
Preferential Reasoning for Ontologies
Project Proposal

Michael Harrison
Department of Computer Science

University of Cape Town

Reid Swan
Department of Computer Science

University of Cape Town

Supervisor: Tommie Meyer
Department of Computer Science

University of Cape Town

Second Reader: Deshen Moodley
Department of Computer Science

University of Cape Town

ABSTRACT
Non-monotonicity is a property desired in description logics to in-
crease the scope and power of automated reasoners. This document
proposes a project to �nd and implement an algorithm to com-
pute the minimum possible modi�cation of a user-de�ned ranking
function of statements in a defeasible description logic knowledge
base which will result in a rational preference relation. It provides
introductory and background information on the relevant �elds,
including an overview of description logics, attempts to enrich
these with non-monotonicity, a de�nition of a rational preference
relation and an overview of the KLM postulates on which rational
preference relations are based. The main problems to be solved are
discussed, including the importance and potential impacts of solv-
ing them. Challenges that may arise in the course of solving them
are also given. The project is then summarized in the following two
research questions: “Can a provably correct algorithm be found
to produce a rational preference relation given a user-informed
preference relation?” and “How can this algorithm be implemented
for use in an ontology editor?” An approach is given for solving
the identi�ed problems, as well as a timeline and manners in which
to measure project success. A set of risks is identi�ed and a plan
to monitor, manage and mitigate them is provided, as well as a
set of milestones and a timeline over which the project is to be
completed. Finally, the work is logically divided into theoretical
and implementation sections, with each section to allocated to an
author.

1 INTRODUCTION
Description Logics (DLs) are fragments of �rst-order logic used for
representing knowledge in a domain such that the knowledge can
be reasoned with by an automated system [1]. Description logics
are frequently used to represent ontologies in order to leverage the
mature and e�cient algorithms for reasoning with them.

A (classical) DL knowledge base is a pair K = (T,A), where T
is a set of terminological axioms known as a TBox, which refer to
concepts, and A is a set of assertional axioms known as an ABox,
which refer to individuals which belong to those concepts [1].

A common prototypical description logic is ALC, �rst intro-
duced by Schmidt-Schauß and Smolka[20]. An ALC knowledge
base is composed of a set of concepts, NC , a set of individuals NA
which are objects belonging to the concepts, and a set of roles,
NR , which are collections of pairs of individuals and de�ne rela-
tionships between them. For example, if CarCompany is a concept,

then audi could be an individual belonging to this concept, de-
noted audi : CarCompany. Ifvolkswaдen is an individual that is an-
otherCarCompany, and parentO f is a role, thenvolkswaдen is in a
parentO f role with audi , denoted (volkswaдen,audi) : parentO f .

It is possible to draw conclusions from a knowledge base fol-
lowing a universally accepted de�nition known as entailment and
given the symbol |=. Essentially, a knowledge base entails some
statement if and only if that statement is necessarily true in every
interpretation of the knowledge base which does not violate any of
the knowledge base’s statements. For example, consider the knowl-
edge base K = ({FruitTree v Tree,Tree v Plant}, ∅), which can
be understood as "every FruitTree is a Tree; every Tree is a Plant";
thenK |= FruitTree v Plant since every FruitTree is a Tree which
is a Plant. Entailment is a universally accepted de�nition for rea-
soning with a DL knowledge base; automated reasoners use this
de�nition of entailment to e�ciently reason with knowledge bases.

Entailment is monotonic, which means that any conclusions
drawn from a knowledge base will never be invalidated by adding
new axioms. It is desirable to enrich description logics with non-
monotonicity, the ability to retract conclusions in light of new
information. For example, suppose a knowledge base contains the
statement that mammals dwell on land (which could be written
Mammal v LandDweller ) and that whales are mammals (Whale v
Mammal ) and that whales dwell in the sea (Whale v SeaDweller ).
Also, of course, things that dwell in the sea do not dwell on the land
(LandDweller v ¬SeaDweller ). If we are told that x is a Mammal ,
we conclude that x is a LandDweller . Given the further information
that x is aWhale , we can only conclude that x is also a SeaDweller ;
but things that are SeaDwellers cannot also be LandDwellers and
so our knowledge base is inconsistent. We would like to be able
to retract the conclusion that x is a LandDweller , but under mono-
tonicity this is not possible.

