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ABSTRACT

The Rational Closure (RC) algorithm [1][2] is a rule based method-
ology that affords logical reasoners the ability to reason with in-
complete or inconsistent knowledge bases. This algorithm has been
proven to work for a number of reasoning formalisms and has
even been extended to description logics [3][4]. However, the RC
algorithm has not yet been shown to work for declarative logic
programming languages. The project that this paper is based on
practically proves, via implementation, that the RC algorithm can
be extended to allow declarative logics the ability to reason defea-
sibly. Datalog was chosen as the declarative logic programming
language and RDFox was chosen as the software to perform the
datalog reasoning. A host of obstacles presented itself to dissuade
the accomplishing of this task - apart from the issues faced during
the setup of RDFox and various other complications, the fact that
classical datalog has no formal way of expressing negation had
to be overcome as well. However, in the end, the implementation
of a defeasible datalog reasoner turned out to be a success. The
reasoner performed as expected when faced with a range of unique
test cases, each handcrafted to test specific characteristics of defea-
sible knowledge bases and how the RC algorithm deals with said
knowledge bases. Furthermore, the reasoner underwent scrutiny by
experts in the field and was eventually approved by both of them.
Let it also be noted that this project goes hand-in-hand with a sister
project, which theoretically proves the same notion by means of
showing that the necessary KLM properties still hold when applied
to declarative logic programming languages [5]. The source code
for this paper’s project can be found on the author’s GitHub page
[6].
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1 INTRODUCTION

The ability for logical reasoners to handle exceptions is a well-
known problem within the domain of artificial intelligence. Imag-
ine, if you will, being told that all birds fly and that some animal,
called Tweety, is a bird. From this knowledge base, it is reasonable
to deduce that the animal, Tweety, can fly. However, if it is later
learned that Tweety is, in fact, a penguin or an ostrich, then this
would raise a clear contradiction (as penguins and ostriches are both
examples of flightless birds). Furthermore, with the advancement of
disciplines such as genetic engineering, there could later exist some
subspecies of penguin or ostrich that indeed had this ability of flight.
These exceptions and exceptions to exceptions are commonplace
and almost inescapable in an ever growing knowledge base - as
is the human collective of information. Further examples of these
seemingly contradictory occurrences can be found in domains such
as law, where contracts can be annulled in light of new evidence [7];
in medicine, where medical diagnoses can be reevaluated due to the
revelation of new symptoms; in science, where scientific theories
can be falsified by the ascertaining of new experimental results;
and even in Chisholm’s paradox of contrary-to-duty imperatives
[8][9]. Thus, it is clear to see the implicational benefits that would
emerge from granting programs and machines the power to em-
ploy the type of reasoning used to handle situations of this ilk. This
reasoning is known as defeasible, or non-monotonic, reasoning - it
is the type of reasoning which is explored in this project paper.

One method of achieving the implementation of this reasoning in
programs is by using the Rational Closure (RC) algorithm [1][2].
This algorithm ranks defeasible statements according to exception-
ality and allows a defeasible entailment check to be simplified down
to a series of classical entailment checks. An adaptation of this al-
gorithm is what is used in this paper’s project to allow RDFox’s
datalog reasoner to reason with defeasible instances.

1.1 Structure of the Paper

The structure of this paper is given in the following order: a detailed
background of essential information that needs to be understood in
order to follow and appreciate the work done in and by this project;
a mention of related work that has previously been done, including
the work that this project builds on; a detailed description of the
associated project, as well as a motivation for the project; a mention
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of the key issues faced during the implementation of this project,
why they occurred and how they were overcome; a discussion on
the design and implementation of the defeasible datalog reasoner;
a discussion on how testing and validation was carried out; a pre-
sentation of the core results and finally a conclusion to sum up the
paper.

2 BACKGROUND

An explanation of the most essential topics are given in this section.
It is necessary for these topics to be understood before a discussion
of, and appreciation for, the details and results of this project can
occur. It would be beneficial for the reader to already have a func-
tional understanding of propositional (or sentential) and predicate
logic, specifically their negation and implication operators. The
topics that will be explained in this section are defeasible reasoning;
the declarative logic programming language, datalog; the RDFox
triple store software and, finally, the RC algorithm.

