
Adding Defeasibile Reasoning to Datalog and RDFox
Project Proposal

Joshua J. Abraham∗

University of Cape Town

Department of Computer Science

joshuasl8a@gmail.com

Thomas Pownall†

University of Cape Town

Department of Computer Science

pwntho001@myuct.ac.za

Supervisor: Thomas Meyer‡

University of Cape Town

Department of Computer Science

tmeyer@cs.uct.ac.za

2nd Reader: Hussein Suleman§

University of Cape Town

Department of Computer Science

hussein@cs.uct.ac.za

ABSTRACT

The ability for logical reasoners to handle exceptions is a well-
known problem within the domain of Artificial Intelligence. One
solution to this problem is to grant reasoners the capability for
computing defeasible reasoning, which is a form of non-monotonic
reasoning that is used to deal with exceptions. This paper proposes
a project that will see the integration of defeasible reasoning into
classical datalog - a declarative logic programming language, used
for database querying and logical reasoning - as well as RDFox -
a Resource Description Framework (RDF) triple store, developed
at the University of Oxford [1], which supports datalog reasoning.
In this paper, we give a brief introduction to the main topics that
constitute the basis of this project, as well as a background on
relevant theory and tools that will need to be understood in order
to follow the discussion of this project. We also provide an exact
project description (which also contains the motivation for this
project), followed by a concise problem statement, to sum up this
project. We then discuss the procedures and methods used in, the
legal and ethical issues posed by, the work related to, the outcomes
expected from and the procedural plan of this project. Finally, we
conclude with a few final words to sum up the ideas posed in this
project proposal.

CCS CONCEPTS

• Artificial Intelligence → Knowledge representation; Reasoning;

KEYWORDS

Defeasible Reasoning, Datalog, RDFox

∗Joshua is the student who will be heading up the implementational side of this project.
†Thomas P. is the student who will be heading up the theoretical side of this project.
‡Thomas M. will play the role of research supervisor and student mentor to the
students involved in this research.
§Hussein Suleman will play the role of second reader to ensure quality of research.

1 INTRODUCTION

Logic and reasoning have been conceptualised since before the days
of Plato, through to Aristotle, medieval thinkers and is still a topic
of discussion among present-day philosophers, mathematicians,
scientists, etc. There are many varying forms of logic and reasoning.
For human beings, it is relatively common and quite natural to
adjust our views and beliefs based on new information. Even when
the new information we face is seemingly contradictory to what we
already know, the logical mind has a natural ability and tendency
to rationalise this information and either add it to our base of
knowledge or reject it entirely. However, when trying to simulate
the efficiency and effectiveness of this same reasoning process
into a program or machine, this task becomes considerably more
challenging. Imagine, if you will, being told that all birds fly and that
some animal, called Tweety, is a bird. From this knowledge base, it
is reasonable to deduce that Tweety can fly. However, if it is then
learned that Tweety is, in fact, a penguin or even an ostrich, this
would raise clear contradictions (as penguins and ostriches are both
flightless birds). Similar, seemingly contradictory, occurrences can
be found in many places, for e.g. Chisholm’s paradox of contrary-
to-duty imperatives [2][3], in many instances within the domains
of law [4] and various other scenarios. The type of reasoning called
upon to handle situations of this ilk is known as defeasible, or non-
monotonic, reasoning - this is the type of reasoning which we wish
to explore in this project.

Defeasibile reasoning is a form of default reasoning employed when
faced with seemingly contradictory information, opposed to what
is already known or has already been reasonably deduced. This type
of reasoning is often used in law, where contracts can be annulled
in light of new evidence; in medicine, where medical diagnoses
can be reevaluated due to the revelation of new symptoms; in sci-
ence, where scientific theories can be falsified by ascertaining new
experimental results; etc. Thus, it is clear to see the implicational
benefits that would emerge from granting programs and machines
the power to employ this type of reasoning - this constitutes one
of the motivations behind this paper’s work.

2018-07-25 16:31 page 1 (pp. 1-9)



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

2 BACKGROUND

In this section, we explain all of the technical terms and tools that
need to be understood before discussing this project and its problem
statements. Each of the two elements of the project have their own
necessary information. For the theory element, the reader needs to
understand the KLM properties, as these are vital for this element.
We want to ensure, once propositional logic has been extended for
Defeasible Reasoning, that the KLM properties are satisfied. For
the implementation element of the project, the reader needs to
understand both the datalog declarative programming language
and RDFox, as they are both vital in constructing the defeasible
datalog platform. We discuss these in the next 3 subsections.

