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Exception handling in reasoning logic for Artificial Intelligence is a well-
known problem. In this literature review we first examine propositional
logic as a basis for logic programming. We then extend propositional logic
to handle exceptions to well known information, formally called defeasible
reasoning. We make use of Datalog as our logic programming language
because of its close fit with propositional logic in terms of declaring facts,
providing rules similar to logical consequence and then querying new facts.
We choose RDFox as our semantic query database as it can handle large data
stores and maintain fast retrieval rates for queries. This research is divided
into the implementation of Defeasible Datalog and the theoretical approach
of maintaining propositional logic properties in Defeasible Datalog.
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1 INTRODUCTION
Decision making is a daily occurrence in everyone’s life. People
must decide what to eat, what clothes to wear, what route to work
they should take etc. In order for people to make these decisions
it is necessary to consider certain facts. Consider the decision of
what route to work someone should take. The facts that would help
a person make this decision may be what the weather forecast is
or news of accidents on the road. The person would consider all of
these facts and decide on a particular route.

Interestingly, two people provided with the same facts may make
different decisions. This shows that despite the same knowledge
people may possess different reasoners within themselves to make
different decisions.

The formalisation of reason has led to classical logic. This for-
malisation tells us of a procedure of evaluating knowledge to make
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decisions such that there is a single interpretation and consequently
a single decision. This formalisation however useful for providing
structure to decision making has its limitations. One such limitation
is that of handling exceptions to our knowledge. We provide an ex-
ample to highlight the research and reuse the example throughout
the review.

Example x Our knowledge base will be as follows:

• All birds can fly
• A penguin is a bird
• Follows: A penguin can fly.

We can reason with the above knowledge base using classical
logic to learn that a penguin is a bird and all birds can fly so it fol-
lows that a penguin can fly. This is reasonable given our knowledge
base, if we introduce another fact that we know to be true in the real
world - that penguins do not fly then we have come to an exception
to our knowledge. The importance of exception handling has led to
another formalised approach - that of defeasible reasoning. [10, 12]

Our project is focused on taking Datalog, a model for proposi-
tional logic, and extending it with defeasible reasoning to allow
for the application of defeasible reasoners in real world models
as opposed to purely theoretical formalisations. Furthermore, this
project ensures that properties of propositional logic and defeasible
reasoning still hold once Defeasible Datalog is implemented.

The motivation behind our project has been mentioned briefly. Is
it the nature of decision making in our everyday life and by exten-
sion the application of decision making. We believe that our project
will impact Artificial Intelligence by allowing large data stores to
reason with exceptions and make logical decisions [1, 2]. Further
motivation is provided by what we believe to be a gap in the lit-
erature as we have found direct evidence such a project has been
completed before.

In this review section 2 provides the background for understand-
ing the work to be done in this project. More specifically it deals with
the syntax and semantics of understanding propositional logic - the
chosen formal logic for this project. The notation behind defeasible
reasoning and Datalog - the chosen programming language for our
logic. Section 3 explains the algorithm used to extend our reason-
ing from propositional logic to include exception handling through
defeasible reasoning. It also describes RDFox for Defeasible Datalog.
Section 4 discusses realted work in the areas of propositional logic,
defeasible reasoning and the implementation in logic programming.
Lastly, section 5 concludes by emphasising the importance of the
work in the context of decision making in artificial intelligence.
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2 BACKGROUND
This section provides a brief introduction into propositional logic,
defeasible logic and datalog. These topics are vastly important in
understanding the research reviewed for this literature review.With-
out such knowledge the reader would undervalue the importance
of this project.

2.1 Propositional Logic
In logic a proposition is a statement that expresses a concept that
is either true or false. It follows that propositional logic focuses on
applying logic to reason with propositions.

Propositions in their simplest form will be called atomic proposi-
tions otherwise called atoms. By simplest form we refer to proposi-
tions that cannot be broken down. In propositional logic we create
compound propositions called formulas by connecting atoms by
logical connectives.