2.1 Defeasible Reasoning

Defeasibile reasoning is a form of default reasoning and is employed
when faced with seemingly contradictory information, which op-
poses what is already known or has already been reasonably de-
duced. Defeasibile reasoning can be viewed as an extension of
propositional logic and allows the ability to follow complex pat-
terns and deductions which, as shown, cannot be followed bymeans
of classical reasoning alone. This is done by introducing the con-
cept of typicality. The defeasible consequence logical operator,↝,
is used to represent typicality and is syntactically analogous to
the classical implication operator,→. With this, we are finally able
to solve the apparent inconsistencies in the Tweety-bird problem.
Instead of saying that ’all birds fly’, consider the phrase: typically
birds have the ability of flight. This entails that Tweety - which was
initially classified to have the ability of fly due to the fact that it is a
bird - can now be reclassified to not have the ability of flight, upon
learning that Tweety is a penguin, and still maintain that Tweety is
a bird. In defeasibile propositional logic syntax, this is expressed as,

birds ↝ flight,

which should be read as ’birds typically fly’.

Note that defeasibile logic is not the only approach to default reason-
ing. Logical Programming without Negation as Failure is one other
approach. However, defeasibile logic outperforms the latter in both
performance and expressivity. The results of the comparison of
these two default reasoning approaches are explained in (Antoniou,
Maher and Billington, 1999) [17] and in more depth and detail than
the scope of this paper allows.

2.2 Datalog

The declarative logic programming language, datalog, is most often
used as a query language for deductive databases. It is based upon
predicate logic - a proven formalisation of reasoning, which is a

level above propositional logic, yet below defeasible logic. Being
based on predicate logic reasoning makes classical datalog sound,
complete and, more importantly for the purposes of this paper, a
well-established model for propositional logic reasoning.

Using the Tweety example again, the basic syntax of datalog rules
are given as follows:

Bird(?tweety) :- Penguin(?tweety)
Bird(?tweety) :- Fly(?tweety)

Note that datalog rules are read from right to left. Furthermore,
there is no way to represent negation in classical datalog - the
designers deemed this to warrant undesirable complications. The
reason for these complications is that datalog was initially designed
to be a purely monotonic declarative programming language [18].
This means that expressing the fact that penguins cannot fly, even
though they are birds, is not possible in classical datalog. There is
a practical solution to this issue - the discussion of which can be
found in the Issues Faced section of this paper.

Datalog is also not Turing complete and is thus mainly used in
the areas of logic programming; knowledge representation and
database querying, although it has recently been found useful in
a number of other domains such as data integration and data ex-
traction. Furthermore, datalog is a syntactic subset of its precursor,
prolog.

2.3 RDFox

Since there is an unthinkably large amount of data flowing through
the World Wide Web at any given time, it is a proportionally large
benefit to have a structured form of data describing this data (meta-
data) to improve the discovery of and access to the data it’s de-
scribing. However, this metadata requires a defined syntax and
structure, in order to be machine-readable. The Resource Descrip-
tion Framework (RDF) was developed in collaboration by members
of the World Wide Web Consortium [11], as a solution to this is-
sue. In his article, Miller [12] gives a thorough description on what
exactly RDF is and how it works. For the purposes of this paper
all that needs to be known, concerning RDF, is that a RDF store
(triple store) is simply a database built with the intent of storing
and retrieving triples through semantic queries.

RDFox is an RDF store developed at the University of Oxford [10].
RDFox is centralised (i.e. RDF data is stored on main memory) and
allows for large growth within the RDF knowledge representation
store. Triples can be added to a RDFox database by means of import-
ing them or scheduling them for incremental addition or deletion.
Datalog rules are added in the same manner. This method of adding
triples and rules to a database allows RDFox to compute parallel
datalog reasoning, by means of incremental materialisation. This
simply means that when the triple, <Tweety - is - bird>, is explicitly
stored in the database and the rule, bird Ô⇒ flight is stored in
the same database, then the triple, <Tweety - can - fly>, is implic-
itly generated (materialised) as well. This check for inference is
done incrementally, for each new triple and/or rule that enters the
database. RDFox also supports SPARQL query answering [13].
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2.4 Explanation and Implementation of the RC
Algorithm

The RC algorithm was introduced by Lehmann and Magidor [2]
as a way to allow for defeasible reasoning in propositional logic.
The algorithm works by ranking the defeasible statements, in a
given knowledge base, according to their exceptionality and ele-
gantly reducing defeasible implication checks to a series of classical
implication checks.