A variety of non-monotonic logics have been proposed, as well
as ways in which to apply them to DLs, including circumscription[3,
14], default reasoning[2, 19], defeasible logic[18, 22], and prefer-
ential reasoning[4, 11, 13]. We restrict our focus to preferential
reasoning.

Preferential reasoning was introduced by Kraus, Lehmann and
Magidor[11] as a form of non-monotonic reasoning as an exten-
sion of classical propositional logic. They introduced a set of six
inference rules, known as the KLM postulates, which it is argued
that any preference relation should satisfy. If a preference relation
satis�es all of the KLM postulates then it is a rational preference
relation.



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

Enriching DLs with preferential reasoning requires the addition
of a new operator, known as defeasible subsumption and given
the symbol @˜ . A@˜ B can be interpreted to mean the concept A is
typically contained within the concept B. This was �rst proposed
by Britz et al.[4]. Informally, defeasibility is de�ned as the ability
to make a generalization or assumption which can then be revised
in light of new information, and is exactly the property desired
of non-monotonic logic. However, simply adding the defeasible
subsumption operator and keeping the de�nition of entailment
the same is insu�cient and will not result in non-monotonicity.
Therefore the de�nition of entailment must be changed; in order to
inform this change, we look to the KLM postulates.

Rational closure was �rst given by Lehmann and Magidor[13]
and applied to DLs by Casini and Straccia[7], and using the defeasi-
ble subsumption operator by Casini et al.[5]. A defeasible knowl-
edge base is de�ned as a pair K = (T,D) where T is a set of
classical DL statements, the TBox, and D is a set of defeasible sub-
sumption statements, the DTBox. Rational closure is an operation
on such a defeasible knowledge base. The operation of rational
closure has been proven to comply with all of the KLM postulates,
so by de�nition it is a rational preference relation. It is not, however,
the only such rational preference relation which can be computed
from a given knowledge base. Instead, it represents a ‘baseline’,
the most conservative rational preference relation, as indicated by
Lehmann and Magidor[13].

Casini et al.[5] demonstrate that rational closure can be reduced
to performing a number of classical entailment checks, allowing it to
be performed by existing mature and e�cient reasoning platforms.
A procedure for computing the rational closure of a defeasible
knowledge base has been implemented as a plugin for the Protégé
ontology editing platform by Moodley[15], called the Defeasible
Interface Platform, or DIP. The implementation takes advantage of
this reduction to classical entailment checks, allowing for excellent
real world performance[5]. DIP gives defeasible axioms a ranking
based on how exceptional the axiom is. The more general an axiom,
the lower its ranking. If the rational closure algorithm takes as input
C @˜D, it determines the set of most general axioms that do not
imply the negation of C[6].

2 BACKGROUND
The KLM postulates can be expressed using the defeasible subsump-
tion operator as follows:

A ≡ B,A@˜C

B @˜C
(Left Logical Equivalence)

A v B,C @˜A

C @˜ B
(Right Weakening)

A@˜A (Re�exivity)
A@˜ B,A@˜C

A@˜ B uC (And)

A@˜C,B @˜C

A t B @˜C
(Or)

A@˜ B,A@˜C

A u B @˜C
(Cautious Monotonicity)

A u B a˜C,Aa˜¬B
Aa˜C

(Rational Monotonicity)

These can be understood as follows:

• Left logical equivalence: if A and B are identical and
A is typically a C , then it is reasonable to conclude that
B is typically a C . For example, if Wet and NotDry are
equivalent, and Wet things are typically Slippery, then we
can conclude that NotDry things are typically Slippery.

• Right weakening: if every A is a B and C is typically an
A then it is reasonable to conclude that C is typically a B.
For example, if every Human is a Biped, and Bipeds typi-
cally Walk, then it is reasonable to conclude that Humans
typically Walk.

• Re�exivity: if something is an A, then it is typically an A.
• And: If anA is typically a B and anA is typically aC , then it

is reasonable to assume that it is typically both a B and aC .
For example, if a Car is typically Fast and a Car is typically
Heavy then it is reasonable to assume that a typical Car is
both Fast and Heavy.