2.1 KLM Properties

In terms of notation, we use common logical symbols. Additionally,
to represent a defeasible statement, we make use of the↝ symbol -
where A↝ B implies that if A then typically B. Below we list the
KLM properties, which will be used throughout our project:

● Reflexivity - C↝ C

● Cumulative Transitivity - C↝ D and C ∧ D↝ F Ô⇒ C↝ F

● Cautious Monotony - C↝ D and C↝ F Ô⇒ C ∧ D↝ F

● Left Logical Equivalence - C↝ F↝ C ⇐⇒ D Ô⇒ D↝ F

● Right weakening - C↝ D and D↝ F Ô⇒ C↝ F

● Left Disjunction - C↝ F and D↝ F Ô⇒ C ∨ D↝ F

● Rational Monotony - C↝ F and C↝̸ ¬ D Ô⇒ C ∧ D↝ F

2.2 Datalog

The declarative logic programming language, datalog, is most often
used as a query language for deductive databases. It is based upon
predicate logic - a proven formalisation of reasoning, which is a
level above propositional logic, yet below defeasible logic. Being
based on predicate logic reasoning makes classical datalog sound,
complete and, more importantly for the purposes of this paper, a
well-established model for propositional logic reasoning. Datalog,
however, is not Turing complete and is thus mainly used in the ar-
eas of logic programming; knowledge representation and database
querying, although it has recently been found useful in a num-
ber of other domains such as data integration and data extraction.
Furthermore, datalog is a syntactic subset of its precursor, prolog.

2.3 RDFox

Since there is an unthinkably large amount of data flowing through
the World Wide Web at any given time, it is a proportionally large
benefit to have a structured form of data describing this data (meta-
data) to improve the discovery of and access to the data it’s describ-
ing. However, this metadata requires a defined syntax and structure,
in order to be machine-readable. The Resource Description Frame-
work (RDF) was developed in collaboration by members of the
World Wide Web Consortium [5], as a solution to this issue. In his

article, Miller [6] gives a thorough description on what exactly RDF
is and how it works. For the purposes of this paper all that needs
to be known, concerning RDF, is that a RDF store (triple store) is
simply a database built with the intent of storing and retrieving
triples through semantic queries.

RDFox is an RDF store developed at the University of Oxford [1].
RDFox is centralised (i.e. RDF data is stored on main memory) and
allows for large growth within the RDF knowledge representation
store. Triples can be added to a RDFox database by means of import-
ing them or scheduling them for incremental addition or deletion.
Datalog rules are added in the same manner. This method of adding
triples and rules to a database allows RDFox to compute parallel
datalog reasoning, by means of incremental materialisation. This
simply means that when the triple, <Tweety - is - bird>, is explicitly
stored in the database and the rule, bird Ô⇒ flight is stored in
the same database, then the triple, <Tweety - can - fly>, is implic-
itly generated (materialised) as well. This check for inference is
done incrementally, for each new triple and/or rule that enters the
database. RDFox also supports SPARQL query answering [7].

3 PROJECT DESCRIPTION AND MOTIVATION

Even though there has been a relatively exceeding amount of work
done in the domain of non-monotonic declarative logical program-
ming, we have found there to still exist some gaps in the literature.
Among these gaps is the lack of a formal integration of defeasibil-
ity into the widely used declarative logic programming language,
datalog. We have found that datalog has become quite popular and,
even though it isn’t a multi-purpose programming language, it finds
uses in a wide variety of fields. These include, but are not limited
to, data integration; information extraction; networking; program
analysis; security; cloud computing; etc [8]. Furthermore, due to its
functionally specific nature, it is easier to make full use of efficient
algorithms that are developed for query resolution, when extending
its computing capabilities - which is one of the motivations behind
choosing datalog for the purposes of this paper.