The RC algorithm used in this paper’s project was adapted from
Britz et. al. [19], which in turn was adapted from Lehmann and
Magidor [2]. The adaptation for this paper’s project was necessary
in order to apply the algorithm to the implementation of defeasi-
bility in RDFox. This paper’s adapted form of the algorithm will
be discussed and explained in this section. The RC algorithm con-
sists of three successive sub-procedures; their descriptions are as
follows:

(1) Exceptionality: determining exceptions within a given knowl-
edge base

(2) Ranking: computing an ordered ranking of exceptions based
on their exceptionality (i.e. how typical they are)

(3) Rational Closure: answering queries, posed at the ranked knowl-
edge base, that posses a defeasibile element

Furthermore, since this paper focuses on the implementation of
this algorithm in RDFox, pseudo code for each sub-procedure will
also be provided. The provided pseudo code is also adapted, from
those presented in Casini et. al. [20]

First, the term conditional knowledge base needs to be defined. A
conditional knowledge base, K, is a knowledge base of the form K
= <T, D>. Here, T is the set of definitions and specialisations (i.e.
concrete knowledge or classical formulae), also known as a TBox,
and D is the set of defeasible inclusions (i.e. typical consequences or
defeasibile formulae), also known as a defeasible TBox. With respect
to the penguin example, these are expressed as T = {penguin →
bird, penguin → ¬ fly} and D = {birds ↝ fly}. Furthermore, the
computation of the materialisations, D, of the inclusions in D -
which are of the form A ↝ B, where A and B are propositional
atoms - is simply explained in set theory notation by D = {¬A ⊔ B |
A↝ B ∈ D} (Casini and Stracia, 2010) [3].

The first function, Exceptional, can now be explained. A propo-
sitional atom, A, is exceptional with respect to some knowledge
base K = <T, D> if and only if K ⊧ ¬ A. I.e. the statements in the
knowledge base, K, infer the existence of the negation of A (or not
A). Thus, some defeasibile inclusion, A↝ B ∈ D, is exceptional with
respect to K if its antecedent (i.e. A) is exceptional. The Exceptional
function takes in T and some D’ ∈ D of K and produces a subset of
D’, E, which contains all the exceptions in D’. The pseudo code is
provided in Algorithm 1.

The second function, Ranking, deals with exceptions within excep-
tions by assigning each exception a rank based on their level of
exceptionality. This is done by computing Exceptional and then
repeating its execution with its previous iteration’s output, until

Algorithm 1 Exceptional (T, D’)
1: let K’ = T + D’
2: let E = []
3: for A↝ B in D’ do
4: if K’ ⊧ ¬ A then
5: extend E by [A↝ B]

return E

either there are no more rules to compute or the previous and cur-
rent outputs are equivalent sets (i.e. further iterations will produce
no change). The Ranking function takes in the elements of some
knowledge base, K = <T, D>, and outputs the ranking R = {D0, ...,
Dn , D∞}. Here, R is the partitioned set of D, while each Di is the
set of defeasible rules with ranking i and D∞ is the rank of all clas-
sical and implicitly classical rules from both T and D. The ranking
algorithm in pseudo code is as follows:

Algorithm 2 Ranking (T, D)
1: let R = []
2: let E0 = D
3: let E1 = Exceptional(T, E0)
4: while E1 = [] or E0 ≠ E1 do
5: extend R by E1
6: let E0 = E1
7: let E1 = Exceptional(T, E0)
8: if E0 = E1 then
9: extend R by [E1 + T]
10: else ▷ i.e. E1 = []
11: extend R by E0
12: extend R by T
13: return R