• Or: If an A is typically a C and a B is typically a C then
things that are either an A or a B are typically a C . For
example, if Monkeys are typically TreeDwellers and Birds
are typically TreeDwellers, then things that are either Mon-
keys or Birds are typically TreeDwellers.

• Cautious Monotonicity: If an A is typically a B and an
A is typically a C , then something that is both an A and
a B is typically a C . This is reasonable because the most
typical As are Bs, so when we have something that is both
an A and a B, we can assume it is typical; and if it is typical,
then it must also typically be a C , by virtue of being an A.

• Rational Monotonicity: If something that is both an A
and a B is not typically a C , and A is not typically not a
B, then it would not be reasonable to conclude that an
A is typically a C . For example, something that is both
Loud and Certain is not typically Correct , and something
that is Certain is not typically not Loud , so being Certain
does not typically make you Correct . This makes sense,
because if an object that has properties A and B does not
typically have propertyC , and having property A does not



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

typically exclude property B, then we have no information
on whether an object with property A has property B or
not; and so we cannot deduce whether A and B are both
present, so conclusions about the presence of property C
cannot be made under typical circumstances.

3 PROJECT DESCRIPTION
3.1 The problem
Still missing from the literature of non-monotonic description logics
is a formally proven algorithm for a computing rational preference
relation from a conditional knowledge base when the ranking of
the statements in the DTBox is supplied by the user. In a standard
defeasible knowledge base, all statements in the DTBox are treated
as having the same ranking; it is conceivable, however, that a user
may have more information about the importance of statements in
the knowledge base that can be conveyed by ranking statements,
but arbitrary rankings are not guaranteed to be rational. Therefore,
an algorithm must be designed which, given a user-de�ned ranking
of statements in the DTBox, will modify them to produce one that
is rational preference relation – in other words, one which satis�es
all of the KLM postulates. This alteration must be the minimum
possible alteration, for some appropriate de�nition of minimum,
so that the resulting rational preference relation aligns as closely
as possible with what the user intended. The correctness and com-
plexity of this algorithm must be formally proven. Furthermore,
the algorithm should be implemented in an ontology editor so that
it can be used in a real world setting and as a proof of concept.

3.2 Why it’s important
Solving this is important because it is a generalization of rational
closure; there are many areas where classical reasoning is not ap-
propriate and preferential reasoning is required, and this would
give the ontology designer a �ner-grained control over how the
statements in their DTBox are ranked. Implementation would serve
as a proof of concept, and allow preferential reasoning to be exper-
imented with and utilized in real-world settings.

3.3 Possible issues or di�culties
3.3.1 Theory.

• There are no clear steps or guidelines to determine a new
algorithm

• Finding a satisfactory de�nition of minimal modi�cation
of a user ranking function may be di�cult

• It is di�cult to estimate the time for �nding an algorithm
or its proof of correctness

3.3.2 Implementation.

• No specialized preferential reasoning tool exists, so there
is no clear guide as to how to implement it

• Unable to incorporate the user-informed preferential rank-
ing until it is completed

• Creating a new standalone tool could involves a lot of work
that could introduce errors and complications

4 PROBLEM STATEMENT
4.1 Aims
The aims of this project are:

• to �nd a satisfactory de�nition of minimal changes to a
user’s ranking function

• to �nd an algorithm that performs the minimal changes in
a way that results in a rational preference relation

• to prove the correctness and computational complexity of
the algorithm

• to reduce the algorithm to a sequence of classical entail-
ments

• to implement a standalone ontology edi0tor which allows
users to reason with the algorithm

4.2 Research Questions
The problem to be solved is summarized in the following two re-
search questions:

• Can a provably correct algorithm be found to produce a ra-
tional preference relation given a user-informed preference
relation?

• How can this algorithm be implemented for use in an on-
tology editor?

5 PROCEDURES AND METHODS
5.1 Approach
The problem is divided into two logical sections: theory and imple-
mentation.

5.1.1 Theory. The theory will be approached by determining
an algorithm that will generate a rational preference relation given
a user’s desired ranking; this must then be proven to be correct.

