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ABSTRACT

Formal logic systems are central to developing artificial intelligence
systems that reason similarly to human logic. However, these sys-
tems are not well apt to handle exceptions in knowledge. This paper
investigates extending Datalog - a declarative programming lan-
guage, with defeasible reasoning in order to achieve logical reason-
ing that handles exceptions.

We define our extended version of Datalog, Defeasible Datalog,
which includes the syntax and semantics for defeasible rules. We
then investigate an algorithm - rational closure - that will be used as
the reasoner for Defeasible Datalog.

We show that rational closure is a logically appropriate algorithm
for reasoning with classical and defeasible rules. We do this by
showing our algorithm is a rational relation as defined by Lehman
et al. [11] That is our algorithm satisfies the KLM properties. We
conclude that Defeasible Datalog is an accurate description and
reasoning procedure and thus, it is a possible solution to handling
exceptions in formal logic systems.
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1 INTRODUCTION

We are constantly faced with analysing information and using our
analysis to form conclusions and make critical decisions. The infor-
mation that we are given is critical in making our conclusions. If
I want to choose the optimal route to work I must consider factors
such as the weather, the day of the week and the time of day. There
are situations where this information may be unknown or changes,
either of which could impact our previous conclusion. Interestingly,
another person with the same information may form a different con-
clusion than my own. This demonstrates the innate complexity of
forming conclusions.

Many formalised systems have been created that attempt to model
human logic. These systems provide requirements to the given infor-
mation as well as procedures for forming unique conclusions. These
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conclusions are unique in the sense that given the same information
the same conclusion should be formed. Although many of these
systems are impressive in their ability to analyse information and
form conclusions there are situations where these systems fall short
of human logic. One such situation is in handling exceptions that
arise within the given information. We feel it is best to highlight
such a situation with an example.

EXAMPLE 1. Consider the following given information:
• All birds can fly
• A penguin is a bird
• Conclusion: A penguin can fly.

The above example illustrates how using a formalised system,
such as classical logic, would reasonably conclude that penguins can
fly. However, if we were to introduce a new given fact - penguins

cannot fly - this formalised system would conclude - penguins do not

exist - a conclusion that falls short of human logic as we understand
penguins to be an exception to the - all birds can fly - rule. The
importance of handling exceptions has led to the creation of new
formalised systems in the field of nonmonotonic reasoning, and in
particular a system called defeasible reasoning.

We aim to take Datalog, a declarative logic programming lan-
guage, and extend its logic reasoning procedure to allow for defea-
sible reasoning. Datalog has applications in data integration, infor-
mation extraction, networking, program analysis, security and cloud
computing. Thus extending it with defeasible reasoning will allow
formalised exception handling to be used in real-world applications.
We will herein, refer to this extension as Defeasible Datalog. With
this aim in mind, we separate the creation of Defeasible Datalog

into two sections - theory and implementation. This paper is fo-
cused on the theory section. That is, this paper describes how such
a system should be created in terms of syntax, semantics and rea-
soning procedure and provides evidence of the logical soundness
of the description. The implementation section is a sister project
and is handled by Joshua Abraham. The implementation section
provides evidence that the Defeasible Datalog description provided
in this paper can be implemented successfully in an application
environment[17].

In order to describe Defeasible Datalog we first decided upon a
reasoning procedure. Kraus et al. [10] recorded that any reasonable
nonmonotonic reasoner should define a rational relation. Further
Magidor et al. [11] outlined a procedure for nonmonotonic reason-
ing. We define our procedure with the above in mind and from that
deduce the requirements for the syntax and semantics of Defeasible

https://doi.org/10.1145/nnnnnnn.nnnnnnn


CAPETOWN’18, September 2018, Cape Town, South Africa Thomas Pownall

Datalog. We then show that our procedure represents a rational re-
lation and conclude that Defeasible Datalog has logically extended
Datalog with defeasible reasoning.

With the above in mind the structure of the paper is as follows.
Section 2 describes the work that has been done in relation to this
project and how this project differentiates itself from the related
work. Section 3 describes the syntax and semantics of Defeasible

Datalog, the reasoning procedure that will be used in Defeasible

Datalog as well as the evidence to show that our reasoning procedure
defines a rational relation. Section 4 comments on the results and
makes a final conclusion. Lastly, section 5 gives thanks to those that
made this paper possible.

2 BACKGROUND AND RELATED WORK

In this section we discuss the work currently done in this field, the
importance of such work, how that work relates to this paper and the
importance of this paper within the literature.

It has been an important problem within the field of artificial intel-
ligence to handle retraction of information given other information.
A simple illustration of the necessity of being able to retract infor-
mation is when handling exceptions to general rules. Consider that
mammals are viviparous, that is they give birth to living young. We
find that a platypus is a mammal, however we also find that platypus
are oviparous, that is they lay eggs. Clearly, we need a system for
handling such exceptions. A number of systems include, negation
as failure[4], circumscription[14], the modal system[15], default
logic[20], autoepistemic logic[16] and inheritance systems[21] as
well as others[7, 8]. These systems all fall into nonmonotonic rea-
soning. Interestingly, Kraus et al.[10] developed a framework for
comparing such systems and described preferential models. Further-
more, Lehmann and Magidor who worked on the framework went
further.[11] Their paper argued that any reasonable nonmonotonic
inference procedure should define a rational relation, in particular
they outlined a procedure called rational closure. We have found
many papers in the literature that extend description logics with
rational closure.[2, 3, 9]

Our paper is interested in a particular area of nonmonotonic rea-
soning called defeasible reasoning.[19] There have been attempts
to implement defeasible reasoning in Prolog[18], of which Data-
log is a subset, as well at investigations into the efficiency of such
systems.[12] In particular, DeAgustini et al.[5, 6, 13] have investi-
gated into defeasible reasoning within Datalog ±, a family of Datalog
that is focused on online ontologies. It is important to note however
that DeAgustini et al. did not use rational closure as we attempt to
do.

