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Abstract
This literary review will centre around how one might implement
the concept of nonmonotonicity and defeasibility into RDFox - a
classical reasoner, written in C++, that is based on datalog - through
the use of a defined algorithm that was designed to handle defeasibil-
ity in databases. A high level background will be given concerning
the relevant theory, as well as the tools to be used (i.e. datalog and
RDFox). This will then be followed by a discussion about and expla-
nation of the algorithm to be incorporated. Finally, there will be a
discussion on similar work done in this field and on this particular
topic. This review will not focus as much on the theoretical side of
the implementation, as it will the computation and practical side of
it - that is, the implementing of defeasibility in RDFox. However, if
one requires more information on the theory, one could find it in
this works partner lierature review, (Pownall and Meyer, 2018) [1].

1 INTRODUCTION
Logic and reasoning have been conceptualised since before the days
of Plato, through to Aristotle, medieval thinkers and is still a topic
of discussion amongst present day philosophers, mathematicians,
scientists, etc. There are many varying forms of logic and reason-
ing. For human beings it is relatively common and quite natural
to adjust our views and beliefs based on new information. Even
when faced with new information that is seemingly contradictory
to what we already know, the logical mind has a natural ability and
tendency to rationalise this new information and either add it to
our base of knowledge or reject it entirely. However, when trying to
simulate the efficiency and effectiveness of this same reasoning in a
program or machine, the task becomes considerably more challeng-
ing. Imagine, if you will, being told that all birds fly and also that
some animal, called Tweety, is a bird. From this base of information,
it is reasonable to deduce that Tweety can fly. However, if it is then
learned that Tweety is in fact a penguin or even an ostrich, would
raise clear contradictions (as penguins and ostriches are examples
of flightless birds). The type of reasoning called upon to handle
situations such as this one is known as defeasibile reasoning or
non-monotonic reasoning and is the type of reasoning this paper
wishes to explore.

Defeasibile reasoning is a form of default reasoning and is employed
when faced with seemingly contradictory information, opposed to

∗Joshua is the student doing this particular research as his year project for Hons..
†Thomas Meyer is the research supervisor and student mentor.

what is already known or has already been reasonably deduced.
This type of reasoning is often used in law, where contracts can be
annulled in light of new evidence; in medicine, where medical diag-
noses can be reevaluated due to the revelation of new symptoms;
in science, where scientific theories can be falsified by ascertaining
new experimental results; etc. Thus, it is clear to see the impli-
cational benefits that would emerge from granting machines the
power to employ this type of reasoning - this is one of the motiva-
tions behind this paper’s work.

The goal of this paper is to explore a way to extend the expressivity
of classical datalog - by means of creating a wrapper for the dat-
alog reasoner, RDFox - with the form of non-classical reasoning,
known as defeasible reasoning, that was just introduced. Many
have already endeavoured to implement the concept of defeasibility
into description logics (DL), however, this has never been done for
RDFox before. The project, in it’s entirety, involves a theoretical
component - defeasible reasoning is incorporated into classical
datalog and it’s completeness and soundness are proven - and an
implementational component - which is the focus of this paper in
particular.

2 BACKGROUND
In this section a brief description of the key topics/concepts, which
are indispensable in this research, are given. These are namely: clas-
sical reasoning, propositional logic, defeasible reasoning. Along with
this, the tools to be used in this research project will be discussed.
These are namely: datalog and RDFox (the RDF datalog reasoner).
The descriptions and discussions follow now.

2.1 Classical Reasoning
Classical reasoning (also classical first-order logic) is the standard
form of reasoning or drawing conclusions from already known
propositions and/or predicates. There are three main laws that must
stand when discussing any form of classical reasoning. These three
laws are listed below, followed by a description of each:

(1) The law of identity
(2) The law of non-contradiction
(3) The law of excluded middle
The law of identity states that a thing is itself and can not be

anything else. In terms of propositional functions, if there is some
propositional function F for which F is true for some variable x,
then F is indeed true for some variable x and can not be false or
undefined in the same instance.
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The law of non-contradiction states that there exists no propo-
sition A for which both A and ¬A are true, i.e. ¬(A ∧ ¬A) must
always hold true.

