algorithms and Neural Networks, 1992., COGANN-92.
International Workshop on. IEEE, 1–37.

[74] Jacob Schrum and RistoMiikkulainen. 2008. Constructing Complex NPC Behavior
via Multi-Objective Neuroevolution. AIIDE 8 (2008), 108–113.

[75] Karl Sims. 1994. Evolving virtual creatures. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. ACM, 15–22.

[76] Nidamarthi Srinivas and Kalyanmoy Deb. 1994. Muiltiobjective optimization
using nondominated sorting in genetic algorithms. Evolutionary computation 2,
3 (1994), 221–248.

[77] Kenneth O Stanley. 2007. Compositional pattern producing networks: A novel
abstraction of development. Genetic programming and evolvable machines 8, 2
(2007), 131–162.

[78] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. 2009. A hypercube-
based encoding for evolving large-scale neural networks. Artificial life 15, 2
(2009), 185–212.

[79] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[80] Paul A Szerlip and Kenneth O Stanley. 2013. Indirectly Encoded Sodarace for
Artificial Life.. In ECAL. 218–225.

[81] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[82] Tim Taylor and Colm Massey. 2001. Recent developments in the evolution of
morphologies and controllers for physically simulated creatures. Artificial Life 7,
1 (2001), 77–87.

[83] Willem vanWilligen, Evert Haasdijk, and Leon Kester. 2013. A multi-objective ap-
proach to evolving platooning strategies in intelligent transportation systems. In
Proceedings of the 15th annual conference on Genetic and evolutionary computation.
ACM, 1397–1404.

[84] Willem H van Willigen, Evert Haasdijk, and Leon JHM Kester. 2013. Evolving in-
telligent vehicle control using multi-objective neat. In Computational Intelligence
in Vehicles and Transportation Systems (CIVTS), 2013 IEEE Symposium on. IEEE,
9–15.

[85] Markus Waibel, Dario Floreano, and Laurent Keller. 2011. A quantitative test of
Hamilton’s rule for the evolution of altruism. PLoS biology 9, 5 (2011), e1000615.

[86] Markus Waibel, Laurent Keller, and Dario Floreano. 2009. Genetic team composi-
tion and level of selection in the evolution of cooperation. IEEE Transactions on
Evolutionary Computation 13, 3 (2009), 648–660.

[87] JamesWatson and GeoffNitschke. 2015. Derivingminimal sensory configurations
for evolved cooperative robot teams. In Evolutionary Computation (CEC), 2015
IEEE Congress on. IEEE, 3065–3071.

[88] James Watson and Geoff Nitschke. 2015. Evolving Robust Robot Team Mor-
phologies for Collective Construction. In Computational Intelligence, 2015 IEEE
Symposium Series on. IEEE, 1039–1046.

[89] Steffen Wischmann, Dario Floreano, and Laurent Keller. 2012. Historical contin-
gency affects signaling strategies and competitive abilities in evolving populations
of simulated robots. Proceedings of the National Academy of Sciences 109, 3 (2012),
864–868.

[90] Xin Yao. 1999. Evolving artificial neural networks. Proc. IEEE 87, 9 (1999),
1423–1447.

[91] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. 2016. Learning
deep control policies for autonomous aerial vehicles with mpc-guided policy
search. In Robotics and Automation (ICRA), 2016 IEEE International Conference on.
IEEE, 528–535.

[92] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam
Suganthan, and Qingfu Zhang. 2011. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary Computation 1, 1 (2011),
32–49.

[93] Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. 2004. A tutorial on evolution-
ary multiobjective optimization. In Metaheuristics for multiobjective optimisation.
Springer, 3–37.

[94] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the
strength Pareto evolutionary algorithm. TIK-report 103 (2001).

[95] Eckart Zitzler and Lothar Thiele. 1998. An evolutionary algorithm for multiob-
jective optimization: The strength pareto approach. TIK-report 43 (1998).

10


	Abstract
	1 Introduction
	2 Multi-objective Neuro-evolution
	2.1 Neuro-evolution
	2.2 Evolutionary Multi-objective Optimisation
	2.3 Multi-objective Neuro-evolution

	3 Evolutionary Robotics
	3.1 Evolution of Control
	3.2 Evolution of Morphology
	3.3 Control and Morphology

	4 Conclusions
	References