There is no evidence known to us that demonstrates the aim
of this project. That is, there is no evidence that shows Datalog
extended with defeasible reasoning using rational closure as defined
by Magidor et al.[11] We believe this project can fill this gap and
improve the understanding of defeasible reasoning for real-world
application.

3 DEFEASIBLE DATALOG

In this section we first describe Datalog and then using a similar style
we describe Defeasible Datalog. We have done this to demonstrate
to the reader the subtle changes in syntax and semantics that will
allow us to reason defeasibly. We then define the rational closure
procedure[11], which will be used as the reasoner for Defeasible

Datalog. Lastly, we show that our definition of the rational closure
procedure is a rational relation as defined by Kraus et al.[10]

3.1 Defeasible Datalog Syntax and Semantics

Datalog is a declarative logic programming language that is often
used as a query language for deductive databases. Below we define
the typical syntax and semantics for Datalog using a bottom-up
approach.

DEFINITION 1. We start with a (finite) set of predicates, say
P1...Pn . Each one has an arity, which simply indicates how many
variables it has.

EXAMPLE 2. A predicate of arity one has one variable i.e. Fl�(x).
A predicate of arity two has two variables i.e. BrotherO f (x ,�).

DEFINITION 2. An atom is something of the form P(a) where P
is a predicate of aritym, and a is an orderedm � tuple of variables.

EXAMPLE 3. A 1-tuple is simply (x), while a 2-tuple would be
(x,y). Fl�(x) is an atom with a predicate of arity one and an ordered
1-tuple. BrotherO f (x ,�) is an atom with a predicate of arity two
and an ordered 2-tuple.

DEFINITION 3. A Datalog rule is written: A1(x1), ...,An (xn ) !
A0(x0) where n � 0, A0, ...,An are predicate symbols and x0, ...,xn
are tuples of varying length and the commas separating atoms repre-
sent conjunction. It should be noted that the atoms need not have the
same tuple length or even common variables. Further, the variables
in the tuple of the head of our atom need not occur in any of the
tuples in the atoms of the body and vice versa. In this way we it is
understood as a pool of variables.

Logically what Datalog rules represent is that if A1, ...,An is true
then A0 is also true. As a result of the conjunction between atoms
we require each Ai to be true in order to say A1, ...,An is true and
thus that A0 is also true.

EXAMPLE 4. A Datalog rule:

FatherO f (x ,�),Brother (x , z) ! NephewO f (�, z)

This reads, if x is a father of y and x is a brother of z then y is
a nephew of z. One may want to say a similar rule for the uncle
relationship:

FatherO f (x ,�),Brother (x , z) ! UncleO f (z,�)

An alternate approach using our first rule would be:

NephewO f (�, z) ! UncleO f (z,�)
DEFINITION 4. A Datalog program is then simply a finite col-

lection of Datalog rules.
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The standard version of Datalog lacks some of the expressiveness
that we require for this project. We aim to extend Datalog with de-
feasible reasoning using rational closure and in order to do this we
require the logical connectives negation and disjunction as well as a
way of representing our defeasible rules.

Defeasible Datalog is described below, again using a bottom-up
approach.

As before we start with a finite set of predicates P1...Pn , each
with its own arity. An atom is as before, an expression of the form
P(a) where P is an atom of arity m, and a is a an orderedm � tuple

of variables.

DEFINITION 5. A literal is either an atom P(a) or the negation
of an atom written ¬P(a).

DEFINITION 6. A clause is a disjunction of literals i.e. FatherO f (x ,�)_
UncleO f (x ,�).

DEFINITION 7. A rule in Defeasible Datalog is written: A(x) !
B(x), where A(x) is a conjunction of clauses and B(x) is a conjunc-
tion of literals. Note that there are no disjunctions in the head of a
rule - they appear only in the body.

DEFINITION 8. For our purposes, a defeasible rule in Defeasible

Datalog is written: A(x) ; B(x), where A(x) is a conjunction of
clauses and B(x) is a conjunction of literals. Again note that there
are no disjunctions in the head of a defeasible rule - they appear only
in the body. Logically what this means is if A(x) is true then B(x) is
typically true.

EXAMPLE 5. A rule in Defeasible Datalog:

(A(X ) _ B(x ,�)), C(x , z) ! D(x ,�, z),E(�, z)

A defeasible rule in Defeasible Datalog:

(A(x) _ B(x ,�)), C(x , z) ; D(x ,�, z),E(�, z)
DEFINITION 9. As before, a Defeasible Datalog program is

simply a finite collection of Defeasible Datalog rules (both classical
and defeasible).

DEFINITION 10. A knowledge base made from Defeasible Dat-

alog will be of the form: K =< T ,D > where T is the set of all
Defeasible Datalog rules and D is the set of all defeasible Defeasible

Datalog rules.