The following are common logical connectives:

• negation ¬

• disjunction ∨

• conjunction ∧

• implication =⇒
• equivalence ⇐⇒

The above list of logical connectives is not complete as it does not
include exclusive or, nor and nand. The missed logical connectives
are not used as frequently as the above mentioned logical connec-
tives and if required it is possible to use the above mentioned logical
connectives to form the missing ones.

Example 1 Let F = {p,q,r} be a set of atoms. An example of a for-
mula generated by F would be ¬p ∨ q ∧ r.

The above example demonstrates how to create formulas from
atoms, however it does not address the ambiguity of using logical
connectives. The above example could be interpreted as (¬p ∨ q) ∧ r
or ¬p ∨ (q ∧ r). This ambiguity can be address by introducing prece-
dence.

The order of precedence from high to low is:

• negation ¬

• conjunction ∧

• disjunction ∨

• implication =⇒
• equivalence ⇐⇒

We have described the syntax of propositional logic and how to
create formulas from atoms. We want to define the semantics or
meaning of our formulas. To do this we assign each atom in our
formula with a truth value and apply the precedence and meaning of
our logical connectives to determine the truth value of the formula.

Definition Let A be a formula and let PA be the set of atoms ap-
pearing inA. An interpretation of A is a total functionIA : PA 7→ {T,F}

that assigns one of the truth values T or F to every atom in PA.

Definition Let IA be an interpretation for A.V IA(A), the truth
value of A under IA is defined recursively on the structure of A.

A formula may have a large number of interpretations and it is
useful to display the interpretations. A truth table is a convenient
way of doing this.

Example 2 Consider the formula ¬p ∨ q ∧ r from earlier. We can
display this formula and all of its interpretations in a truth table.

p q r ¬p q ∧ r ¬p ∨ q ∧ r
True True True False True True
True True False False False False
True False True False False False
True False False False False False
False True True True True True
False True False True False True
False False True True False True
False False False True False True

The last concept needed in propositional logic for our purposes
is that of logical consequence also known as entailment.

Definition Let U be a set of formulas and A a formula. We write
U ⊢ A ⇐⇒ every implementation that makes every formula in U
true also makes A true.

Logical consequence is a powerful tool in data gathering as it
allows us to take explicit facts and reason other implicit facts. We
quickly mention two properties of logical consequence:

Let T be a set of formulas, let A ϵ T and B be a formula.
• inclusion: T ⊢ A ∀ A ϵ T
• monotonicity: if T’ ⊢ B then T ⊢ B ∀ T’ ⊂ T.

Lastly, we mention the limitation of propositional logic that we
wish to address. That is, propositional logic cannot handle excep-
tions to the atoms and formulas used in reasoning. This is best
described using an example.

Example 3 Let F = {b, p, f} be a set of atoms where b,p,f represent
birds, penguins and the ability to fly respectively. Let our formulas
be that birds can fly b =⇒ f and that penguins are birds p =⇒ b.
Using logical consequence it follows that penguins can fly p =⇒ f
but this is contradictory to what we know about penguins.

Ideally we would like to handle such exceptions in propositional
logic without it contradicted our formulas.

2.2 Defeasible Reasoning
Defeasible reasoning is a branch of reasoning that allows for con-
tingent statements. That is it allows statements that are subject to
change. This is best described using an example, recall Example 3.
Propositional logic is unable to handle such an exception, but defea-
sible reasoning can handle this. The way defeasible reasoning can
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handle this exception is by introducing new notation. We introduce
⊢ and write A ⊢ B to mean that if A then typically B. Using this
notation we can change our example to handle the exception. To do
this we must find where the exception occurs, in our example this
is in the statement b =⇒ f and we change it to b ⊢ f.