Finally, the third function, RationalClosure, will be discussed here.
For this step the ranking, R, of the knowledge base, K, must have
already been computed. There are only two scenarios that can occur
when a query is asked: either the query itself is of a defeasible nature
or it is not. If the query does not contain a defeasibile element it
can be resolved with classical datalog query methodologies, i.e. a
simple check whether the query is stored in or inferred by only the
rules in D∞. More interesting is the scenario of a defeasible query
being asked. In such a case, the function RationalClosure would
have to compute the level of R, if any, at which the antecedent of
the defeasibile query would not be considered as an exceptionality.
This check would start with the entire ranked knowledge base and
subsequently remove a rank, starting from rank D0 (i.e. the least
exceptional rules), until no contradictions in the knowledge base
are found. In the event that the query is inherently exceptional
to the knowledge base (i.e. no rank can be found that does not
produce a contradiction) then rank D∞ is the final rank that is
used to check the query. This is because the rules in rank D∞ are
the most exceptional rules in the knowledge base and cannot be
’relaxed’ or removed from the knowledge base without the risk of
incorrectly reasoning with respect to the knowledge base. These
type of extreme scenarios will be discussed in further detail in the
Testing section of this paper. In essence, the function RationalClosure
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takes in the ranks of R and the query, A↝ B, and computes with
defeasible reasoning whether or not K ⊧ A→ B. The pseudo code
for this function is given as follows:

Algorithm 3 RationalClosure (R, A↝ B)
1: let i = 0
2: while R ⊧ ¬ A or length of R > 1 do
3: remove R[i] from R
4: let i = i +1
5: if R ⊧ A→ B then
6: return True
7: else
8: return False

A proof that this algorithm does indeed work for all cases it is
intended to is given in (Casini and Stracia, 2010) [3]. Furthermore,
the computational complexity of the algorithm, as explained in
(Casini et al., 2015) [? ], can be proven to be EXPTIME-complete.

3 RELATEDWORK

Since its conception and formalisation, defeasibility has been widely
investigated. The notion of the rational closure of a positive knowl-
edge base, K, containing typical inclusions, e.g. penguin↝ fly, was
first introduced by Lehmann [1]. This was further developed by
Lehman and Magidor [2], who also presented an algorithm to com-
pute this. More notably, however, is the research done in extending
description logics with the notion of defeasibility. Britz et al. [19]
propose an operator to represent defeasible subsumption operations
(which is represented as↝ in this paper) in description logics, as
well as describe the workings of it. Prior to this, Casini and Stracia
[3] had already extended the algorithm in (Lehman and Magidor
1992) to description logics and showed that it reduces to a sequence
of classical entailment operations. Casini et al. [20], however, pro-
vide a reformulated version of this algorithm by incorporating the
defeasible subsumption operator in Britz et al. [19]. Along with
this, many others have endeavoured to implement defeasibility
into description logics and ontologies. These include, but are not
limited to: Moodley, Meyer and Varzinczak [4]; Bryant and Krause
[22]; Niemela [23]; Garcia and Simari [25]; etc. In these, concepts of
efficient defeasible reasoning; various defeasible reasoning imple-
mentations; defeasible reasoning in description logics ontologies;
and defeasible logic programming; etc. are tackled. Furthermore,
defeasible reasoning has even been extended to datalog specifically,
by Martinez and Deagustini [24] - let it be noted, however, that this
has only been done for a subset of datalog and not datalog in it’s
entirety.

By virtue, alone, of the amount of work being put into this specific
area of artificial intelligence and reasoning, it is reasonable to de-
duce that work done in this field could institute significant effects
and/or benefits. The work done in this paper not only implements
defeasibility into a subsection of datalog, but into datalog in its
entirety and shows that this implementation stands correct. Fur-
thermore RDFox, the datalog RDF triple store, is extended to grant
it the ability to reason with this defeasible datalog. Finally, the RC

algorithm is shown to be practically extended from a description
logic environment to a declarative logic one - none of which has
been done before. It is believec that, in so doing, this will not only
improve understanding of defeasible descriptive logics and datalog,
but will have many other implementational benefits as well.

4 PROJECT DESCRIPTION AND MOTIVATION

This section of the paper provides a detailed description of the
project, as well as what the motivation behind doing it was.

4.1 Project Description

The purpose of this paper’s project was to show that the RC al-
gorithm could be practically and successfully implemented in the
environment of a declarative logical programming language. This
was done through the development of a prototype defeasibility
wrapper for the RDFox system, which uses datalog as its declara-
tive logical programming language. In doing this the expressivity
of RDFox is also extended by affording it the ability to correctly
reason every and all defeasible instance that it may encounter. Fur-
thermore, it is also shown that datalog can be extended with the
defeasible reasoning that will allow for the application of defeasible
reasoners in real world models, as opposed to purely theoretical
formalisations.