3.2 Rational Closure for Defeasible Datalog
In this section we describe the procedure that will be used for rea-
soning with Defeasible Datalog. We begin with the outline first
defined by Magidor et al. [11] We then adapt procedures defined in
the literature [1] to suit the syntax and semantics of Datalog.

We begin by assigning base ranks to defeasible rules, this forms
the basis of the procedure for computing rational closure, which can
be reduced to a number of classical entailment checks.

Define the materialisation of a Defeasible Datalog knowledge
base K as

�!K ⌘def {A(x) ! B(x) | A(x) ; B(x) 2 K}. It can

then be shown that a rule A(x) ! B(x) is exceptional with respect
to K if and only if

�!K |= ¬A(x). From this we can define a pro-
cedure BaseRank which partitions the materialisation of K into
n + 1 equivalence classes according to base rank: i = 0, . . .n � 1,1,
Ri ⌘def {A(x) ! B(x) | A(x) ; B(x) 2 K, brK(A(x)) = i}.

Algorithm 1: BaseRank

Input: A knowledge base K
Output: An ordered tuple (R0, . . . ,Rn�1,R1,n)

1 i := 0;

2 E0 :=
�!K;

3 repeat

4 Ei+1 := {A(x) ! B(x) 2 Ei | Ei |= ¬A(x)};
5 Ri := Ei \ Ei+1;
6 i := i + 1;
7 until Ei�1 = Ei ;
8 R1 := Ei�1;
9 if Ei�1 = ; then

10 n := i � 1;

11 else

12 n := i;
13 return (R0, . . . ,Rn�1,R1,n)

We use the BaseRank procedure to help us define the procedure
for rational closure. It takes as input a knowledge base K and a
defeasible rule A(x) ; B(x), and returns true if and only if A(x) ;
B(x) is in the rational closure of K.

Algorithm 2: RationalClosure

Input: A knowledge base K and a defeasible rule A(x) ; B(x)
Output: true, if K |⇡ A(x) ; B(x), and false, otherwise

1 (R0, . . . ,Rn�1,R1,n) := BaseRank(K);
2 i := 0;
3 R := –j<n

i=0 Rj ;
4 while R1 [ R |= ¬A(x) and R , ; do

5 R := R \ Ri ;
6 i := i + 1;

7 return R1 [ R |= A(x) ! B(x);

Informally, the algorithm keeps on removing (materialisations of)
defeasible rules from (the materialisation of) K, starting with the
lowest base rank, and proceeding base rank by base rank, until it finds
the first R which is classically consistent with A(x) (and therefore
A(x) is not exceptional with respect to the defeasible version of R).
A(x) ; B(x) is then taken to be in the rational closure of K if and
only if R classically entails the materialisation of A(x) ; B(x).

3.3 Evidence of Rational Relation

It has been recorded in the literature that any reasonable non-monotonic
reasoning procedure should define a rational relation.[11] That is a
relation with the following properties:

(Ref) K |⇡ A(x) ; A(x)
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(LLE)
A(x) ⌘ B(x), K |⇡ A(x) ; C(x)

K |⇡ B(x) ; C(x)
(RW)

K |⇡ A(x) ; B(x), B(x) |= C(x)
K |⇡ A(x) ; C(x)

(And)
K |⇡ A(x) ; B(x), K |⇡ A(x) ; C(x)

K |⇡ A(x) ; B(x) ^C(x)
(Or)

K |⇡ A(x) ; C(x), K |⇡ B(x) ; C(x)
K |⇡ A(x) _ B(x) ; C(x)

(CM)
K |⇡ A(x) ; B(x), K |⇡ A(x) ; C(x)

K |⇡ A(x) ^ B(x) ; C(x)
(RM)

K |⇡ A(x) ; C(x), K -⇡ A(x) ; ¬B(x)
K |⇡ A(x) ^ B(x) ; C(x)

We now show that the rational closure procedure defined in the
previous section holds for all of these properties.

3.3.1 Reflexivity.

(Ref) K |⇡ A(x) ; A(x)

We want to show that the reflexive property is satisfied by the
rational closure algorithm. That is, we want to show A(x) ; A(x) is
in the rational closure of K by using the rational closure algorithm.
To do this we consider two cases. It should be clear that there are no
other possible cases.

• (i) We find the smallest rank s such that
n–
i=s

Ri [ R1 2 ¬A(x).

That is for any rank s
0 smaller than s we must have

n–
i=s 0

Ri [
R1 |= ¬A(x).

• (ii) Or we find that there is no such s. That is
n–
i=s

Ri [ R1 |=
¬A(x) for all possible values of s.

Consider (i), by the rational closure algorithm the next check is
n–
i=s

Ri [ R1 |= A(x) ! A(x). It follows from classical logic that
n–
i=s

Ri [ R1 |= A(x) ! A(x) regardless of what s is and regardless

of what the content of each Ri or R1 is. Thus we have shown
K |⇡ A(x) ; A(x).

Consider (ii), by the rational closure algorithm the next check
is R1 |= A(x) ! A(x). It follows from classical logic that R1 |=
A(x) ! A(x) regardless of what the content of R1 is. Thus we have
shown K |⇡ A(x) ; A(x).

Since we have shown K |⇡ A(x) ; A(x) for both cases outlined
and no other cases exist we are done.