Regarding RDFox, there exists the similar issue of no formal capabil-
ities for handling instances which require defeasible reasoning. We
believe that, due to its extensive features, RDFox is an immensely
valuable tool when working with data storage and database query-
ing and is an essential part of many works. This is especially evident
when noting that RDFox is currently being used bymultinational oil
and gas companies, electric utility companies, health care consor-
tiums, etc [1]. In addition to this, it is our belief that RDFox would
be greater purposed if it had the capability for defeasible reasoning.
With these points in mind, we now describe, with exactness, our
project, as well as the purpose of it.

3.1 Description of the Project

This project involves both a theoretical component, as well as an
implementational one. From the theoretical side, we focus on ex-
tending datalog with the defeasible reasoning that will allow for the
application of defeasible reasoners in real world models, as opposed
to purely theoretical formalisations. Furthermore, we ensure that

Page 2



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

the properties of propositional logic and defeasible reasoning still
hold once the defeasible datalog has been developed. From the im-
plementational side, we will endeavour to extend the expressivity
of RDFox by means of creating a wrapper which, when used, will
afford RDFox the ability to correctly reason every and all defeasible
instance that it encounters.

Let it be noted that, if one truly desires, one could view the imple-
mentational component of this project as a proof of concept for the
theoretical component of this project - a secondary verification, as
it were. However, for our purposes, we view each component of
this project as a separate entity, entirely disjoined from each other,
so as to allow for the individual assessment of the two researchers
involved in said project. Furthermore, this satisfies, not the case
of one component verifying another, but that of both components
simultaneously verifying each other - that is, if they both work out
as they are expected to.

3.2 Motivation for the Project

We believe that our project will have an impact in the field of
Artificial Intelligence, regarding knowledge representation and rea-
soning, by further investigating and allowing large data stores to
reason with exceptions and make logical decisions. We believe that,
in so doing, not only will we help improve the understanding of
defeasible descriptive logics and datalog, but that our work will
have many other implementational benefits as well. Further moti-
vation is provided by the gap that we have found in the literature
and the fact that the documentation of such a project has not yet
been completed.

Furthermore, although efforts to implement defeasibility in descrip-
tion logics have already been made (this is discussed in this paper,
in more detail, in the section regarding its related works), this has
never been done for the entirety of datalog, nor has it been done
for the datalog reasoner, RDFox. This will be beneficial, since in-
corporating defeasibility with the high scalability and fast retrieval
rates of RDFox is expected to significantly assist the research in
exception handling within the domain and related domains of Arti-
ficial Intelligence. We also believe that the improved functionality
of RDFox will benefit those already making use of the RDF triple
store.

4 PROBLEM STATEMENT

In this section we explicitly address what the problem statement
of this project is. We also provide include the two main research
questions posed by this paper, which sum up the work to be done
in this project.

4.1 Statement and Subsequent Questions Being
Asked

There are two problems that this project elects to face. The first is
the fact that there currently exists no means of concrete proof that
the classical datalog declarative logic programming language can be
fully extended to allow for correct defeasible reasoning by means of

computation. The second is that the current working version (as of
the creation of this proposal) of the RDF store and datalog reasoner,
RDFox, has no capabilities to deal with defeasible circumstances.

Given this, the research questions posed in this project can be stated
as follows:

(1) Can the entirety of the Datalog declarative programming lan-
guage be extended to allow for correct reasoning with defea-
sibile instances and can it be shown that the means of this
extension is both sound and complete?

(2) Can a defeasibile Datalog reasoner be created by modifying
the current working version of RDFox and can this reasoner be
shown to be capable of reasoning with defeasibile instances.

5 PROCEDURES AND METHODS:
EXPERIMENTS, DESIGN, ETC

The project has two distinct elements, that is the theory and the
implementation. There is little dependency between these two ele-
ments and this reflects in the procedures and methods. Each sub-
section here within will further be divided into these two elements
and discussed accordingly.

5.1 Approach

Theory:
We approach the theoretical element of this project by investigating
the algorithm for extending propositional logic with defeasible
reasoning. This includes clearly defining the algorithm for our uses
and then proving it is correct for the KLM properties.

Implementation:
We approach the implementation element of this project by devel-
oping a platform for configuring propositional logic knowledge
bases with defeasible statements. The platform will then apply the
algorithm to incorporate the defeasible statements into it. We can
then use the platform to test the knowledge base to find entailments
from the information.