More speci�cally, it must be shown that given any ranked input,
the output of the algorithm will always satisfy the KLM postulates,
up to and including rational monotonicity. In addition to prov-
ing that the results of the algorithm satisfy these, it must also be
shown that the modi�cation of the user’s given ranking is minimal,
although the exact de�nition of this minimality is still to be deter-
mined. Computational complexity results of the algorithm are also
to be proven.

5.1.2 Implementation. The implementation of preferential rea-
soning will be approached by developing a standalone ontology
editing tool. This tool will allow a user to create a defeasible ontol-
ogy, give a ranked preference of defeasible axioms, and perform
preferential reasoning on the ontology that takes into account the
user-provided ranked preferences. The ontology creation and edit-
ing aspect will draw inspiration from existing classical ontology
tools, such as Protégé. The tool will provide an intuitive graphical
user interface that will make constructing and editing ontologies
quick and simple. The other, and more critical, aspect of the tool will
be the capability to apply preferential reasoning to the defeasible
ontology. The Defeasible Inference Platform will be incorporated
into the tool to provide defeasible reasoning. Instead of using a
ranking of the defeasible axioms based on exceptionality of the
axioms, however, the ranking will be provided by Reid Swan’s pref-
erential relation algorithm that takes user-de�ned preferences into



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

account. The Defeasible Inference Platform will take this ranking
and use a classical reasoner to perform classical entailment checks
to whether new defeasible inferences are contained in the rational
closure.

Initial testing and prototyping will be performed using Protéé
ontology editor and plugins for Protégé that are developed using
Java and compiled using Eclipse.

5.2 Testing Results
• Theory – The correctness of the algorithm will be given in

its proof. It will not require testing, but rather veri�cation
by an authority on the subject that the proof is correct.
The alteration made to the user-de�ned ranking must be
minimal, and this minimality is to be de�ned; it must be
ensured that the de�nition is an appropriate one.

• Implementation – Unit tests will be written for the soft-
ware to ensure that it meets requirements at every stage of
development and that features do not introduce regressions
of the software at any stage.

Data/ontologies for testing will be generated from ex-
isting ontologies that are sourced from existing (classical)
ontology databases. The knowledge bases will be extended
to be defeasible knowledge bases. User preferences will be
read in and inform the algorithm when it reasons with the
new defeasible knowledge base. They will be manually run
through the reasoner and the output veri�ed by hand to
ensure it meets requirements.

The ontology editor’s user interface will be prototyped
and tested with potential users to ensure the product is
usable and intuitive. Students who completed the Ontology
Engineering module this year are potential test users.

5.3 Measurements of Success
Success of the project will be measured by the following criteria:

• All unit test cases and all manual tests are passed.
• The following has been determined about the algorithm:

– the algorithm is correct
– the algorithm’s computational complexity has been

determined
– a satisfactory de�nition of minimal modi�cation of a

user ranking function has been found and the algo-
rithm complies with it

• The software is feature complete, containing at least the
following features:
– the ability to create, import and export preferential

ontologies
– the ability to reason and answer queries on preferen-

tial ontologies
– a user-friendly interface to view and edit preferential

ontologies
A successful project will have impacts in the �eld of knowledge

representation and reasoning as a generalization of existing knowl-
edge. Ontology engineering will be impacted through the provision
of a new tool for working with ontologies and allowing the model-
ing of knowledge in a domain in ways which were previously not
possible due to the limitations of classical reasoners, or allowing

existing ontologies to be simpli�ed through application of the tool.
The scope of what automated reasoners can do will be increased
by allowing user-informed rankings to be used in non-monotonic
reasoning in a manner proven to be consistent with the KLM postu-
lates. This will also allow experts in the �eld to have �ner-grained
control over how their preferential reasoners treat the defeasible
knowledge.

6 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

6.1 Ethical Issues
This project poses no inherent ethical issues. The only other possible
ethical issues would arise during prototype issues if test users are
exploited in any way.

6.2 Professional Issues
There are no foreseeable professional issues with the project. The
project provides a basis for further possible study.

