
Aiding In The Creation of Social Engineering Attack
Prevention Tools

Saleem Manjoo
University of Cape Town

manjoosaleem@gmail.com

ABSTRACT

With the improvements made to the technological elements
of security systems, the human element has become the
weakest, and thus, more often targeted by attackers in what
are referred to as social engineering attacks. These attacks
involve the influencing of people to divulge sensitive infor-
mation. This has created the need for social engineering
prevention and training tools to be developed. As a part of
the SEPTT project, back-end services were required to be
created to aid in the development of such tools. A database
was designed to store an attack detection model. A web-
API was created to provide public access to the database.
Finally a visualization tool was created with the aim of vi-
sualizing the attack detection model and provide a means
to make changes to it. The first of the two requirements
were successfully developed but the last visualization tool
fell short of its requirement to allow for the functionality to
make changes to the model.

1. INTRODUCTION
Information security is a fast growing discipline with the

protection of personal and sensitive information being of vi-
tal importance to governments and organizations who have a
vested interest in securing such information [9]. As the tech-
nological element to security systems improve, they become
increasingly difficult to exploit. Thus, the target has shifted
from the technological element to the human element which
can be often be considered the more vulnerable of the two
in the system [1]. Attacks on information security systems
which target the human element are referred to as social
engineering attacks.
While there are various definitions of social engineering,

it can be defined as the various techniques that are used for
the purpose of obtaining information by the exploitation of
human vulnerabilities in order to bypass security systems [7].
Or, more simply put, it can be seen as the art of influencing
people to divulge sensitive information.
Since social engineering deals with the exploitation of hu-

man vulnerabilities, we can see that there is a strong psy-
chological aspect to it. There are various psychological vul-
nerabilities which humans possess that can be exploited by
social engineers with the aim at influencing an individual’s
emotional and cognitive state to make them more suscepti-
ble to divulging sensitive information [1]. While this paper
will not go into detail about the various psychological vul-
nerabilities, it is important to note that it is due to these
vulnerabilities that the human element in security systems
can be deemed the weakest and easiest to exploit.

Given that the human element of information security sys-
tems is considered to be the weak element and is thus the
focus of attacks, this creates a need for the development of
tools which can aid in the detection and prevention of such
attacks.

This paper will first briefly provide a simplified view of
how social engineering attacks are carried out as well as
the research done in the detection and prevention of such
attacks. It will then discuss the work done in the Social
Engineering Prevention Training Tool (SEPTT) project to
create such tools based on the Social Engineering Attack
Detection Model(SEADM) [8], a model created to aid users
detect whether a request for sensitive information is legiti-
mate or a social engineering attack. The main focus of the
paper will be on the development of services to aid in the
development of future social engineering attack prevention
tools.

1.1 Social Engineering Attacks
The Social Engineering Attack Framework [9] depicted in

figure 1 describes the planning and flow of a full scale social
engineering attack. It can be seen as the methodology used
by social engineers when panning and performing an attack.

We can see 6 core phases depicted in this framework:

1. Attack Formulation: The goal and the target of the
specific attack is identified.

2. Information Gathering: All sources of information on
both the goal and the target are identified.

3. Preparation: All information gathered is combined and
an attack vector is developed. All elements of the on-
tological model can be identified in this phase.

4. Develop Relationship: The attacker establishes com-
munication with the target and a trust relationship is
built.

5. Exploit Relationship: The relationship between the
target and the social engineer is exploited and the tar-



get is elicited to perform the request or action that the
social engineer desires.

6. Debrief: This phase tests whether the goal has been
satisfied. If it is, the attack is a success. If not, the
attack can return to the preparation phase where a new
attack vector can be developed for another attempt.

Figure 1: Mouton et al. [10] Improved Attack
Framework

A social engineering attack consists of a social engineer
(the attacker), a target, a goal, a medium, and the various
psychological techniques that are used influence the target
to divulge sensitive information [10].
Given the social engineering attack framework, we can see

that the success of a social engineering attack hinges on the
exploitation of the relationship between the attacker and the
target. In the following section, the detection and prevention
of social engineering attacks during the interaction between
the attacker and the target will be discussed.

1.2 Detection of Possible Attacks
The success or failure of a social engineering attack is

determined by the outcome of the interaction between the
attacker and the target. The interaction would commonly
involve the attacker requesting sensitive information which
the target then has to determine whether or not it is safe to
comply with the request. Several different models have been
developed for the purpose of the detection and prevention
of social engineering attack during this form of interaction.
Examples of these models include:

1. The use of a feedback neural network to detect whether
a request is a social engineering attack or not [11].

2. The Social Engineering Defense Architecture (SEDA)[4].
A common social engineering attack would involve a
social engineer pretending to be an authoritative fig-
ure over the target. SEDA proposes using a voice sig-
nature authentication system to determine whether a
requester is who they claim to be over a telephonic
interaction with the target.