3.3.2 Left Logical Equivalence.

(LLE)
A(x) ⌘ B(x), K |⇡ A(x) ; C(x)

K |⇡ B(x) ; C(x)
We want to show that the left logical equivalence property is

satisfied by the rational closure algorithm. That is given A(x) ⌘ B(x)
and K |⇡ A(x) ; C(x) we want to show B(x) ; C(x) is in the
rational closure of K by using the rational closure algorithm.

We are given that A(x) ; C(x) is in the rational closure of K.
This means that the rational closure algorithm found either one of
two cases. It should be clear that there are no other possible cases.

• (i) It found the smallest rank s such that
n–
i=s

Ri [R1 2 ¬A(x).

That is for any rank s
0 smaller than s we must have

n–
i=s 0

Ri [
R1 |= ¬A(x).

• (ii) Or it found that there is no such s. That is
n–
i=s

Ri [ R1 |=
¬A(x) for all possible values of s.

In each case, since we are given that A(x) ; C(x) is in the
rational closure of K we can conclude the following from the cases
above.

• (ia)
n–
i=s

Ri [ R1 |= A(x) ! C(x)
• (iia) R1 |= ¬A(x)

Now we want to show B(x) ; C(x) is in the rational closure of
K . To do this, the rational closure algorithm first needs to find either
one of two cases. It should be clear that there are no other possible
cases.

• (1) The smallest rank a such that
n–
i=a

Ri [ R1 2 ¬B(x). That

is for any rank a
0 smaller than a we must have

n–
i=a0

Ri [R1 |=
¬B(x).

• (2) Or that there is no such a. That is
n–
i=a

Ri [ R1 |= ¬B(x)
for all possible values of a.

Consider (i), that is there is a smallest rank s such that
n–
i=s

Ri [
R1 2 ¬A(x). Then that rank s will also be the smallest rank such that
n–
i=s

Ri [R1 2 ¬B(x). This follows since we knowA(x) ⌘ B(x). Thus

we have satisfied (1). We now want to show
n–
i=s

Ri [ R1 |= B(x) !

C(x). In case (ia) we also know that
n–
i=s

Ri [ R1 |= A(x) ! C(x)
since A(x) ; C(x) is in the rational closure of K. Then we must

also know that
n–
i=s

Ri [ R1 |= B(x) ! C(x). This follows since we

know A(x) ⌘ B(x). Thus we have shown K |⇡ B(x) ; C(x).
Consider (ii), that there is no such s such that

n–
i=s

Ri[R1 2 ¬A(x).

Then it will also be the case that
n–
i=s

Ri [R1 2 ¬B(x) for all possible

values of s. This follows since we know A(x) ⌘ B(x). Thus we have
satisfied (2). We now want to show R1 |= B(x) ! C(x). In case
(iia) we also know that R1 |= ¬A(x) since A(x) ; C(x) is in the
rational closure of K. Then we must also know that R1 |= ¬B(x).
This follows since we know A(x) ⌘ B(x). Given R1 |= ¬B(x) it
follows from classical logic that R1 |= B(x) ! C(x). Thus we have
shown K |⇡ B(x) ; C(x).

Since we have shown K |⇡ B(x) ; C(x) for both cases outlined
and no other cases exist we are done.

3.3.3 Right Weakening.

(RW)
K |⇡ A(x) ; B(x), B(x) |= C(x)

K |⇡ A(x) ; C(x)
We want to show that the right weakening property is satisfied by

the rational closure algorithm. That is given K |⇡ A(x) ; B(x) and



Defeasible Datalog: Introducing Defeasible Reasoning into the Declarative Programming Language DatalogCAPETOWN’18, September 2018, Cape Town, South Africa

B(x) |= C(x) we want to show A(x) ; C(x) is in the rational closure
of K by using the rational closure algorithm.

We are given that A(x) ; B(x) is in the rational closure of K.
This means that the rational closure algorithm found either one of
two cases. It should be clear that there are no other possible cases.

• (i) It found the smallest rank s such that
n–
i=s

Ri [R1 2 ¬A(x).

That is for any rank s
0 smaller than s we must have

n–
i=s 0

Ri [
R1 |= ¬A(x).

• (ii) Or it found that there is no such s. That is
n–
i=s

Ri [ R1 |=
¬A(x) for all possible values of s.

In each case, since we are given thatA(x) ; B(x) is in the rational
closure of K we can conclude the following from the cases above.

• (ia)
n–
i=s

Ri [ R1 |= A(x) ! B(x)
• (iia) R1 |= ¬A(x)

Now we want to show A(x) ; C(x) is in the rational closure of
K . To do this, the rational closure algorithm first needs to find either
one of two cases. It should be clear that there are no other possible
cases.

• (1) The smallest rank a such that
n–
i=a

Ri [ R1 2 ¬A(x). That

is for any rank a
0 smaller than a we must have

n–
i=a0

Ri [R1 |=
¬A(x).

• (2) Or that there is no such a. That is
n–
i=a

Ri [ R1 |= ¬A(x)
for all possible values of a.

Consider (i), that is there is a smallest rank s such that
n–
i=s

Ri [
R1 2 ¬A(x). Then we have satisfied (1). We now want to show
n–
i=s

Ri [ R1 |= A(x) ! C(x). In case (ia) we also know that
n–
i=s

Ri [
R1 |= A(x) ! B(x) since A(x) ; B(x) is in the rational closure

of K. Then we must also know that
n–
i=s

Ri [ R1 |= A(x) ! C(x).
This follows since we know B(x) |= C(x). Thus we have shown
K |⇡ A(x) ; C(x).