Let the reader note that Pownall [5] does explore a specific aspect
of these theoretical formalisms, by proving that the properties of
propositional logic and defeasible reasoning still hold after the
implementation of the defeasible datalog reasoner. This is done by
showing that the KLM properties still hold.

Finally, a range of test cases were created in order to show that the
extended version of the RDFox reasoner works as expected. These
test cases will cover as many varying scenarios as we are able to
concoct. There is, however, no way of testing whether our test cases
cover every scenario possible - as is the case with most test case
sets. This manual construction of test cases was a necessity due to
the lack of defeasible knowledge bases or ontology databases that
exist. This will be further discussed in the Testing section of this
paper.

4.2 Project Motivation

Even though there has been a relatively extensive amount of work
done in the domain of non-monotonic reasoning , some gaps still
exist in the literature. Among these gaps is the lack of a practical
integration of defeasible reasoning into the widely used declara-
tive logic programming languages. More specifically, before this
paper’s project, the RC algorithm for computing defeasibility has
never been extended to declarative logic programming languages.
Furthermore, there currently exists no means of concrete proof
that the classical datalog declarative logic programming language
can be fully extended to allow for correct defeasible reasoning by
means of computation and the current working version (as of the
writing of this paper) of the RDF triple store and datalog reasoner,
RDFox, has no capabilities to deal with defeasible circumstances.
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There is also little to no compiled documentation detailing how to
perform such a feat.

Concerning datalog, the declarative programming language has
become quite popular. Even though it isn’t a multi-purpose pro-
gramming language, it finds uses in a wide variety of fields. These
include, but are not limited to, data integration; information extrac-
tion; networking; program analysis; security; cloud computing; etc
[21]. Furthermore, due to its functionally specific nature, it is easier
to make full use of efficient algorithms that are developed for query
resolution, when extending its computing capabilities - which is
one of the motivations behind choosing datalog for the purposes
of this paper.

Regarding RDFox, its extensive features make the RDFox system an
immensely valuable tool when working with ontologies, data stor-
age, and database querying. It is an essential part of many works.
This is especially evident when noting that RDFox is currently be-
ing used by multinational oil and gas companies, electric utility
companies, health care consortiums, etc [10]. This extension of the
reasoning capability of RDFox will be beneficial, since incorporat-
ing defeasibility with its high scalability and fast retrieval rates is
expected to significantly assist the research in exception handling
within the domain and related domains of artificial intelligence. It is
also believed that the improved functionality of RDFox will benefit
those already making use of the RDF triple store.

It is a firm belief that this paper’s project will have an impact in the
field of artificial intelligence, regarding knowledge representation
and reasoning, by further investigating and allowing large data
stores to reason with exceptions and make logical decisions. In
so doing, not only will this work help improve the understanding
of defeasible declarative logics and datalog, but it will have many
other implementational benefits as well.

5 ISSUES FACED

A significant amount of obstacles and hurdles had to be overcome in
order to achieve a working implementation of the RC algorithm into
RDFox and, subsequently, datalog. For the benefit of any person/s
who wish to endeavour to accomplish a similar task, a few of the
more significant issues will be discussed in this section, along with
why they occurred and how they were overcome.

5.1 Acquisition of the RDFox Software

At the start of this paper’s project (c. April 2018) the RDFox software
was freely available for download under an open source licence.
It was at this time that the first software downloads were made.
However, due to dependency and operating system (OS) compati-
bility issues, the software had to be re-downloaded from the source.
The issue here was that, between the time of the initial download
and the need for a re-download, the RDFox system had undergone
development for commercial use by the start-up company called
Oxford Semantic Technologies [14]. This new development saw
a change in licensing, from an open source licence to a noncom-
mercial academic licence - which meant that the software was no
longer freely available for download. This hurdle was overcome

by directly contacting the developers with regards to acquiring the
correct dependency files needed to run the system. The relevant
patent attorney was also contacted with regards to acquiring the
noncommercial academic licence for the RDFox system. More in-
formation on the current development and licensing of the RDFox
system can be found on Oxford University’s RDFox web page [15].
In the end, the only negative effect that this issue presented to the
project was a delay in its timeline.