A further classification of defeasible reasoning consequence rela-
tions is that of rational consequence relations. We say a consequence
relation is rational ⇐⇒ it holds for these properties:

• Reflexivity C ⊢ C
• Cumulative Transitivity C ⊢ D and C ∧ D ⊢ F =⇒ C ⊢ F
• Cautious Monotony C ⊢ D and C ⊢ F =⇒ C ∧ D ⊢ F
• Left Logical Equivalence C ⊢ F ⊨ C ⇐⇒ D =⇒ D ⊢ F
• Right weakening C ⊢ D and D ⊨ F =⇒ C ⊢ F
• Left Disjunction C ⊢ F and D ⊢ F =⇒ C ∨ D ⊢ F
• Rational Monotony C ⊢ F and C ⊬ ¬ D =⇒ C ∧ D ⊢ F

We have shown how defeasible reasoning handles exceptions and
the properties of rational consequence relations, we now comment
on some of the limitations and consequences of defeasible reasoning.
Firstly, defeasible statements are weaker versions of their proposi-
tional counterparts and there is added complexity with ensuring
defeasible statements hold the properties of the logic. Secondly, in
light of the previous limitation a consequence is that we cannot
nest defeasible statements. p ⊢ q ⊢ r is an example of nesting with
defeasible statements and it should be clear that the statement is
too weak to have meaning.

2.3 Datalog
Datalog is a declarative logic programming language that uses clas-
sical logical reasoning as its basic form of reasoning. It is often
used as a query language for databases. Recently it has found new
applications in a number of domains, including data integration and
information extraction.

Datalog is similar to another logic programming language - Pro-
log. In fact, syntactically Datalog is a subset of Prolog. However,
unlike Prolog, statements in a Datalog program can be stated in any
order and queries on finite sets are guaranteed to terminate.

In Datalog a variable starts with an upper-case letter. A constant
starts with a lower-case letter or a digit. A predicate symbol starts
with a lower-case letter. A Datalog program is made up of facts,
rules and queries. A fact is of the form predicateSymbol(constant,...).
Example 4

• parent(bill,tom)
• parent(tom, harry)

This tells us that bill is the parent of tom and tom is the parent
of harry. A rule is of the form predicateSymbol(variable,...) :- predi-
cateSymbol(constant,...),...
Example 5

• ancestor(X,Y) :- parent(X,Y)
• ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y)

This tells us that if we know X is a parent of Y then we know that X
is an ancestor of Y, it also tells us that if X is a parent of Z and Z is
an ancestor of Y then X is an ancestor of Y. A query is of the form ?-

predicateSymbol(constant/variable,...)
Example 6

• ?- ancestor(bill,X)
This asks who are the X that bill is an ancestor of are given our facts
and rules - the answer is tom and harry.

The rules allow Datalog to infer implicit facts from explicit facts
i.e. explicitly bill is a parent of tom, using our rule ancestor(X,Y) :-
parent(X,Y) we can infer the implicit fact that bill is an ancestor of
tom. This is very powerful since not all facts are explicitly stated or
known and can allow us to reason more facts.

The format of Datalog with its facts and rules is useful for mod-
elling propositional logic in a programming language format. Propo-
sitional statements can be written as Datalog facts and logical conse-
quence can be written as Datalog rules. Furthermore, if we require
truth values of formulas in propositional logic we can write Datalog
queries to extract this information. We believe that Datalog and
propositional logic are a great fit and will be able to handle the
models required in our research.

3 DEFEASIBLE DATALOG
We have seen that propositional logic is useful for reasoning with
formulas and deriving logical consequences. Furthermore, Datalog
is a good fit for modelling propositional logic in a programming
language. However, propositional logic cannot handle exceptions to
formulas and by extension neither can Datalog. We have learnt that
defeasible reasoning is one way in which to handle such exceptions.
What we aim to do is to take propositional logic modelled for Data-
log and extend it to use defeasible reasoning in order to handle the
exceptions with formulas. We call this extension Defeasible Datalog.
As previously mentioned this is a joint collaboration and my partner
is handling the implementation of Defeasible Datalog. My position
on this research is described below.