3. The use of natural language processing to detect social
engineering attacks [12]. This uses a software system
to detect textual software engineering attacks, such as
phishing emails.

4. The Social Engineering Attack Detection Model ver-
sion 2 (SEADMv2) [8]. An improved version of the
SEADM[1]. This contains a set of binary states through
which a user traverses through by answering questions
in order to determine whether or not a request is a
social engineering attack.

The SEPTT Project will focus on the SEADMv2, devel-
oped by Mouton [9], a supervisor of the project. Thus the
tools discussed later in the paper will all be based on the
SEADMv2.

As depicted in figure 2, a user who has received a request
begins at the start state and traverses through the model by
answering the questions until an end state is reached which
determines whether the user should carry out the request or
not.

Figure 2: Mouton et al. [8] Social Engineering At-
tack Detection Model version 2

The questions in the SEADMv2 each belong to a state
which defines what type of question it is. The yellow state
deals with the request itself. The blue state deals with
whether or not the user understands the request. The green
state deals with the requester and any information that
can be determined about the authenticity of the requester.
Lastly, the red state deals with whether the requester can
be verified by a third party.

1.3 Tools for the Prevention of Attacks
With the human element of an information security sys-

tem highlighted by attackers as the weak spot, and thus
targeted more often, the need for the development of tools
to detect and prevent possible social engineering attacks has
arisen.

The SEPTT project aims both to create such tools, based
on the SEADMv2, as well as services to aid in the creation
of tools in the future. As part of the project, two appli-
cations were developed: a website based application, and a
mobile application. Both of these applications were created



for the detection of a social engineering attack by traversing
through the SEADMv2 described above. Using the applica-
tions, users have to assess their situation by answering the
questions in SEADMv2 until they reach an end state where
they have to defer the request in the case that it is deter-
mined that it is a possible social engineering attack or they
perform the request in the case that it is determined that it
is a valid request. The project also involves the testing of
these applications to determine whether they were effective
as tools to detect and prevent social engineering attacks.
This paper will focus on the creation of the services to

aid in the development of social engineering prevention and
training tools. These services will also be centered around
the SEADM and will provide a database which stores the
SEADM, as well as a web-API to publicly access the database
remotely. A web-based visualization and editing tool will
also be provided if any further iterations are needed to be
made to the SEADM.

2. SERVICES FOR TOOLS TO DETECT AND

PREVENT SOCIAL ENGINEERING AT-

TACKS
This section will outline the design requirements for the

services to aid in the development of social engineering pre-
vention and training tools. These services are made up of 3
elements:

1. The designing and implementation of a database to
store the SEADM.

2. A web-based API to give public access to to the model.

3. A web-based tool to visualize the SEADM as well as
to allow for updates to be made to it.

The functions and requirements for each of the above el-
ements will be discussed.

2.1 Database
The purpose of the database is to store the model and

be used by applications to access its contents. The require-
ments for the design of the database were as follows:

• Store the questions of the SEADM

• Store the transitions between questions and states of
the SEADM

• store the different states of the SEADM

• Cater for non-binary questions

• Designed to be easy to edit the SEADM in any way
(changing transitions, adding or removing of questions
/ states, etc)

2.2 Web API
The purpose of the web-API is to give public access to

the database storing the model and providing the relevant
functions to make any changes to the database. The require-
ments of the web-API are as follows:

• Allow for the retrieval of all fields of all the tables in
the database.

• Allow for editing of any of the fields in all of the tables
in the database.

• Allow for the deletion of any field in the tables in the
database.

• Allow for all the above actions to be carried out re-
motely by an application by HTTP request.

• Return information requested from the database by an
application in JSON format so that it could be used
by any application regardless of platform.

• Designed to be well-structured and easily maintainable
in the case that changes are made to the structure of
the database.

2.3 Visualization Tool
The purpose of the visualization tool is to allow for the

dynamic visualization of the model. This would be the draw-
ing of the model in the form of a flow diagram (similarly to
that of the diagram of the SEADMv2 depicted in figure 2)
as well as to allow for the changes to made to the model.
The requirements for the visualization tool were as follows:

• Make use of the web-based API outlined above to ac-
cess the model.

• Display all the questions in the model.

• Display the transitions of between the questions in the
model.

• Allow updates and edits to be made to the model and
storage of the updated model through the use of the
web-based API.