6.3 Legal Issues
All software that will be utilised is open source. The tool that will be
created will also be open source software, as to avoid any possible
legal issues and to allow for use in further research.

7 RELATEDWORK
7.1 Theory
Kraus, Lehmann and Magidor [11] introduce preferential reasoning
and the KLM postulates, and show that not all preference relations
satisfy all of the KLM postulates, and so are not rational preference
relations. Lehmann and Magidor [13] present the notion of rational
closure, as well as an algorithm to compute it. It is shown that ratio-
nal closure results in a rational preference relation, and that rational
closure represents the most conservative such preference relation
– any others would necessarily be a superset of rational closure.
Britz et al.[4] introduce the defeasible subsumption operator, @˜ ,
for enriching description logics with preferential reasoning. Casini
et al.[7] give an algorithm for rational closure for description logics,
and it is shown to reduce to a sequence of classical entailment oper-
ations. Casini et al.[5] give the same algorithm reformulated using
the defeasible subsumption operator of Britz et al. Lehmann[12]
presents another procedure for computing a rational preference
relation for propositional logic, known as the lexicographic closure,
which entails a strict superset of everything entailed under rational
closure. Casini et al.[8] give the algorithm for lexicographic closure
for description logics with defeasible subsumption statements.

7.2 Implementation
Moodley’s Defeasible Inference Platform (DIP) is the most closely
related work to an implemented preferential ontology editor and
reasoner. DIP is a plugin for Protégé ontology editor that provides a
defeasible reasoning capability through multiple methods, namely:
Preferential, Rational, and Lexicographic Closure[16]. The Rational
Closure functionality will be utilised in the implementation of the
standalone preferential ontology editor and reasoner to provide



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

defeasible reasoning once a ranking has been provided by the ratio-
nal preference relation algorithm on the user-supplied preference
relation.

8 PROJECT PLAN ANDWORK ALLOCATION
8.1 Risk
A list of risks and their allocated identi�cation numbers are given
in Appendix A.

Appendix B shows a priority rating for each risk based on the
probability of the risk occurring and the impact the risk would have
on the project if it were to occur. As can be seen in Appendix B,
the most important risks to address are users being unavailable for
prototype testing and the users who are available not having the
required knowledge to accurately test the prototypes.

Appendix C provides steps to mitigate, monitor, and manage
each risk. The mitigation steps aim to reduce the likelihood and/or
impact of the risks. The monitoring steps detail how to keep track
of the likelihood of the the risks occurring. The management steps
outline contingency plans to minimize the damage risks will cause
after they occur.

8.2 Timeline
The project is split into the theory element of developing a rational
user preference relation algorithm and the implementation element
of implementing this algorithm within a standalone preferential
ontology editing and reasoning tool. The only dependency in the
project is the incorporation of the algorithm in the tool being de-
pendent on the completion of the algorithm. The project timeline
can be seen in the form of a Gantt chart in Appendix D.

8.3 Resources required
Various tools will be required to create the standalone preferential
ontology editing and reasoning software. These tools will either be
directly used in creating the software or as a reference.

• OWL API – The underlying ontology representation will
be written in the OWL 2 web ontology language[21]. OWL
2 DL is a subset of OWL 2 that is based on description
logics. The ontology needs to be represented in OWL to be
reasoned with computationally. The OWL API is, therefore,
required to support the creation and manipulation of OWL
ontologies[10] from within the standalone program. The
OWL API also supports the implementation of classical
reasoners. The OWL API is implemented in Java.

• Defeasible Inference Platform – The Deafeasible Infer-
ence Platform is a Protégé plugin developed by Moodley
[17]. This plugin allows for defeasible reasoning. This plu-
gin computes a ranking of all the axioms in the knowledge
base. The preferential algorithm will be integrated into
this platform to produce a new ranking that will be used to
perform preferential reasoning. The platform will need to
be modi�ed for use in the standalone preferential ontology
editing and reasoning tool instead of Protégé.