3.1 Theoretical Investigation
It is important that the reasoning in Defeasible Datalog must not
create inconsistencies in the propositional logic at the foundation
of Datalog. That is, the properties that hold in Datalog must fur-
ther hold in Defeasible Datalog. My position in this research is to
investigate the properties of propositional logic in Datalog and to
ensure through mathematical rigour that the same properties hold
in Defeasible Datalog.

The algorithm that is essential to the work done in our research
is adapted from [5] low-level explanation and example to aid the
reader’s understanding.

3.1.1 Algorithm for extending propositional logic with defeasible
reasoning. We need a way of formalising defeasible information in
order to reason with new formulas without breaking propositional
logic properties. We outline this formalisation in the following way.
Firstly, we start with a conditional knowledge base [7, 11] K = <T ,
B> where T is a set of formulae representing certain knowledge
and B is a set of sequents C ⊢ D representing default information.
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Example 7.1 T = {P =⇒ B} and B = {P⊢ ¬F, B ⊢F}.

We change B into a set of formulae to remove the defeasible
information and make it formal implication. Using our Example 7.1
we get.

Example 7.2 T = {P =⇒ B} and B′ = {(B =⇒ F)∧(P =⇒ ¬F), P
=⇒ ¬F}

Once our knowledge base is in this default-assumption approach
it is a simple procedure to reason by only relying on logical con-
sequence with the new formulas. Below explains the procedure of
converting a conditional knowledge base into a default knowledge
base. Let K = <T ,B>.

• Step 1: We translate T into sequential form and add it to
B to create B′. That is we take our certain knowledge and
translate it into sequents.

• Step 2: We define TB′ as the set of materializations of the
sequents in B′. That is we take the sequents in B′ and make
them stronger statements than they are.

• Step 3:We now rank the statements in terms of exceptionality.
That is we perform exceptionality testing on our initial set
B′, those that are not considered exceptional have the lowest
rank and those that are considered exceptional move up a
ranking and the process is repeated until we get an empty set
or until the same statements are repeating - if this is the case
then these statements are ranked∞.

• Step 4: We then determine if B′ is inconsistent. This is deter-
mined if in its preferential closure we obtain the sequent ⊤
⊢ ⊥. If B′ is consistent then we can define our background
theory B′ using those statements with rank =∞, and we can
define our set of sequents B′′.

• Step 5: Lastly, we translateB′′ into a set of default-assumptions.
That is we have a set ∆ where each element δi contains the
sequents from rank ⟩ in B′′.

The above translation may be clearer through an example. Con-
sider K = <T ,B> from Example 7.1.

• Using our algorithm we translate T into sequential form by
Step 1 adding it to B to form B′ = {P ∧ ¬B ⊢ ⊥, P ⊢ ¬F, B ⊢ F}.

• Then we create our set of materialisations by Step 2 TB′ = {P
∧ ¬B =⇒ ⊥, P =⇒ ¬F, B =⇒ F}.

• Then by Step 3 determine our rankings: ϵ1 = {P ∧ ¬B ⊢ ⊥,
P ⊢ ¬F, B ⊢ F}, ϵ2 = {P ∧ ¬B ⊢ ⊥, P ⊢ ¬F}, ϵ3 = {P ∧ ¬B ⊢

⊥}. Which gives the rankings r(B⊢F) = 0, r(P⊢¬F) = 1 and
r(P∧¬B ⊢ ⊥) = ∞.

• Step 4 gives our background theory T ′ = {¬(P∧¬B)}.
• By Step 5 we get ∆ = {δ0, δ1} with δ0 = (B =⇒ F)∧(P =⇒ ¬F)
and δ1 = P =⇒ ¬F.