5.2 Lack of Documentation

Since the RDFox system was initially developed as a university
project, there still lacks sufficient documentation (read ’user man-
uals’) on the workings of RDFox, how it should be used, what de-
pendencies the software has, how to troubleshoot common issues,
etc. This may change in the near future due to the new develop-
ment of the system. However, at the time of this paper’s project
and apart from the RDFox project paper [10] and similar writings,
documentation on how to use the system proved hard to come by.
This issue was especially prevalent during the initial setup of the
system (more of which will be discussed in the next subsection). To
combat this problem, the system’s source code had to be personally
scanned and understood. The available demos were also heavily
scrutinised in order to gain a deeper understanding of the function-
ality of the system, however, these did not give a full expression of
RDFox’s vast functionality. For the more complex issues in setup,
the developers of the system were contacted and were significantly
helpful. However, this was only done on one occasion.

The lack of documentation proved only to hamper the initial learn-
ing and setup phase of the project. Once the system was running,
there were little-no issues that couldn’t be solved without the need
for documentation and/or expert help.

5.3 RDFox Setup

The development of the defeasible datalog wrapper took place on
a Linux system running Ubuntu 16.04 LTS (also known as Xenial
Xerus). This is important to note since the RDFox system is OS spe-
cific. Currently, RDFox is available for Mac OS, Linux andWindows
systems. Unfortunately, the initially downloaded Linux version
of the source code had incorrect references to essential dynamic
libraries. The dynamic libraries referenced were for the Mac OS
version of RDFox. It is reasonable to assume that this was just mere
a mix up of source files, since the initial development of the RDFox
system took place on mainly Mac OS systems. As such, this problem
was essentially an easy fix - since reference only had to be made to
the correct libraries - but certainly was not as easy to figure out.

Certain issues also arose with respect to the different language
implementations of RDFox, as the software is written in C++, but
bridges to Python and Java have also been developed. In the end,
the Python bridge of the software was chosen to be made use of, as
this was the easiest version to comprehend (due to the simplicity of
the Python code) in the time available and had the least dependency
issues.
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5.4 Lack of Test Cases

One of the most prominent issues faced in this paper’s project is
the current lack of standard test cases consisting of defeasible on-
tologies or knowledge bases. This is presumably due to the fact that
most of the work done in defeasible reasoning logics have been of
a conceptual or theoretical nature; there has never, yet, been much
need for a standardised test case base to test a reasoners’ ability
to handle defeasible inferences. As such, two options presented
themselves as a solution to this problem. The first option was to
take an already existing, classical, knowledge base and modify it
to include sufficient defeasible inferences to test the defeasible rea-
soners capabilities. The second option was to manually construct
these defeasible knowledge bases ’from the ground up’.

For the purposes of this project, the second option was chosen.
There are twomain reasons behind this choice. The first is that most
standardised, classical, ontologies and knowledge bases contain a
relatively large amount of content (i.e. the amount of statements
that they contain). This introduces the obvious risk of unknowingly
affecting the knowledge base (or ontology) in an undesirable way
when modifying it, since it would be difficult to comprehend the
entire knowledge base in a manner that would eliminate all risk
during modification. In essence, modifying a knowledge base whose
TBox implications are not fully understood could potentially pro-
duce unwanted results. It would also be significantly challenging
to trace the source of these results to the specific modification that
took place. Furthermore, a larger test case base would not hold any
significant benefit in this project, as the purpose of the project was
not to create an efficient and well optimised defeasible reasoner,
but rather one that is correct. As such, the second reason is that a
self constructed, defeasible, knowledge base could be personalised
to test this project’s defeasible reasoner and, more specifically, the
datalog compatible version of the RC algorithm. Indeed, this was
done and so doing, more focus was placed on the correctness of
the defeasible implementation, during testing, rather than the effi-
ciency thereof. The test cases produced by this project were proven
to be sufficient for the testing purposes required by this project and
were also validated by second and third parties. The method of test
case construction, as well as how testing was carried out, will be
discussed in further detail in the Testing section of this paper.