Consider (ii), that there is no such s such that
n–
i=s

Ri[R1 2 ¬A(x).
Then we have satisfied (2). We now want to show R1 |= A(x) !
C(x). In case (iia) we also know that R1 |= ¬A(x) sinceA(x) ; B(x)
is in the rational closure of K. Given R1 |= ¬A(x) it follows from
classical logic that R1 |= A(x) ! C(x). Thus we have shown
K |⇡ A(x) ; C(x).

Since we have shown K |⇡ A(x) ; C(x) for both cases outlined
and no other cases exist we are done.

3.3.4 And.

(And)
K |⇡ A(x) ; B(x), K |⇡ A(x) ; C(x)

K |⇡ A(x) ; B(x) ^C(x)
We want to show that the and property is satisfied by the rational

closure algorithm. That is given K |⇡ A(x) ; B(x) and K |⇡
A(x) ; C(x) we want to show A(x) ; (B(x) ^ C(x)) is in the
rational closure of K by using the rational closure algorithm.

We are given that A(x) ; B(x) and A(x) ; C(x) are in the
rational closure of K . This means that the rational closure algorithm
found either one of two cases. It should be clear that there are no
other possible cases.

• (i) It found the smallest rank s such that
n–
i=s

Ri [R1 2 ¬A(x).

That is for any rank s
0 smaller than s we must have

n–
i=s 0

Ri [
R1 |= ¬A(x).

• (ii) Or it found that there is no such s. That is
n–
i=s

Ri [ R1 |=
¬A(x) for all possible values of s.

In each case, since we are given thatA(x) ; B(x) is in the rational
closure of K we can conclude the following from the cases above.

• (ia)
n–
i=s

Ri [ R1 |= A(x) ! B(x)
• (iia) R1 |= ¬A(x)

In each case, since we are also given that A(x) ; C(x) is in the
rational closure of K we can conclude the following from the cases
above.

• (ib)
n–
i=s

Ri [ R1 |= A(x) ! C(x)
• (iib) R1 |= ¬A(x)

Now we want to show A(x) ; (B(x) ^ C(x)) is in the rational
closure of K . To do this, the rational closure algorithm first needs to
find either one of two cases. It should be clear that there are no other
possible cases.

• (1) The smallest rank a such that
n–
i=a

Ri [ R1 2 ¬A(x). That

is for any rank a
0 smaller than a we must have

n–
i=a0

Ri [R1 |=
¬A(x).

• (2) Or that there is no such a. That is
n–
i=a

Ri [ R1 |= ¬A(x)
for all possible values of a.

Consider (i), that is there is a smallest rank s such that
n–
i=s

Ri [
R1 2 ¬A(x). Then we have satisfied (1). We now want to show
n–
i=s

Ri [ R1 |= A(x) ! (B(x) ^ C(x)). In case (ia) we also know

that
n–
i=s

Ri [ R1 |= A(x) ! B(x) and in case (ib) we know that
n–
i=s

Ri [ R1 |= A(x) ! C(x) since A(x) ; B(x) and A(x) ; C(x)
are in the rational closure of K. Then it follows by classical logic

that
n–
i=s

Ri [ R1 |= A(x) ! (B(x) ^ C(x)). Thus we have shown

K |⇡ A(x) ; (B(x) ^C(x)).
Consider (ii), that there is no such s such that

n–
i=s

Ri [ R1 2

¬A(x). Then we have satisfied (2). We now want to show R1 |=
A(x) ! (B(x) ^ C(x)). In case (iia) and (iib) we also know that
R1 |= ¬A(x) since A(x) ; B(x) and A(x) ; C(x) are in the
rational closure of K. Given R1 |= ¬A(x) it follows from classical
logic that R1 |= A(x) ! (B(x) ^C(x)). Thus we have shown K |⇡
A(x) ; (B(x) ^C(x)).
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Since we have shown K |⇡ A(x) ; (B(x) ^C(x)) for both cases
outlined and no other cases exist we are done.

3.3.5 Or.

(Or)
K |⇡ A(x) ; C(x), K |⇡ B(x) ; C(x)

K |⇡ A(x) _ B(x) ; C(x)
We want to show that the or property is satisfied by the rational

closure algorithm. That is given K |⇡ A(x) ; C(x) and K |⇡
B(x) ; C(x) we want to show (A(x) _ B(x)) ; C(x) is in the
rational closure of K by using the rational closure algorithm.

We are given that A(x) ; C(x) is in the rational closure of K.
This means that the rational closure algorithm found either one of
two cases. It should be clear that there are no other possible cases.

• (i) It found the smallest rank s such that
n–
i=s

Ri [R1 2 ¬A(x).

That is for any rank s
0 smaller than s we must have

n–
i=s 0

Ri [
R1 |= ¬A(x).

• (ii) Or it found that there is no such s. That is
n–
i=s

Ri [ R1 |=
¬A(x) for all possible values of s.

In each case, since we are given that A(x) ; C(x) is in the
rational closure of K we can conclude the following from the cases
above.