The law of excluded middle states that, for every proposition, either
the proposition itself is true and it’s negation is false or the propo-
sition is holds false and it’s negation is true - i.e. there is no third
truth value a proposition can hold. This law of excluded middle can
be represented in propositional syntax form as A ∨ ¬A.

The pitfalls of reasoning in a solely classical sense is that one
cannot overcome the issue of defeasibility. These limitations explic-
itly arise in Chisholm’s paradox of contrary-to-duty imperatives
[2][3], as well as within the domains of law [4]. Furthermore, these
limitations will be discussed in more depth in the next section of
this paper.

2.2 Propositional logic
Propositional logic (also sentential/statement logic) is based off of
classical reasoning and therefore adheres to the ideas and laws
surrounding classical first-order logic. Simply put, a proposition
is a sentence or statement that is either true or false and never
both in the same instance. A proposition that is true has a truth
value of true and similarly one that is false has a truth value of
false. Propositional logic is the type of logic that deals with the
combination or modification of propositions, as a whole, in order to
generate more complex propositions - whose truth values generally
reveal different or more detailed information about the related
system or ’world’ in which they exist. The simplest or fundamental
propositions are those propositions that are indivisible, i.e. whose
parts are not propositions themselves. Atomic propositions (atoms)
are those propositions whose truth values do not depend on the
truth values of other propositions - note that an atomic proposition
is not necessarily a fundamental proposition, but a fundamental
proposition can be an atomic proposition. A molecular proposition
are those propositions that are generated by the joining of two or
more propositions by means of connectives (logical operators). The
five main connectives used in propositional logic, listed in order of
precedence, are:

• ¬ (negation operator or logical ’not’)
• ∧ (conjunctive operator or logical ’and’)
• ∨ (disjunctive operator or logical inclusive ’or’)
• → (implication or logical ’if, then’)
• ↔ (biconditional operator or logical ’if and only if’)

If N and M be are propositional atoms, then a description of
these logical connectives can be given by means of the following
truth table:

N M ¬ N N ∧ M N ∨ M N→M N ⇐⇒ M
True True False True True True True
True False False False True False False
False True True False True True False
False False True False False True True

An example of a complex molecular proposition, that combines
all the presented logical operators, would be:

N M ¬ ( N ∧M ∨ (M → N))↔ N
True True False
True False False
False True False
False False True

Additionally, the Tweety-bird example, which was mentioned
previously, can also be expressed in terms of propositional logic
statements. Let B, T, P and F be propositional atoms representing
bird, Tweety, penguin and flight respectively. Then it follows that,
B → F , T → B, are properly formed propositional statements. The
contradictions, that come from the logical inference of P → F , will
be addressed when discussing the limitations of this particular logic.

Let it also be noted that this given set of logical connectives can also
be extended to include ⊕ (exclusive ’or’), ↓ (negative inclusive ’or’),
↑ (negative ’and’), etc. However, the five given operators can be
used to represent any extended operators by means of equivalent
molecular statements. Similarly, it is also possible to reduce the
set of connectives to a single connective. That is, to represent all
the given connectives by means of equivalent molecular proposi-
tions that consist of only one connective - the Sheffer’s stroke [5].
However, for the purposes of this paper, the middle ground will be
taken and given set of connectives will be made use of, as it is rich
enough to easily understand, yet sparse enough to keep the logical
language simple.

The complete set of truth values of molecular propositions also
provides information concerning the specific proposition in ques-
tion. A tautology is a molecular proposition whose truth values is
true in every instance, i.e. for all truth value couplings of the fun-
damental propositions it comprises of. Conversely, contradictions
are those molecular propositions whose truth values are false in
every instance. Contingencies are those molecular statements that
are neither tautologies nor contradictions, i.e. they have at least
one true truth value as well as at least one false truth value. Lastly,
if the biconditional statement N ⇐⇒ M is a tautology, then the
statements N and M are logically equivalent.

The inference (entailment) of propositional statements stems from
the idea of classical reasoning, that is to deduce implicit propo-
sitions from explicitly stated ones. In the Tweety-bird example,
P → F , is an example of inference. The rules for inference won’t
be discussed in this paper, but are stated in [6] [9] [10]. Similarly,
an algorithm to deduce propositional satisfiability is presented as
the Davis-Putnam algorithm [7] [8].