5.5 Extension of Datalog to Allow for Negation

Another issue faced, which was inherent of the task that this paper’s
project endeavoured to complete, was the fact that classical datalog
does not have any means of expressing negation in its atoms or
axioms. This is simply due to the fact that classical datalog was not
designed to cater for nonmonotonic inferences and "adding negation
to datalog rules permits the specification of nonmonotonic queries
and hence of nonmonotonic reasoning" [18]. Indeed, to implement
the RC algorithm in datalog, the expressive power of datalog had
to be extended to allow for negation.

There are many ways to overcome this barrier and a number of
them, each with their own use case and drawbacks, are explained
in Foundations of Databases: The Logical Level [18]. One of these
methods is to introduce negation as failure. The idea behind this

is, if given propositional atom A, to simply infer that ¬A exists
if and only if A cannot be proven by Selective Linear Definite
(SLD) clause resolution [18] - a rudimentary, exoteric inference rule
used in logic programming. However, the fundamental issue with
this procedure is that a proof for A could very well exceed finite
computation time. Let the reader take note that, due to the scope
of this particular project, knowledge bases could be constructed
that would limit the expansion and possible recursive nature of
the inference checks. However, this method would still prove to
be computationally complex when compared to the more practical
solution that was elected to be used in this project.

Negation introduced by inflationary fixed point semantics was
elected to be used in this project. There are two main reasons for
this is. The first is that the materialisation process of RDFox is com-
putationally similar to the inflationary character of the semantics
- they both iteratively compute statements, simultaneously, with
all valid evaluations, until no new statements can be inferred. The
second reason is a much more practical - it was relatively simple to
implement. The way this was implemented by creating a new class,
which acted as the standard way to represent negation, thereby
extending the semantics of the datalog language. This class was
represented, in datalog, as:

<http://defeasibledatalog.org/hons/negation#False>

The negation class was designed to be used as the consequent in
a datalog rule. The antecedent of said rule would be two objects,
where one object implied the negation of the other object. As an
example, the datalog rule that states that if X is a penguin, then X
cannot fly, would look like the following:

<http://defeasibledatalog.org/hons/negation#False> :- Penguin(?X),
Fly(?X) .

This proved to be quite effective in the representation of negation
in datalog, for this purposes of this project.

6 SOFTWARE DESIGN AND
IMPLEMENTATION

In this section the design process, as well as the stages of imple-
mentation of the software, will be discussed. Let it be noted that the
outcome of this project was not centred around the development of
a piece of software that could be rolled out for commercial use, but
rather a piece of software that would act as proof that datalog can
be extended to allow for defeasible reasoning, using the RC algo-
rithm. However, in spite of this clear theoretical outcome, certain
aspects of software engineering were taken into consideration and
incorporated for the development of the defeasible datalog wrapper.

As a software development methodology, the waterfall method was
used. This is due to the fact that the basic and essential software
requirements were pretty much cemented. The main issue was
understanding exactly how the rational closure algorithm worked
and how to implement it in datalog. However, once this was under-
stood, the coding aspect of the development was relatively straight
forward. Apart from this, other aspects of software engineering
were taken into consideration - such as modularity. Modularity
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was decidedly incorporated, as the software that was developed
is essentially a wrapper for a larger system, namely, RDFox. As
such, it would have to be easily added into RDFox. Furthermore, as
the software essentially transfigures just the datalog rules alone,
only using RDFox as a reasoner, the added modularity allows it to
potentially be used as a defeasible wrapper for any classical datalog
reasoner.

In order to achieve a modular design, the wrapper was written
as a standalone python class, which another python class could
extend itself by. Each subprocedure of the RC algorithm (i.e. Excep-
tional, Ranking and RationalClosure) was implemented as a seperate
function, all found in this single python class. Furthermore, the
class itself makes calls to the datalog reasoner being used (which is
RDFox for the thoughts and purposes of this project). After the soft-
ware engineering designs were in place, the rest of the wrapper’s
design was reliant on the workings of the RC algorithm.

7 TESTING

In order to prove the correctness of the implementation, not only
was the code reviewed by an expert in the field, but correctness
testing also occurred. Let it be noted that this was the sole purpose
of the testing, to prove the correctness of the implementation and
not other aspects, such as the efficiency of the implementation.
Furthermore, the test cases were designed and developed with this
goal in mind. It was essential that these test cases be manually de-
signed and developed as, since this area of research is still relatively
new, a natural supply of reliable test case sources do not exist. An
added benefit of manual creation of the test cases was that aspects
of testing and predicted outcomes could be closely monitored and
designed to cater for personal use.