3. DESIGN AND IMPLEMENTATION
This section will discuss the design and the implementa-

tion of the 3 requirements outlined in the previous section.
The choices of technologies and tools used to create them
will also be discussed.

3.1 Database
The purpose of the database was to the store the SEADM

in a manner which it can be traversed given only what was
stored, thus storing the transitions between the questions
and the states. This would allow for applications with ac-
cess to the database being able to traverse the model in the
intended way.

Designing a database that could both store the informa-
tion of the SEADM, as well as its functionality in terms of
the transitions between questions and states and accommo-
date for any changes to its structure proved to be a very dif-
ficult challenge with no simple solution. While early designs
met some of the criteria required, issued persisted which
would either compromise the maintainability of the database
or the functionality of the SEADM. The final design was
able to store the functionality of the SEADM as well as ac-
commodate for structural changes to the SEADM, with the
sacrifice of simplicity.



3.1.1 Early Design

The early database design was very simplistic, containing
only 2 tables, but could not accommodate for all of the fea-
tures of the SEADM. The design of the database is depicted
in the figure below.
As the name implies, the Question table stored the ques-

tions of the SEADM as well as the transitions depending on
the user’s answer. The ’yes’ and ’no’ fields stored the tran-
sitions ID to the next question if that answer was chosen.
The State table stored the name of the state as well as

mapped to the state field in the question table, allowing for
future states to be created if needed.

Figure 3: Early design of the databse to store the
SEADM

While this design would work for most questions in the
SEADM, since it allowed for only 2 possible answers, it could
not accommodate for one of the questions which was not a
binary state, and had 3 possible answers. An early consider-
ation was to add a third field to accommodate that stand-out
question, but that solution would mean that there would be
a null third option field for most questions. It would also
not accommodate for future questions which could possibly
have more than three options.
Another problem with this early design was that it took

for granted that questions were answered simply as yes or
no, as future iterations of the SEADM could have different
possible answers to the questions.

3.1.2 Final Design

Upon finding that designing a database to store the SEADM
with all of its features was a very difficult task, the final
design was created by project supervisor Francois Mouton.
The final design of the database is depicted in the figure
below.

Figure 4: Final design of the database to store the
SEADM

This more complex design contained 4 tables, but pre-
served the features of the SEADM as well as allowed for
any form of future question to be accommodated as well as
changes to the structure of the SEADM.

The Questions table contained the text of the question as
well as the text of the transitions leaving it. The State table
contained the names of the state and mapped to the state
in the questions table as the early design. The newly added
State Transitions table stored the transitions between states
and questions and the Complex Questions table stored the
information required to accommodate questions that had
more than 2 possible outcomes.

3.1.3 Traversal Algorithm

Given the final design depicted in the previous section,
applications could traverse the SEADM as intended with
the following algorithm:

1. Present the user with the first question in the Ques-
tions Table and give them options A and B.

2. Get the QuestionSet value (referring to the question’s
state) for the current question.

3. Get the return value for the option the user selected (if
A was selected, get the value from the Return A field,
likewise get the value from the return B field if B was
selected).

4. In the State Transitions table, find the entry where
the State field is equal to the QuestionSet value of the
current question (gotten in 2) and where the Match
field is equal to the return value (gotten in 3).

5. In the field in the State Transitions table where the
above conditions were met, get the Transition value.
This value indicates which state the next question in
the SEADM belongs to.

6. If the Transition value indicates that the next state is
different to that of the current question, find the first
entry in the Questions table where the QuestionSet
value is equal to the Transition value. This will be the
next question to present the user.

7. If the Transition value indicates that the state of the
next question is the same as the current question, present
the user with the question that immediately follows
the current question in the database if the Circular
value in the State Transitions table is equal to -1. if
the Circular value is not equal to -1 then present the
user with the question that immediately precedes the
current question in the Questions table.

3.2 Web-API
In order to provide public access to the database contain-

ing the SEADM, a web-API was developed. It allows for
applications to access and edit the database through the use
of HTTP requests. The web-API returns the requested in-
formation from the database in JSON format to be used by
applications. Applications can use the web-API for purposes
such as the visualization of the SEADM or the creation of
social engineering attack prevention tools.



3.2.1 Technologies Used

Flask, a Python based micro-framework, was used for the
development of the Web API. The choice of Flask was influ-
enced by its ease of use and its robust core that includes the
basic functionality that is essential for all web applications
and web-APIs, such as the support of relational databases,
and the URL routing of functions. The URL routing built
into Flask allowed for a different URL to be assigned to each
function which allowed for the different types of transactions
to the database to be called by a different URL. Flask also
supports many third-party extensions to handle transactions
with relational databases [3].
SQLAlchemy was the third-party extension that was cho-

sen for the web-API. SQLAlchemy provided an easy means
to access both local and remotely hosted databases. SQLA-
clhemy is an object-relational mapping (ORM) tool which
maps entries in database tables to Python Objects to allow
for easy access and manipulation and thus required no ac-
tual SQL to be written in the development of the web-API,
simplifying development and maintenance [2].