The limitations of propositional logic are now discussed - there are
two main limitations that will be discussed in this paper. The first
is the fact that, due to the nature of it, propositional logic does not
allow for the use of variables in propositional statements (propo-
sitional formulae). For this, an extension of propositional logic,
called predicate logic, has to be made use of. Note that predicate
logic, like propositional logic, is also based on classical reasoning.
In predicate logic, a triple is analogous to a proposition, which is
of the form <subject - predicate - object>, and generally describes
relations of the form ’is-a’. As an example the propositions, B → F

2 2018-07-25 16:33. Page 2 of 1–5.
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and T → B, can be respectively written as the triples, <B - can -
F> and <T - is - B>. In a similar manner a propositional formula
can be constructed and is of the form <x - is - B> ∧ <x - is - P>
→ <x - cannot - F>, where x is the predicate variable that can be
substituted for any propositional atom, e.g. T. With this example it
is clear to see the contradiction that arises and serves as a lead into
the second limitation.

The second limitation stems from the fact that propositional logic is
based on classical reasoning and is simply the fact that propositional
logic does not cater for defeasibile propositions or typicality. Note
that predicate knowledge has the same limitation as well. From the
previous example it is clear to see that if x is a bird then x can fly,
however, if x is a penguin as well then x cannot fly. This contradic-
tion is a breach of classical reasoning’s law of non-contradiction
and therefore means that, either the proposition that birds fly or
the one that penguins don’t, has to be dropped in order to main
soundness and completeness. However, it is intuitively known that
neither of these statements should be dropped as they are both, in
their own right, true. Thus, a new form of reasoning needs to be
introduced to cater for these cases of typicality. This reasoning is
defeasibile reasoning and is this paper’s next topic of discussion.

2.3 Defeasible Reasoning
Defeasibile reasoning is a form of default reasoning and is employed
when faced with seemingly contradictory information, opposed to
what is already known or has already been reasonably deduced. De-
feasibile reasoning can be viewed as an extension of propositional
logic and allows the ability to follow complex patterns and deduc-
tions which, as shown, is not possible to be followed by means of
classical reasoning alone. This is done by introducing the concept
of typicality. The defeasible consequence logical operator, {, is
used to represent typicality and is syntactically analogous to the
classical implication operator, →. With this, we are finally able
to solve the apparent inconsistencies in the Tweety-bird problem.
Instead of saying that ’all birds fly’, consider the phrase: typically
birds have the ability of flight. This entails that Tweety - which was
initially classified to have the ability of fly due to the fact that it is a
bird - can now be reclassified to not have the ability of flight, upon
learning that Tweety is a penguin, and still maintain that Tweety is
a bird. In defeasibile propositional logic syntax, this is expressed as,

birds { flight,

which should be read as ’birds typically fly’.

Note that defeasibile logic is not the only approach to default rea-
soning. Logical Programming without Negation as Failure is one
other approach. However, defeasibile logic outperforms the latter
in both performance and expressivity. The results of the compar-
ison of these two default reasoning approaches are explained, in
more depth and detail than this paper is able to allow, in (Antoniou,
Maher and Billington, 1999) [11].

2.4 Datalog
The declarative logic programming language, datalog, is most often
used as a query language for deductive databases. It is based upon
predicate logic and is thus sound, complete and, more importantly
for the purposes of this paper, is also a well established model for
propositional logic. Datalog, however, is not Turing complete and
is thus mainly used in the areas of logic programming; knowledge
representation and database querying, although it has recently been
found useful in a number of other domains such as data integra-
tion and data extraction. Advantageously, this makes it easier to
make full use of efficient algorithms developed for query resolution,
which is one of the motivations behind choosing datalog for the
purposes of this paper. Furthermore, the effectiveness of datalog
can be seen by considering the many widely used database systems
which incorporate ideas and algorithms developed specifically for
datalog.

Furthermore, datalog is a syntactic subset of it’s precursor, pro-
log.