5.2 Evaluation procedure

Theory:
The theoretical element requires no testing as its correctness follows
from mathematical and logical reasoning. To ensure the correctness
of the mathematical and logic reasoning requires contribution from
experts in the field.

Implementation:
The implementation element requires testing in two aspects. Firstly,
unit tests must be created and run to ensure the platform works as
expected at every stage of the project. This follows similarly from
agile methodologies and it ensures the platform is in working order.
Secondly, the platform’s user interface must be tested to ensure it
is user-friendly and to ensure the front-end development works as
expected.

Page 3



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

5.3 Evaluation criteria

We determine that the project’s success can be evaluated by the
following criteria. Due to the nature of the project and its two
elements, the criteria is similarly divided.

Theory:
The algorithm to be used is correct in terms of complying with the
KLM properties.

Implementation:
The unit tests for the extension of propositional logic with defeasible
reasoning all pass showing the expected output.
The platform’s user interface is working and further possess criteria
as follows,

● Ability to create new knowledge bases

● Ability to query knowledge base with reasoning to discover
logical entailment

● The interface is easy to use

● The interface looks pleasing to users

6 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES ADDRESSED.

6.1 Ethical Issues

Our project posesminimal ethical issues. The only apparent possible
issue is the exploitation of software prototype testers during the
software prototype testing phase of the project. To address this
ethical issue we will obtain ethical clearance from the UCT Human
Research Ethics Committee.

6.2 Professional Issues

There are no apparent professional issues with the project. The
project will be completed to a high quality to provide a platform
for further studies in the research field.

6.3 Legal Issues

The software used in our project is open source. To avoid legal
issues the software we create will be open source. The software
produced will also be the intellectual property of Joshua Abraham
and UCT.

7 RELATEDWORK

We discuss here the work that has previously been done, more
specifically, those that are related to the work done and proposed
in this paper.

Since its conception and formalisation, defeasibility has been widely
investigated. The notion of the rational closure of a positive knowl-
edge base, K, containing typical inclusions, e.g. penguin↝ fly, was
first introduced by Lehmann [16]. This was further developed by

Lehman and Magidor [17], who also presented an algorithm to com-
pute this. More notably, however, is the research done in extending
description logics with the notion of defeasibility. Britz et al. [18]
propose an operator to represent defeasible subsumption operations
(which is represented as↝ in this paper) in description logics, as
well as describe the workings of it. Prior to this, Casini and Stracia
[14] had already extended the algorithm in (Lehman and Magidor
1992) to description logics and showed that it reduces to a sequence
of classical entailment operations. Casini et al. [15], however, pro-
vide a reformulated version of this algorithm by incorporating the
defeasible subsumption operator in Britz et al. [18]. Along with
this, many others have endeavoured to implement defeasibility
into description logics and ontologies. These include, but are not
limited to: Moodley, Meyer and Varzinczak [9]; Bryant and Krause
[10]; Niemela [11]; Garcia and Simari [13]; etc. In these, concepts of
efficient defeasible reasoning; various defeasible reasoning imple-
mentations; defeasible reasoning in description logics ontologies;
and defeasible logic programming; etc. are tackled. Furthermore,
defeasible reasoning has even been extended to datalog specifically,
by Martinez and Deagustini [12] - let it be noted, however, that this
has only been done for a subset of datalog and not datalog in it’s
entirety.

By virtue, alone, of the amount of work being put into this specific
area of artificial intelligence and reasoning, it is reasonable to de-
duce that work done in this field could institute significant effects
and/or benefits. Furthermore, we believe that this is indeed the case.
Our work is not only to implement defeasibility into a subsection
of datalog, but into datalog in its entirety and to show that this
implementation stands correct. Furthermore we extend RDFox, the
datalog RDF triple store, to allow it the ability to reason with this
defeasible datalog - non of which has been done before. We believe
that, in so doing, this will not only improve understanding of de-
feasible descriptive logics and datalog, but will have many other
implementational benefits as well.

8 OUTCOMES: EXPECTED IMPACT:
EXPECTED RESULTS, EFFECTS; KEY
SUCCESS FACTORS.

In this section, we discuss what the expected outcomes of this
project are, as well as how we will measure and determine if the
project was a success or not. The outcomes discussed here are
closely related to the statements made and questions posed in sec-
tion 4 of this paper.