• (ia)
n–
i=s

Ri [ R1 |= A(x) ! C(x)
• (iia) R1 |= ¬A(x)

We are also given that B(x) ; C(x) is in the rational closure of
K. This means that the rational closure algorithm found either one
of two cases. It should be clear that there are no other possible cases.

• (iii) It found the smallest rank t such that
n–
i=t

Ri [ R1 2

¬B(x). That is for any rank t
0 smaller than t we must have

n–
i=t 0

Ri [ R1 |= ¬B(x).

• (iv) Or it found that there is no such t. That is
n–
i=t

Ri [ R1 |=
¬B(x) for all possible values of t.

In each case, since we are given that B(x) ; C(x) is in the rational
closure of K we can conclude the following from the cases above.

• (iiia)
n–
i=t

Ri [ R1 |= B(x) ! C(x)
• (iva) R1 |= ¬B(x)

Note that if found, the ranks s and t need not be the same.
Now we want to show (A(x) _ B(x)) ; C(x) is in the rational

closure of K . To do this, the rational closure algorithm first needs to
find either one of two cases. It should be clear that there are no other
possible cases.

• (1) The smallest rank a such that
n–
i=a

Ri [ R1 2 ¬(A(x) _
B(x)). That is for any rank a

0 smaller than a we must have
n–

i=a0
Ri [ R1 |= ¬(A(x) _ B(x)).

• (2) Or that there is no such a. That is
n–
i=a

Ri [R1 |= ¬(A(x)_
B(x)) for all possible values of a.

Consider the combinations (i) and (iii), (i) and (iv), (ii) and (iii).
We can reduce these to a single check. We can do this by noticing

that if we have
n–
i=r

Ri [ R1 2 ¬A(x) or
n–
i=r

Ri [ R1 2 ¬B(x) for

some rank r then it follows from classical logic that
n–
i=r

Ri [ R1 2

¬(A(x)_B(x)). We only require one of the above to be true to get this

result. Thus if we want the smallest rank r such that
n–
i=r

Ri [ R1 2

¬(A(x) _ B(x)) then we can let r = min(s,t) where s is the smallest

rank such that
n–
i=s

Ri [ R1 2 ¬A(x) and t is the smallest rank such

that
n–
i=t

Ri [ R1 2 ¬B(x). If one of s or t does not exist then r is

simply the s or t that does exist. Then we have satisfied (1). We now

want to show
n–
i=r

Ri [ R1 |= (A(x) _ B(x)) ! C(x). In the cases

chosen we also know that either one or both of
n–
i=r

Ri[R1 |= A(x) !

C(x) or
n–
i=r

Ri [ R1 |= B(x) ! C(x) holds since A(x) ; C(x)
and B(x) ; C(x) are in the rational closure of K. It follows from

classical logic that we have
n–
i=r

Ri [ R1 |= (A(x) _ B(x)) ! C(x)
from the above. Thus we have shown K |⇡ (A(x) _ B(x)) ; C(x).

Consider the last combination of (ii) and (iv). Since there is no

smallest rank s such that
n–
i=s

Ri [ R1 2 ¬A(x) and no smallest

rank t such that
n–
i=t

Ri [ R1 2 ¬B(x) we must have that there is

no rank r such that
n–
i=r

Ri [ R1 2 ¬(A(x) _ B(x)). Then we have

satisfied (2). We now want to show R1 |= (A(x) _ B(x)) ! C(x).
In this combination we have cases (iia) and (iva) and so we also
know that R1 |= ¬A(x) and R1 |= ¬B(x) since A(x) ; C(x)
and B(x) ; C(x) are in the rational closure of K. Given this, it
follows from classical logic that R1 |= ¬(A(x) _ B(x)) and further
that R1 |= (A(x) _ B(x)) ! C(x). Thus we have shown K |⇡
(A(x) _ B(x)) ; C(x).

Since we have shown K |⇡ (A(x) _ B(x)) ; C(x) for both cases
outlined and no other cases exist we are done.

3.3.6 Cautious Monotonicity.

(CM)
K |⇡ A(x) ; B(x), K |⇡ A(x) ; C(x)

K |⇡ A(x) ^ B(x) ; C(x)
We want to show that the cautious monotonicity property is sat-

isfied by the rational closure algorithm. That is given K |⇡ A(x) ;
B(x) and K |⇡ A(x) ; C(x) we want to show (A(x)^B(x)) ; C(x)
is in the rational closure of K by using the rational closure algorithm.

We are given that A(x) ; B(x) and A(x) ; C(x) are in the
rational closure of K . This means that the rational closure algorithm
found either one of two cases. It should be clear that there are no
other possible cases.

• (i) It found the smallest rank s such that
n–
i=s

Ri [R1 2 ¬A(x).

That is for any rank s
0 smaller than s we must have

n–
i=s 0

Ri [
R1 |= ¬A(x).
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• (ii) Or it found that there is no such s. That is
n–
i=s

Ri [ R1 |=
¬A(x) for all possible values of s.

In each case, since we are given thatA(x) ; B(x) is in the rational
closure of K we can conclude the following from the cases above.

• (ia)
n–
i=s

Ri [ R1 |= A(x) ! B(x). This is logically equivalent

to
n–
i=s

Ri [R1 |= ¬A(x)_B(x). Since it was found for case (i)

that
n–
i=s

Ri [ R1 2 ¬A(x) we must have
n–
i=s

Ri [ R1 |= B(x)

for
n–
i=s

Ri [ R1 |= A(x) ! B(x) to hold.