2.5 RDFox
Since there is an unthinkably large amount of data flowing through
the World Wide Web at any given time, it is a proportionally large
benefit to have a structured form of data describing this data (meta-
data) to improve the discovery of and access to the data it’s describ-
ing. However, this metadata requires a defined syntax and structure,
in order to be machine-readable. The Resource Description Frame-
work (RDF) was developed in collaboration by members of the
World Wide Web Consortium [12], as a solution to this issue. The
article in [15] gives a thorough description on what exactly RDF
is and how it works. For the purposes of this paper all that needs
to be known, concerning RDF, is that a RDF store (triple store) is
simply a database built with the intent of storing and retrieving
triples through semantic queries.

RDFox is an RDF store developed at the University of Oxford [13]
and can be used as a datalog reasoner. RDFox is centralised (i.e. RDF
data is stored on main memory) and allows for large growth within
the RDF knowledge representation store. Triples can be added to a
RDFox database by means of importing them or scheduling them
for incremental addition or deletion. Datalog rules are added in the
same manner. This method of adding triples and rules to a data-
base allows RDFox to compute parallel datalog reasoning by means
of incremental materialisation. This simply means that when the
triple,
<Tweety - is - bird>,
is explicitly stored in the database, along with the rule,
bird =⇒ flight,
the triple,
<Tweety - can - fly>,
is implicitly generated (materialised) as well. This check for infer-
ence is done incrementally, for each new triple and/or rule that
enters the database. RDFox also supports SPARQL query answering
[14].
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3 EXPLANATION AND IMPLEMENTATION OF
THE DEFEASIBILITY ALGORITHM

In this section the algorithm, which will be used to implement defea-
sibility into RDFox, will be discussed and explained. This algorithm
is based on the one originally presented in (Casini and Stracia, 2010)
[22]. This algorithm consists of three successive functions; their
descriptions are as follows:

(1) Exceptionality: determining exceptions within a knowledge
base

(2) Ranking: Computing an ordered ranking of exceptions based
on their strength (i.e. how ’concrete’ they are)

(3) Querying: Dealing with queries that posses a defeasibile
element

These functions are still to be defined and explained in further
detail in this section. Furthermore, since this paper focuses on the
implementation of this algorithm in RDFox, pseudo code of each
function will also be provided. The provided pseudo code and ex-
planations of these three functions are all reiterated summaries of
their original presentation in (reference Introducing Defeasibility
into OWL Ontologies, Casini and Meyer etc.)

First, the term conditional knowledge base needs to be defined. A
conditional knowledge base, K, is of the form K = <T, D>. Here T is
the set of definitions and specialisations (i.e. concrete knowledge
or classical formulae), also known as a TBox, and D is the set of
defeasible inclusions (i.e. typical consequences or defeasibile formu-
lae), also known as a defeasible TBox. With respect to the penguin
example, these are expressed as T = {penguin→ bird, penguin→

¬ fly} and D = {birds{ fly}. Furthermore, the computation of the
materialisations, D, of the inclusions in D - which are of the form A
{ B, where A and B are propositional atoms - is simply explained
in set theory notation by D = {¬A ⊔ B | A { B ∈ D} (Casini and
Stracia, 2010) [22].

The first function, exceptionality, can now be explained. A propo-
sitional atom, A, is exceptional with respect to some knowledge
base K = <T, D> if and only if T = |= ⊓ D →¬ A. Thus, some defea-
sibile inclusion, A{ B ∈ D, is exceptional with respect to K if its
antecedent is exceptional (i.e. A). The exceptionality function takes
in T and some D’ ∈ D of K and produces a subset of D’, E, which
contains all the exceptions in D’. The pseudo code is provided as
follows:

Algorithm 1 Exceptional (T, D’)
1: let E = []
2: for A{ B in D’ do
3: if T |=

.
D ′ → ¬ A then

4: extend E by [A{ B]
return E

The second function, ranking, is now going to be explained.
The ranking function deals with exceptions within exceptions by
assigning each exception a rank based on the level of exception they
are. This is done by computing exceptional and then repeating it’s
execution with it’s previous iteration’s output, until it’s previous

and current output are equivalent sets (i.e. further iterations will
produce no change). The ranking function takes in the elements of
some knowledge base, K = <T, D>, and outputs the knowledge base,
K* = <T*, D*> and R = D0, ..., Dn . Here, T* contains all the elements
of T, as well as the irrefutable implicit rules in D; D* contains all
the implicit rules in D that are not also in T*, which are also ranked
in regards to their exceptionality; R is the partitioned set of D and
each Di is the set of defeasible rules with ranking i. The ranking
algorithm in pseudo code is as follows:

Algorithm 2 Ranking (T, D)
1: let T* = T, D* = D, R = []
2: repeatlet i = 0, E0 = D* let E1 Exceptional (T*, E0)
3: while Ei+1 , E1 do let i = i +1, Ei+1 = Exceptional (T*, Ei)

let D∗∞ = Ei, T* = T* ∪ [A→ B | A{ B], D* = D* / D∗∞
4: until D∗∞ = []
5: for j = 1 to i do Dj−1 = Ej−1/Ej, R = R ∪ [Dj − 1]

return [T*, D*, R]

Finally, the third function, querying, will be discussed here. For
this step the desired knowledge base, K*, must have already been
built. There are only two scenarios that can occur when a query
is made: either the query contains an element of defeasibility or
it does not. If the query does not contain a defeasibile element,
it can be resolved with classical datalog mannerisms, i.e. a check
whether it is stored in or inferred by only the rules in T* (that is,
the irrefutable facts only). More interestingly, if the query contains
an element of defeasibility, the function querying would have to
compute at what level of R (if any) would the antecedent of the
defeasibile query not be considered as an exceptionality - starting
from the lowest levels (i.e. most concrete rules) and moving up to
increasing exceptionalities. For the purposes of this paper only the
defeasibile scenario will be explained in further detail. Thus, the
function querying takes in the elements of K* and the query, A{ B,
and returns whether T* |= A→ B. The pseudo code of this function
is as follows:

Algorithm 3 Querying (T*, A{ B)
1: let i = 0
2: while T* |=

.
Ei ⊓ A→⊥ and i ⩽ n do let i = i +1

3: if i ⩽ n then return T* |=
.

Ei ⊓ A→ B
4: elsereturn T* |= A→ B

Since the nature of this algorithm allows requires recursive, the
optimisations noted in (Paramá et al., 2006) [16] will be further
investigated and implemented if proved to introduce significant
improvements with regard to the purposes of this paper’s work.

A proof that this algorithm does indeed work for all cases it is
intended to is given in (Casini and Stracia, 2010) [22]. Furthermore,
the computational complexity of the algorithm, as explained in
(Casini et al., 2015) [? ], can be proven to be EXPTIME-complete.
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4 SIMILARWORK DONE ON DEFEASIBLE
DESCRIPTIVE LOGICS

In this section, work that has previously been done will be dis-
cussed - more specifically, those that are related to the work done
and proposed in this paper. Furthermore, it will be clearly stated
how the work done in this paper is unique and has purpose.

Many have already endeavoured to implement defeasibile reason-
ing into descriptive logics and ontologies [17] [18] [19] [21]. Some
have even done this in datalog specifically [20] - let it be noted,
however, that this has only been done for a subset of datalog and not
datalog in it’s entirety. The most notable contributions, however,
come from (Casini and Stracia, 2010) [22] and (Casini et al., 2015)
[23]. In these last two works, not only is defeasibility implemented
on a theoretical level, but on a practical level as well, in the form
of a concrete algorithm that is proven to work for descriptive logics.

The work in this paper differs by, not only incorporating the before
mentioned algorithm into datalog in it’s entirety, but also into RD-
Fox. This has never been done before and is expected to be a great
benefit to the default reasoning in artificial intelligence community.

5 CONCLUSION
A number of things have been done in this short literary review. A
high level explanation and discussion was given for the concepts of
classical reasoning, propositional logic and defeasibile reasoning.
The same was also done for the declarative logic programming lan-
guage, datalog, and the RDF store, RDFox. The need for defeasible
reasoning was also made clear by means of external examples, as
well as the internal Tweety-bird running example. An algorithm for
the implementation of defeasibility in datalog and RDFox was also
presented, explained and discussed. Finally, related work was dis-
cussed, with respect to the work done in this paper. It was also made
clear that, although efforts to implement defeasibility in description
logics have already been made, this has never been done for the
datalog reasoner, RDFox. This will be beneficial since incorporating
defeasibility with the high scalability and fast retrieval rates of
RDFox is expected to significantly assist the research in exception
handling within the domain and related domains of artificial in-
telligence. The next step of this project is to actually implement
defeasibility in RDFox.
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