At the end of this project, we hope to have achieved two main goals,
at the minimum. Firstly, regarding the theoretical aspect of this
project, we hope to integrate defeasible reasoning into the entirety
of the classical datalog declarative logic programming language.
Secondly, regarding the implementational aspect of this project,
we hope to modify the RDFox software with the intent of allowing
it the ability to compute any and all defeasible instances which
the datalog reasoner may encounter. Furthermore, we will provide
a range of test cases to show that our extended version of the
RDFox reasoner works as it is expected to. These test cases will
cover as many varying scenarios as we are able to concoct. There

Page 4



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

is, however, no way of testing whether our test cases cover every
scenario possible - as is the case with most test case sets.

The success of this project is determined by, not only the accom-
plishment of the two key success factors mentioned above, but also
whether the constituents of those factors are provably correct. That
is to say that our theoretical integration is both sound and complete
and our implementational integration is both bugless and correctly
handles all the test cases that we will provide.

9 PROJECT PLAN

In this section we discuss the main deliverables of this project, how
we manage potential risks, the project timeline, the resources that
are required to complete this project, the project milestones and
finally how the work of this project is allocated between the two
student researchers involved.

9.1 Deliverables

The main deliverables set out by the department for the honours
project, as well as the due dates for these deliverables, are listed in
appendix A.

9.2 Risk Management

Our risk management consists of identifying the risks involved in
doing this project; a probability rating for the likelihood of each
risk; the impact each risk would have on this project and finally mit-
igation, monitoring and management plans for each risk. Mitigation
is aimed at preventing the risk from occurring. Monitoring is aimed
at tracking the increasing likelihood of each risk. Management is
aimed at the steps to take when a risk occurs. These result are all
shown, by means of a risk matrix, in appendix B.

9.3 Timeline

There are two elements of this project – theoretical and implanta-
tion. The theoretical element is showing that the algorithm chosen
for extending propositional logic with defeasible reasoning main-
tains certain properties. The implementation element is developing
a platform for extending propositional logic with the algorithm to
achieve defeasible reasoning. The only overlap between the two
elements is with the chosen algorithm. Appendix C shows a Gantt
chart representing the project timeline with the above in mind.

9.4 Required resources

We will be using textbooks and research papers, 2 standard laptops
(of our own owning), as well as open source software. Many of
the required research papers are in the reference section of this
proposal. The open source software to be used are listed below:

● RDFox (in which, the datalog language is embedded)

● Various programming languages and their related compilers

● Microsoft Visual Studio and Eclipse IDE

9.5 Milestones

The milestones we have targeted for our project include all of the
deliverables set out by the department A. Further milestones, which
we have set for ourselves and that can be seen on the timeline in
appendix C, follow bellow, in no particular order.

Regarding the theoretical component of the project:

● Investigate and research around what has been shown about
the properties we are interested in for this project.

● Investigate the algorithm used to extend propositional logic.

● Determine a procedure for showing the algorithm holds for the
interested properties.

● Prove that the algorithm holds for the interested properties.

Regarding the theoretical component of the project:

● Gain a fundamental understanding for the workings of the
datalog declarative logic programming language - this includes,
mainly, the syntax of datalog.

● Gain a fundamental understanding for the workings of RDFox.

● Gain an understanding for creating wrappers for the RDFox dat-
alog reasoner - this includes experimentation with and testing
of various currently existing RDFox wrappers.

● Create the wrapper which extends RDFox with defeasible data-
log reasoning capabilities.

● Create test cases, purposed to test the created RDFox wrapper.

● Use the created test cases to test the RDFox wrapper for correct-
ness in handling various defeasible instance based situations.

● Identify and eradicate any persisting bugs in the RDFox wrap-
per.

9.6 Work Allocation

There are two core elements to this project, that is the theory
and the implementation. Thomas Pownall will perform the theory
section. This section involves investigating the proposed algorithm
for extending propositional logic and ensuring it complies with
the previously identified properties we are interested in. Joshua
Abraham will perform the implementation. That is, he will develop
a platform for creating propositional knowledge bases that allow
for defeasible statements. This implementation will make use of
RDFox for scalability and the identified algorithm for extending
propositional logic with defeasible reasoning.