• Classical OWL Reasoner – An existing reasoning plat-
form will be performing the classical reasoning that is re-
quired in computing the ranking. The computation of the

requirement includes performing classical DL entailment
checks. The classical reasoner to be used is most likely to
be HermiT. HermiT is a logical choice as it is implemented
in Java, can perform reasoning on OWL 2 DL or SROIQ
ontologies, uses OWL API 3.0, and is compatible with the
OWLReasoner interface of the OWL API Glimm et al. [9].

• Protégé Ontology Editing Platform – The open source
ontology editing platform, Protégé, will be used as a refer-
ence. It’s source code will be used for inspiration and as
a guide when designing the interface and functionality of
the standalone preferential ontology editing and reasoning
tool. Protégé will also be used for testing purposes due to
the ease with which plugins can be developed and added
to it.

• Programming language and IDE – The OWL API and
the Defeasible Inference Platform are both written in Java.
Using Java for the standalone preferential ontology editing
and reasoning tool will make using the OWL API and inte-
grating the Defeasible Inference Platform as seamless as
possible. The Protégé ontology editor is also implemented
in Java. Protégé’s functionality and interface will be used
as a guide and reference when creating the standalone
preferential ontology editing and reasoning tool. This is
further motivation to use Java, as any inspiration that is
drawn from Protégé will not need to be rewritten in an-
other language.

The Eclipse IDE will be used because it provides support
for building plugins. This feature allows for easy experi-
mentation and greater control when developing the tool.

8.4 Deliverables
The only deliverable for the theory aspect of the project is the ra-
tional preference relation algorithm for user-informed preferential
reasoning.

The deliverables for the implementation aspect include the initial
working prototype of the standalone tool, the second prototype of
the tool, and the �nal completed tool. The initial prototype will
include the basic required interface, ontology editing capabilities,
and the incorporation of the Defeasible Inference Platform. The
second prototype will include the rational preference relation algo-
rithm to provide a user-informed ranking. The �nal product will
be a re�nement of the second prototype

8.5 Milestones
The milestones for the theory aspect of the project are as follows:

• Investigate lexicographic closure and how it di�ers from
rational closure, and discuss with supervisor

• Investigate the proof that rational and lexicographic clo-
sure satisfy the KLM postulates

• Attempt proof for general user-provided ranking to dis-
cover where it fails; investigate what modi�cations would
prevent failure

• Determine a formal de�nition of what a minimal modi�ca-
tion of a user ranking function is, based on intuition and
what seems most natural if applied to a given ranking of
statements



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

• Develop algorithm based on this modi�cation
• Prove that the algorithm is the most minimal modi�cation

based on the de�nition of minimum chosen
• Prove that the resulting ranking function satis�es the KLM

postulates
• Prove computational complexity results of the algorithm
• Show that the algorithm reduces to a set of classical entail-

ments

The milestones for the implementation aspect of the project are
as follows:

• Experiment and test with DIP and Protégé plugins
• Create a Java-based standalone ontology editor
• Incorporate DIP into the standalone tool
• Initial working standalone tool prototype for feasibility

demonstration
• Incorporate rational preference relation algorithm into the

tool
• Second working standalone tool prototype iteration
• Complete �nal standalone tool

8.6 Work Allocation
The project can be divided logically into two sections, namely
theory and implementation.

The theory section involves developing the algorithm for altering
a provided user ranking of statements of a conditional knowledge
base into one which complies with the KLM postulates as previously
mentioned, as well as proving the correctness thereof. This section
will be performed by Reid Swan.

The implementation section involves implementing a standalone
ontology editor with standard features, including an implemen-
tation of the algorithm developed for user-informed preferential
reasoning. It will allow for creating, importing and exporting pref-
erential knowledge bases, as well as displaying the contents of a
preferential knowledge base, specifying the ranking of statements
by the user and querying the reasoner. This section will be per-
formed by Michael Harrison.