Test cases consisted of variantly constructed TBox knowledge basis’
(i.e. sets of datalog rules), which contained both classical rules and ,
more importantly, defeasible rules. In order to provide test cases
that effectively proved the correctness of the implementation, the
rational closure algorithm was closely analysed. It was decided that
the test cases would have to be designed in a way that would allow
the examination of the implementation’s output, given distinct
cases/types of defeasible knowledge base TBoxes. These test cases
were required to have one of the following properties:

● During ranking, the knowledge base reaches a state where the
two E levels (E0 and E1) contain the same rules

● During ranking, the knowledge base reaches a state where E1
is computed to be empty

● Ranking of the knowledge base correctly places multiple rules
on the same level

Test cases were developed so that every one of these properties
were accounted for and each case was tested. The results of this
testing can be found in the following section, Findings and Results
Analysis.

8 FINDINGS AND RESULTS ANALYSIS

In this section the findings after implementation was completed, as
well as the results of the testing, are discussed.

Once the implementation and the testing thereof had concluded,
it was found that the implementation was a success. Thus practi-
cally proving that the logical reasoning language, datalog, can be
extended to cater for defeasible reasoning, with minute hazards
and limited restrictions. Furthermore the testing proved that the
implementation of defeasible reasoning into datalog, done by this
project, was sound. A screenshot of a few examples of the output
of the testing are given in Fig.1 and Fig.2, in the appendixes of this
paper.

The output of the defeasible datalog wrapper shows the original
knowledge base (as the imported datalog rules), as well as how
the implementation has ranked the defeasible statements. It can be
seen, both theoretically and practically, that these statements have
been ranked correctly. This is the case for all the tests that have
been done. The same experiment can be conducted by downloading
the contents of this project’s GitHub repository [6] and testing the
wrapper against the provided test cases. All of the test cases used
in and by this project, the original implementation of the defeasible
datalog wrapper and instructions on how to run the wrapper can
be found in the relevant folders of this repository. For the purposes
of this project, this proves the correctness of the implementation.

9 LIMITATIONS AND FURTHERWORK TO
BE DONE

Due to the scope of this paper’s work, the efficiency in the reasoning
and computation of the datalog defeasible wrapper could definately
be improved. There is also a lack of optimisation that occurred
when implementing the wrapper. Furthermore, even though the
entirety of datalog was extended by this implementation, only one
RDF class was used for said implementation: the rdf:type class [16].

Thus, obvious extensions to this paper’s work would be to introduce
significant optimisations to the reasoning process and computa-
tion time of the wrapper. Since the nature of the RC algorithm
allows for the use of recursive procedures, the optimisations noted
in (Paramá et al., 2006) [? ] can be further investigated and imple-
mented if proved to introduce significant improvements to defea-
sibility testing using the RC algorithm. Also, the implementation
can be extended to include more, if not all, standard RDF classes.

10 CONCLUSION

The ability to model real world information in elaborate and simple
knowledge bases is extremely powerful. It allows us to model a
variety of situations and to draw logical conclusions from them
using a formalised process of reasoning. One of the most useful
features of logical reasoning is entailment and the ability to draw
more implicit information from our knowledge base. Furthermore, it
is extremely important that our reasoning does not fail when given
new facts. This is often the case in real world modelling where new
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facts can contradict previously entailed information. The ability to
handle such contradictions makes defeasible reasoning extremely
valuable for modelling real world information.

This project practically proves that the RC algorithm can be used to
grant descriptive logic programming languages the ability to reason
with defeasible inferences. It also shows the successful implementa-
tion of defeasible reasoning into the declarative logic programming
language, datalog, using RDFox as a reasoner. It is important to
note that this defeasible reasoner does still comply with properties
from propositional logic, and is thus sound and complete. This is
noted by this project’s sister project, [5]. Furthermore, this platform
for creating and performing defeasible reasoning shows promising
application to real world scenarios.

A RESULTS

Figure 1: Defeasible Datalog Test 1

Figure 2: Defeasible Datalog Test 2
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