10 CONCLUSION

The ability to model real world information in elaborate and simple
knowledge bases is extremely powerful. It allows us to model a
variety of situations and to draw logical conclusions from them
using a formalised process of reasoning. One of the most useful
features of logical reasoning is entailment and the ability to draw
more implicit information from our knowledge base. Furthermore, it

Page 5



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

is extremely important that our reasoning does not fail when given
new facts. This is often the case in real world modelling where new
facts can contradict previously entailed information. The ability to
handle such contradictions makes defeasible reasoning extremely
valuable for modelling real world information. It is important to
note, however, that our defeasible reasoning must still comply with
the properties that we desire from propositional logic, otherwise
it is not useful. Further, a platform for creating and performing
defeasible reasoning should be created to make it applicable to the
real world.

Our proposal outlines a plan for accomplishing the above as well
as the approach that will be taken and the criteria that will be
considered for a successful project. The implemented platform
will provide a useful resource for modelling real world knowledge
and the theory will provide a platform for further research into
defeasible reasoning.

Page 6



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

A DELIVERABLES

Date Deliverable
22/05/2018 Project Proposal
28/05/2018 Project Proposal Presentation
11/06/2018 Revised Proposal Submission
15/06/2018 Project Web Presence
23/07/2018 Initial Software Feasibility Demonstration
27/08/2018 Final Complete Draft
06/09/2018 Project Paper Final Submission
07/09/2018 Project Code Final Submission
17/09/2018 Final Project Demonstration
19/09/2018 Project Poster Due
26/09/2018 Project Web Page
03/10/2018 Reflection Paper

Table 1: Table of Deliverables

B RISK TABLE

Risk Probability Impact Mitigation Monitoring Management
Scope creep 6/10 Moderate Speak with supervisor and

get feedback from 2nd
reader. Be sensible and cau-
tious about adding addi-
tional functionality.

Use the project timeline
to ensure there is enough
time for each function.

Remove unnecessary func-
tionality and focus on core
functions.

Development
takes longer than
expected due to
poor time manage-
ment and lack of
experience.

4/10 Moderate Speak with supervisor to
gain knowledge and expe-
rience. Allow slack time in
timeline for potential prob-
lems that may arise during
development.

Use project timeline to
identify if a task is taking
too long.

Identify core functions that
must be produced. Use
slack time to get back on
schedule.

A team member
does not complete
their part of the
project.

3/10 Moderate Ensure each team mem-
ber’s part can be a stan-
dalone project.

Communicate with team
members to ensure they
are going to finish.

Since project part can be
stand alone project the
other team member will be
able to complete their part.

Losing work due to
theft or computer
failure.

2/10 Significant Create frequent backups of
work. Use cloud services so
work is always available.

Be vigilant and ensure to
remember computer when
leaving work station.

Restore from one of the
previous back ups or use
university workstation and
cloud services.

Some of the re-
quired resources
become unavailable.

2/10 Severe Use open source software
and have copies of re-
sources saved. Ensure re-
sources can be removed
without severe disruption.

Check emails to see if re-
sources have announced
changes to availability.

Find replacement re-
sources and adapt to the
new resources.

Table 2:Matrix Table of Risks andRiskManagement Precau-
tions

Page 7



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

C GANTT CHART

Table 3: Gantt Chart

Page 8



Adding Defeasibile Reasoning to Datalog and RDFox: Project Proposal Joshua Abraham, Thomas Pownall

REFERENCES
[1] Nenov Y., Piro R., Motik B., Horrocks I., Wu Z., Banerjee J. (2015) RDFox: A

Highly-Scalable RDF Store. In: Arenas M. et al. (eds) The Semantic Web - ISWC
2015. Lecture Notes in Computer Science, vol 9367. Springer, Cham.

[2] Arregui, A. (2017). Chisholm’s Paradox in Should-Conditionals. SALT 27 : the Uni-
versity of Maryland, College Park. doi: http://dx.doi.org/10.3765/salt.v18i0.2477

[3] Prakken, H. and Sergot, M. (1995) Contrary-to-duty obligations.
[4] Prakken, H. and Sartor, G. (1996). A dialectical model of assessing conflicting

arguments in legal reasoning. Artificial Intelligence and Law 4 (3-4), pp. 331-368.
doi: 10.1007/BF00118496

[5] RDF Working Group. (2014). RDF. Retrieved May 2018 from https://www.w3.org/
RDF/