9 CONCLUSIONS
Description logics are a powerful formalism in knowledge repre-
sentation that is used frequently for representing ontologies due
to their ability to reason e�ciently. However, the monotonicity
property means that there are a number of situations which cannot
be modeled in a simple way, if at all, in description logics at present.
To this end, non-monotonicity is a desirable property. Preferential
reasoning is a well-de�ned model for non-monotonic reasoning
that has already been successfully applied to description logics
through the procedure of rational closure. The next logical step is
to generalize preferential reasoning by allowing users to supply
their own ranking of statements in their defeasible knowledge base.
However, a rational preference relation – one which satis�es all of
the KLM postulates – is desired for reasoning purposes. An algo-
rithm must be determined to perform the minimal modi�cation of
the user’s given ranking function that will result in a rational pref-
erence relation; the de�nition of minimality must be determined,
and the algorithm must be shown to adhere to it. This algorithm

must also be implemented in a standalone ontology editor so that
it can be experimented with and utilized in a real world context.

The preceding document has indicated a plan for accomplishing
this, including an approach, a number of measurements of success,
risks and a plan for their monitoring, mitigation and management,
and a timeline over which the goals are to be accomplished. The
impacts of a successful project include generalizing existing knowl-
edge in the �eld of knowledge representation and reasoning, pro-
vision of a new tool for ontology engineers, and increasing the
scope of how description logics can be used to model situations by
providing a rigorously-de�ned version of non-monotonicity with
�ne-grained control over how the reasoning is performed. The work
has an obvious division into theory and implementation sections,
which can be performed largely in parallel.



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

A RISK TABLE

ID Risk
1 Supervisor unavailable
2 Users unavailable for prototype testing
3 Lack of knowledge or understanding from test users
4 Partner dropping out
5 Partner not completing theory
6 Partner not completing tool (proof of concept)
7 Con�ict in group
8 Underperformance
9 Poor communication/absence
10 Obtaining defeasible plug-in resource late/never
11 Poor time management

Table 1: List of Risks

B RISK PRIORITY TABLE

ID Probability Impact Priority
1 Medium Marginal Averagely important
2 High Critical Very important
3 High Critical Very important
4 Low Catastrophic Moderately important
5 Low Catastrophic Moderately important
6 Low Marginal Not very important
7 Low Critical Averagely important
8 Low Marginal Not very important
9 Medium Marginal Averagely important
10 Medium Critical Moderately important
11 Medium Marginal Averagely important

Table 2: Risk Priority



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

C RISK MANAGEMENT TABLE

ID Mitigation Monitoring Management
1 Plan meetings ahead of time Be in regular contact Consult each other and email supervi-

sor
2 Be proactive and search for users early

on
Have backup users to test if original
users drop out

Contact wider student base for possible
users

3 Actively seek out users with domain
knowledge

Keep track of the number of informed
users who have con�rmed to be in the
testing

Train new users before they test the pro-
totype

4 Separate the work as much as possible Check on partner’s status regularly Obtain missing information from super-
visor

5 Enforce strict deadlines Check progress regularly Obtain required theory form Tommie
6 Enforce strict deadlines Check progress regularly Prove in another way
7 Have group conduct rules Be open and honest regarding group

sentiments
Approach partner and attempt to re-
solve in a civil manner

8 Enforce deadlines and drafts Observe performance and provide feed-
back to drafts

Help partner and enforce extra work

9 Enforce group conduct rules Keep track of o�enses Raise issue and report if necessary
10 Follow-up with Dr Moodley Ask Dr Moodley for progress Use alternative or �x plug-in
11 Enforce group conduct rules Keep track of o�enses Raise issue and report if necessary

Table 3: Risk Management

D GANTT CHART

Figure 1: Project Timeline



Preferential Reasoning for Ontologies Michael Harrison, Reid Swan, Supervisor: Tommie Meyer, and Second Reader: Deshen Moodley

REFERENCES
[1] Franz Baader, Diego Calvanese, Deborah L McGuinness, Daniele Nardi, and

Peter F Patel-Schneider. 2003. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Vol. 32. 622 pages.

[2] Franz Baader and Bernhard Hollunder. 1995. Embedding defaults into termino-
logical knowledge representation formalisms. Journal of Automated Reasoning
14, 1 (1995), 149–180.

[3] Piero A Bonatti, Carsten Lutz, and Frank Wolter. 2006. Description Logics with
Circumscription.. In KR. 400–410.

[4] Katarina Britz, Thomas Meyer, and Ivan Varzinczak. 2011. Semantic foundation
for preferential description logics. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics),
Vol. 7106 LNAI. 491–500.