• (iia) R1 |= ¬A(x)
In each case, since we are also given that A(x) ; C(x) is in the

rational closure of K we can conclude the following from the cases
above.

• (ib)
n–
i=s

Ri [ R1 |= A(x) ! C(x). This is logically equivalent

to
n–
i=s

Ri [R1 |= ¬A(x)_C(x). Since it was found for case (i)

that
n–
i=s

Ri [ R1 2 ¬A(x) we must have
n–
i=s

Ri [ R1 |= C(x)

for
n–
i=s

Ri [ R1 |= A(x) ! C(x) to hold.

• (iib) R1 |= ¬A(x)
Now we want to show (A(x) ^ B(x)) ; C(x) is in the rational

closure of K . To do this, the rational closure algorithm first needs to
find either one of two cases. It should be clear that there are no other
possible cases.

• (1) The smallest rank a such that
n–
i=a

Ri [ R1 2 ¬(A(x) ^
B(x)). That is for any rank a

0 smaller than a we must have
n–

i=a0
Ri [ R1 |= ¬(A(x) ^ B(x)).

• (2) Or that there is no such a. That is
n–
i=a

Ri [R1 |= ¬(A(x)^
B(x)) for all possible values of a.

Consider (i), that is there is a smallest rank s such that
n–
i=s

Ri [

R1 2 ¬A(x). Case (i) also gives us (ia). That is since
n–
i=s

Ri [ R1 2

¬A(x) and
n–
i=s

Ri [R1 |= A(x) ! B(x) we have
n–
i=s

Ri [R1 |= B(x).

Then classical logic tells us that
n–
i=s

Ri[R1 2 ¬B(x). That is we have

found a smallest rank s such that
n–
i=s

Ri [R1 2 ¬(A(x)^B(x)). Then

we have satisfied (1). We now want to show
n–
i=s

Ri [ R1 |= (A(x) ^

B(x)) ! C(x). This is logically equivalent to
n–
i=s

Ri[R1 |= (¬A(x)_

¬B(x))_C(x). From case (ib) we have
n–
i=s

Ri[R1 |= C(x). It follows

from classical logic that
n–
i=s

Ri [R1 |= (¬A(x)_¬B(x))_C(x) must

then hold and further that
n–
i=s

Ri [ R1 |= (A(x) ^ B(x)) ! C(x)
holds. Thus we have shown K |⇡ (A(x) ^ B(x)) ; C(x).

Consider (ii), that there is no such s such that
n–
i=s

Ri [ R1 2

¬A(x). Then it follows by classical logic that there is no s such

that
n–
i=s

Ri [ R1 2 ¬A(x) _ ¬B(x). Then we have satisfied (2). We

now want to show R1 |= (A(x) ^ B(x)) ! C(x). This is logically
equivalent to R1 |= ¬A(x) _ ¬B(x) _C(x). In cases (iia) and (iib)
we also know that R1 |= ¬A(x) since A(x) ; B(x) and A(x) ;
C(x) are in the rational closure of K. Given this, it follows from
classical logic that R1 |= ¬A(x) _ ¬B(x) _C(x) holds and further
that R1 |= (A(x) ^ B(x)) ! C(x) holds. Thus we have shown
K |⇡ (A(x) ^ B(x)) ; C(x)).

Since we have shown K |⇡ A(x) ; (B(x) ^C(x)) for both cases
outlined and no other cases exist we are done.

3.3.7 Rational Monotonicity.

(RM)
K |⇡ A(x) ; C(x), K -⇡ A(x) ; ¬B(x)

K |⇡ A(x) ^ B(x) ; C(x)
We want to show that the rational monotonicity property is sat-

isfied by the rational closure algorithm. That is given K |⇡ A(x) ;
C(x) and K -⇡ A(x) ; ¬B(x) we want to show (A(x)^B(x)) ; C(x)
is in the rational closure of K by using the rational closure algorithm.

We are given that A(x) ; C(x) is in the rational closure of K.
This means that the rational closure algorithm found either one of
two cases. It should be clear that there are no other possible cases.

• (i) It found the smallest rank s such that
n–
i=s

Ri [R1 2 ¬A(x).

That is for any rank s
0 smaller than s we must have

n–
i=s 0

Ri [
R1 |= ¬A(x).

• (ii) Or it found that there is no such s. That is
n–
i=s

Ri [ R1 |=
¬A(x) for all possible values of s.

In each case, since we are given that A(x) ; C(x) is in the
rational closure of K we can conclude the following from the cases
above.

• (ia)
n–
i=s

Ri [ R1 |= A(x) ! C(x). This is logically equivalent

to
n–
i=s

Ri [R1 |= ¬A(x)_C(x). Since it was found for case (i)

that
n–
i=s

Ri [ R1 2 ¬A(x) we must have
n–
i=s

Ri [ R1 |= C(x)

for
n–
i=s

Ri [ R1 |= A(x) ! C(x) to hold.

• (iia) R1 |= ¬A(x)

In each case, since we are also given that A(x) ; ¬B(x) is not in
the rational closure of K we can conclude the following from the
cases above.