[6] Miller, E. (2005). An Introduction to the Resource Description Framework. Bulletin
of the Association for Information Science and Technology 25(1) pp. 15-19

[7] (March 2013)W3C: SPARQL Query Language for RDF. Retrieved May 2018 from
://www.w3.org/TR/rdf-sparql-query/#acknowledgements

[8] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog and
emerging applications: an interactive tutorial. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data (SIGMOD ’11). ACM,
New York, NY, USA, 1213-1216. DOI: https://doi.org/10.1145/1989323.1989456

[9] Moodley, K., Meyer, T. and Varzinczak, I. J. (2012). A defeasible reasoning approach
for description logic ontologies. In Proceedings of the South African Institute for
Computer Scientists and Information Technologists Conference (SAICSIT ’12).
ACM, New York, NY, USA, 69-78. DOI=http://dx.doi.org/10.1145/2389836.2389845

[10] Bryant, D. and Krause, P. (2004). A review of current defeasible reasoning imple-
mentations. The Knowledge Engineering Review, Vol. 00:0,pp. 1–24, Cambridge
University Press. doi: 10.1017/S000000000000000. Printed in the United Kingdom.

[11] Niemela, I. (1995). Towards efficient default reasoning. In Proceedings of the 14th
international joint conference on Artificial intelligence - Volume 1 (IJCAI’95),
Chris S. Mellish (Ed.), Vol. 1. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 312-318.

[12] Martinez, M. V., Deagustini, C. A. D., Falappa, M. A. and Simari, G. R. (2014).
Inconsistency-Tolerant Reasoning in Datalog. In Advances in Artificial Intelli-
gence – IBERAMIA 2014, Ana L.C. Bazzan and Karim Pichara (Eds.). Springer
International Publishing, Cham, 15–27.

[13] García, A.J., and Simari, G.R. (2014). Defeasible logic programming: DeLP-servers,
contextual queries, and explanations for answers. Argument & Computation, 5,
63-88.

[14] Casini, G. and Stracia, U. (2010). Rational Closure for Defeasible Description
Logics. In: Janhunen T., Niemelä I. (eds) Logics in Artificial Intelligence. JELIA
2010. Lecture Notes in Computer Science, vol 6341. Springer, Berlin, Heidelberg

[15] Casini G., Meyer T., Moodley K., Sattler U., Varzinczak I. (2015). Introducing
Defeasibility into OWL Ontologies. In The Semantic Web - ISWC 2015. Arenas,
M., et al. (eds). Lecture Notes in Computer Science, vol 9367. Springer, Cham,
409-426.

[16] Lehmann, D., 1989, “What does a conditional knowledge base entail?,” in Proceed-
ings First International Conference on Principles of Knowledge Representation
and Reasoning, R. Brachman and H.J. Levesque, eds., Toronto, Ontario.

[17] Lehmann, D. and Magidor, M. (1992). What does a conditional knowledge base
entail? Artificial Intelligence 55, 1 (1992), 1–60.

[18] Katarina Britz, Thomas Meyer, and Ivan Varzinczak. 2011. Semantic foundation
for preferential description logics. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 7106 LNAI. 491–500.

Page 9

https://www.w3.org/RDF/
https://www.w3.org/RDF/
://www.w3.org/TR/rdf-sparql-query/#acknowledgements

	Abstract
	1 Introduction
	2 Background
	2.1 KLM Properties
	2.2 Datalog
	2.3 RDFox

	3 Project Description and Motivation
	3.1 Description of the Project
	3.2 Motivation for the Project

	4 Problem Statement
	4.1 Statement and Subsequent Questions Being Asked

	5 Procedures and Methods: Experiments, Design, etc
	5.1 Approach
	5.2 Evaluation procedure
	5.3 Evaluation criteria

	6 Ethical, Professional and Legal Issues addressed.
	6.1 Ethical Issues
	6.2 Professional Issues
	6.3 Legal Issues

	7 Related Work
	8 Outcomes: Expected Impact: Expected Results, effects; Key success factors.
	9 Project Plan
	9.1 Deliverables
	9.2 Risk Management
	9.3 Timeline
	9.4 Required resources
	9.5 Milestones
	9.6 Work Allocation

	10 Conclusion
	A Deliverables
	B Risk Table
	C Gantt Chart
	References