[5] Giovanni Casini, Thomas Meyer, Kody Moodley, Uli Sattler, and Ivan Varzinczak.
2015. Introducing Defeasibility into OWL Ontologies. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Arti�cial Intelligence and Lecture
Notes in Bioinformatics), Vol. 9367. 409–426.

[6] Giovanni Casini, Thomas Meyer, Kody Moodley, and Ivan Varzinczak. 2013.
Towards Practical Defeasible Reasoning for Description Logics. In Proceedings of
the 26th International Workshop on Description Logics. 587–599.

[7] Giovanni Casini and Umberto Straccia. 2010. Rational Closure for Defeasible
Description Logics. In European Workshop on Logics in Arti�cial Intelligence.
Springer, 77–90.

[8] Giovanni Casini and Umberto Straccia. 2012. Lexicographic closure for defeasible
description logics. In Proc. of Australasian Ontology Workshop, Vol. 969. 28–39.

[9] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. 2014.
HermiT: An OWL 2 Reasoner. Journal of Automated Reasoning 53, 3 (2014),
245–269. https://doi.org/10.1007/s10817-014-9305-1

[10] Matthew Horridge and Sean Bechhofer. 2011. The OWL API: A Java API for
OWL ontologies. Semantic Web 2, 1 (2011), 11–21.

[11] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Arti�cial Intelligence 44,
1-2 (1990), 167–207.

[12] Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of
Mathematics and Arti�cial Intelligence 15, 1 (1995), 61–82.

[13] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Arti�cial Intelligence 55, 1 (1992), 1–60.

[14] John McCarthy. 1980. Circumscription âĂŤ a form of non-monotonic reasoning.
Arti�cial intelligence 13, 1 (1980), 27–39.

[15] Kody Moodley. 2015. Practical Reasoning for Defeasible Description Logics. Ph.D.
Dissertation. University of KwaZulu-Natal.

[16] Kody Moodley, Thomas Meyer, and Ivan Varzinczak. 2012. A Defeasible Rea-
soning Approach for Description Logic Ontologies. In South African Institute
for Computer Scientists and Information Technologists Conference, SAICSIT 2012.
69–78.

[17] Kody Moodley, Thomas Meyer, and Ivan Varzinczak. 2012. A Protege Plug-in
for Defeasible Reasoning. In Proceedings of the 25th International Workshop on
Description Logics. 486–496.

[18] Donald Nute. 1993. Defeasible logic. Handbook of Logic in Arti�cial Intelligence
and Logic Programming 3 (1993).

[19] Raymond Reiter. 1980. A logic for default reasoning. Arti�cial intelligence 13,
1-2 (1980), 81–132.

[20] Manfred Schmidt-Schauß and Gert Smolka. 1991. Attributive concept descrip-
tions with complements. Arti�cial intelligence 48, 1 (1991), 1–26.

[21] W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document
Overview. OWL 2 Web Ontology Language December (2012), 1–7.

[22] Kewen Wang, David Billington, Je� Blee, and Grigoris Antoniou. 2004. Combin-
ing description logic and defeasible logic for the semantic web. In International
Workshop on Rules and Rule Markup Languages for the Semantic Web. Springer,
170–181.

https://doi.org/10.1007/s10817-014-9305-1

	Abstract
	1 Introduction
	2 Background
	3 Project Description
	3.1 The problem
	3.2 Why it's important
	3.3 Possible issues or difficulties

	4 Problem Statement
	4.1 Aims
	4.2 Research Questions

	5 Procedures and Methods
	5.1 Approach
	5.2 Testing Results
	5.3 Measurements of Success

	6 Ethical, Professional and Legal Issues
	6.1 Ethical Issues
	6.2 Professional Issues
	6.3 Legal Issues

	7 Related Work
	7.1 Theory
	7.2 Implementation

	8 Project Plan and Work Allocation
	8.1 Risk
	8.2 Timeline
	8.3 Resources required
	8.4 Deliverables
	8.5 Milestones
	8.6 Work Allocation

	9 Conclusions
	A Risk Table
	B Risk Priority Table
	C Risk Management Table
	D Gantt Chart
	References