• (ib)
n–
i=s

Ri [R1 2 A(x) ! ¬B(x). This is logically equivalent

to
n–
i=s

Ri [ R1 2 ¬A(x) _ ¬B(x). Since it was found for case
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(i) that
n–
i=s

Ri [R1 2 ¬A(x) we must also have
n–
i=s

Ri [R1 2

¬B(x) for
n–
i=s

Ri [ R1 2 A(x) ! ¬B(x) to hold.

• (iib) R1 |= ¬A(x). Then we must have R1 |= A(x) ! ¬B(x).
It follows from classical logic that R1 2 ¬B(x).

Now we want to show (A(x) ^ B(x)) ; C(x) is in the rational
closure of K . To do this, the rational closure algorithm first needs to
find either one of two cases. It should be clear that there are no other
possible cases.

• (1) The smallest rank a such that
n–
i=a

Ri [ R1 2 ¬(A(x) ^
B(x)). That is for any rank a

0 smaller than a we must have
n–

i=a0
Ri [ R1 |= ¬(A(x) ^ B(x)).

• (2) Or that there is no such a. That is
n–
i=a

Ri [R1 |= ¬(A(x)^
B(x)) for all possible values of a.

Consider (i), that is there is a smallest rank s such that
n–
i=s

Ri [

R1 2 ¬A(x). Then we also know from (ib) that
n–
i=s

Ri [R1 2 ¬B(x).

Then we have found there exists a smallest s such that
n–
i=s

Ri [
R1 2 ¬A(x) _ ¬B(x). Then we have satisfied (1). We now want

to show
n–
i=s

Ri [ R1 |= (A(x) ^ B(x)) ! C(x). This is logically

equivalent to
n–
i=s

Ri [ R1 |= ¬A(x) _ ¬B(x) _C(x). From case (ia)

we have
n–
i=s

Ri [ R1 |= C(x). It then follows from classical logic

that
n–
i=s

Ri [ R1 |= (A(x) ^ B(x)) ! C(x). Thus we have shown

K |⇡ (A(x) ^ B(x)) ; C(x).
Consider (ii), that there is no such s such that

n–
i=s

Ri[R1 2 ¬A(x).

Furthermore we can say
n–
i=s

Ri [R1 2 ¬A(x)_¬B(x). Then we have

satisfied (2). We now want to show R1 |= (A(x) ^ B(x)) ! C(x).
In case (iia) we also know that R1 |= ¬A(x) since A(x) ; B(x)
is in the rational closure of K. Given R1 |= ¬A(x) it follows from
classical logic that R1 |= (A(x) ^ B(x)) ! C(x). Thus we have
shown K |⇡ (A(x) ^ B(x)) ; C(x).

Since we have shown K |⇡ (A(x) ^ B(x)) ; C(x) for both cases
outlined and no other cases exist we are done.

4 RESULTS AND DISCUSSION

The aim of this project was to extend Datalog with a form of non-
monotonic logic called defeasible reasoning. We have shown it is
theoretically possible to do this using a procedure known as rational
closure that we have shown is a rational relation. It has been defined
by Kraus et al. [10] that this is the requirement for a reasonable
nonmonotonic system. It is this requirement that establishes the
correctness of the theoretical analysis as utmost important. Thus,
we have worked closely with Prof. Thomas Meyer in refining the
theoretical analysis to be as correct as possible.

We found that some of the properties required to be a rational
relation followed easily from the rational closure procedure. How-
ever, other properties were found to be quite difficult to show. With
evaluation from Prof. Thomas Meyer we believe the proofs outlined
provide accurate mechanisms for correctness.

Furthermore, in regards to whether the syntax, semantics and pro-
cedure defined are applicable in implementation we found promising
results. The sister project to this was focused on the implementa-
tion of Defeasible Datalog as described in this project. The author
of the sister project, Joshua Abraham, found that it is possible to
implement Defeasible Datalog using our description and that the
rational closure procedure works as expected. Further, Abraham was
able to implement Defeasible Datalog within the RDFox framework
[17] which demonstrates the application of Defeasible Datalog in
the real-world.

5 CONCLUSION

The ability to model real-world information in elaborate and simple
knowledge bases is extremely powerful. It allows us to model a vari-
ety of situations and to draw logical conclusions from them using
a formalised process of reasoning. One of the most useful features
of logical reasoning is drawing conclusions, otherwise known as
entailment, and the ability to draw more implicit information from
our knowledge base. Furthermore, it is extremely important that
our reasoning does not fail when given new facts. This is often the
case in real-world modelling where new facts can contradict previ-
ously entailed information. The ability to handle such contradictions
makes defeasible reasoning extremely valuable for modelling real-
world information. It is important to note, however, that when using
defeasible reasoning we must still comply with the properties that
we desire from propositional logic, otherwise it is not useful. Fur-
ther, a platform for creating and performing defeasible reasoning is
important in making these concepts applicable to the real-world.

In this paper we have described Defeasible Datalog - a language
for handling defeasible reasoning in Datalog. We have outlined a
procedure for reasoning such that we have modelled a rational rela-
tion - a key requirement when creating a reasonable nonmonotonic
system. [10] We have shown through theoretical analysis that the
outlined procedure holds the properties needed and thus confirm-
ing the ability to create Defeasible Datalog. Furthermore, the sister
project dedicated to the implementation of Defeasible Datalog was
successfully implemented according to the descriptions outlined in
this paper. Lastly, we hope that this project encourages further work
in creating nonmonotonic systems for handling exceptions and other
inconsistencies.
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