Once we have translated our conditional knowledge base into
a default knowledge base we are ready to reason with new facts
and formulas. Given our default conditional knowledge base K =
<T ,B>, facts Γ and a formula D, if D is a classical formula we reason
as normal, below is the procedure for reasoning with a defeasible
statement D.

• We determine δi as the first consistent formula in the se-
quence of elements in ∆.

• Then we decide if our formula D follows from rational closure.
We do this by determining where Γ ∪ T ∪ {δi } ⊨ D.

• If D follows from rational closure we can include it in our
knowledge base, otherwise we cannot.

Take Example 7.2 which is already a default knowledge base. We
want to consider if a flying creature is not a penguin. The steps for
reasoning this are as below.

• Formally write our query as: F ⊢ ¬P
• We take the facts F and our background theory T and de-
termine the first consistent formula δi . We determine it is
δ0.

• We cant to check if our query follows from rational closure.
That is we must determine whether the following holds:
F ∪ T ∪ {δ0} ⊨ ¬P.

• Since this holds we can say our query is true and F ⊢ ¬ P.

3.2 Implementation of Defeasible Datalog
We briefly explore the implementation of Defeasible Datalog by
fellow collaborator Joshua Abraham. In the previous section we
describe the algorithm we intend to use to extend propositional
logic in Datalog to handle defeasible reasoning. We intend to take
RDFox [9] and implement the algorithm to create Defeasible Datalog.
RDFox is vital to the success of this implementation and as such
must be well understood by the reader.

3.2.1 RDFox: A Highly-Scalable RDF Store. Defeasible Datalog
is only useful if it has applications. It is not difficult to find such
applications and the application we focus on is that of the Semantic
Web. There is a vast quantity of knowledge represented in many
formats across the Web. We focus on knowledge using the Resource
Description Framework (RDF) - such knowledge is typically referred
to as RDF stores which is a specialised database of triples. These
triples are of the form subject-predicate-object and our RDF store
should also allow for their retrieval through semantic queries.

RDFox is the RDF store we have decided to use and the reason for
this is its ability to handle large amount of data and maintain quick
retrieval rates [9]. These properties are essential since the Semantic
Web is so large and an RDF Store that cannot handle large amounts
of data has little usability in such an environment. Another reason
for our choice of RDFox is that its reasoning for query answering
is Datalog, which is the language with which we are extending
propositional logic.

4 RELATED WORK
However important we believe our research to be, it is important
to review the literature of what has already been done to establish
the importance of our research to the academic world. The ability
to handle exceptions and reason with incomplete information is at
the heart of Artificial Intelligence. It is first documented on how to
handle such exceptions, one of the results being defeasible reason-
ing. With the formalisation of defeasible reasoning followed many
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extensions of formal logic to incorporate it. In particular, the exten-
sion of description logic. [3, 4, 6] As well as extensions to formal
logic, we have seen logic programming languages implementing
propositional logic for querying and reasoning.[9]. We narrowed
our research to formal logics with Datalog and found attempts to
extend its reasoning with defeasible reasoning [8? ] but we note
that their research is on a subset of Datalog. We further motivate
our research by stating that we are focused on extending Datalog
in its entirety with defeasible reasoning. As well as demonstrating
the value of an applicable implementation by using RDFox for large
data storage and quick retrieval.

5 CONCLUSION
The importance of exception handling is at the heart of recent Arti-
ficial Intelligence. Defeasible reasoning is a solution that has gained
a lot of attention and as such there is much research into extending
formal logic using it. Furthermore, these extensions are unimportant
without application. The review has found many attempts to extend
logic programming languages to incorporate defeasible reasoning.
However, we have found no evidence to suggest the proposed re-
search is in the literature. That is, there is no evidence to suggest
research into extending the logic programming language Datalog
with defeasible reasoning in RDFox.
This is promising as implementing a defeasible logic programming
language - Defeasible Datalog with the scalability and fast retrieval
rates of RDFox will benefit research in exception handling within
Artificial Intelligence greatly.
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