3.2.2 Structure

The structure of the web-API was based on the Model-
View-Controller (MVC) design pattern that is commonly
used in software development. The MVC Pattern seperates
user interfaces and code dealing with user interactions from
the underlying data represented by the interface. This sepa-
ration allows for code to be well-structured, organized, and
makes the job of maintenance easier [5].
The model in the web-API consists of separate files for

each of the tables in the database. The files each contain
the code for where SQLAlchemy connects with the database,
and maps the table’s fields to python objects.
The controller, like the model, consists of separate files

for each of the tables in the database. The purpose of the
controller is to interact with the model and to perform the
transactions to the database that is requested from the view.
The controller files contain separate functions for each of the
different transactions that can be made to their respective
tables.
Since the web-API does not have a user-interface, there

is no traditional view. Instead, a single script that handles
the hosting of the web-API and incoming user-requests is
treated as the view.

3.2.3 Workflow

Thus given the technologies chosen and the structure of
the web-API detailed above, an example of a transaction
where all the fields of a table was requested would look as
follows:

1. The URL of the HTTP request to return all fields of
table runs the function that it is assigned to in the
view.

2. The function in the view calls the function in the spec-
ified table’s controller that is responsible for returning
all the fields in that table.

3. The function in the controller then queries the model
for the all the fields in the table to which the model
returns as a list of python objects. The controller con-
verts the python objects to a list that can be converted
into the JSON format and returns the list to the view.

4. The view converts the list into a JSON object and
returns it to the application that made the request.

Requests that update, add, or delete entries to the database
behave in a similar way, except they return a message if the
request was carried out successfully instead of returning a
JSON object.

3.3 Visualization Tool
The purpose of the visualization tool was to provide a

graphic visualization of the SEADM, similar to the one de-
picted above, as well as to provide the functionality to make
changes to the SEADM. However due to limitations found
in the visualization library chosen to create the tool, not all
features were able to have been developed. While the tool
was able to visualize the SEADM in the manner that was
intended, this came at the cost of removing the functional-
ity of editing the SEADM. Due to how late in development
the limitations were found, the overhead in terms of time
that come with starting from scratch with another library
meant that even the basic functionality would not have been
developed before the deadlines.

3.3.1 Technologies Used

The Flask micro-framework was again used, although in a
limited capacity. For the purposes of the visualization tool
it was used to host the tool on a webpage and handle URL
routing as well as get and update the tables on the database
using calls to the web-API.

Upon investigating options of frameworks/libraries to han-
dle the drawing of the SEADM, Vis.js, a dynamic browser
based visualization based library was chosen. Vis.js offers
several different types of visualizations, one of which was
that of a network diagram, which seemed most appropriate
for the purposes of this tool.

3.3.2 Limitations Found in the Vis.js

The major limitation found in Vis.js was that given a com-
plex data set with too many nodes and edges (questions and
transitions in the case of the SEADM), the tool would be-
have erratically and unpredictably. The visualization would
at times be drawn over the length of 3 screen sizes, or with
nodes and edges overlapping each other to the extent that
the visualization was very difficult if not impossible to fol-
low.

The solution to this problem was to reduce the number of
nodes and edges by combining some of the questions into one
node (similar to how some of the questions in the diagram of
the SEADM depicted above). However since the database
was not designed to cater for this sort of grouping, hard-
coding this grouping into the visualization tool was required
to produce an output that could be understood and followed
by a user.

This hard-coding of the groupings however meant that any
changes to the SEADM would offset the groupings severely
with some questions being incorrectly grouped with others.
Therefore the features that changed the structure of the
SEADM by adding or removing questions or transitions were
removed. However the feature to edit the text of a question
was still retained as that did not involve the changing of the
structure of the SEADM.

In summary, a neat visualization solution, one which could
be understood and followed by a user, could not be found
without the use of hard-coding elements to be grouped to-



gether. This then led to the inability to change the structure
of the SEADM. In the end the solution that was neat, yet
partially hard-coded was chosen.
To alleviate the issues caused by the limitations found in

the Vis.js library, the possible visualization libraries could
have been considered before the development of the database,
thus allowing any found limitations to be compensated for
in the design of the database.
An alternate solution would be to create a new custom

visualization library that ensures that all the needs of the
given visualization model is met.

3.3.3 Final State of the Visualization Tool

The final state of the visualization tool included the ability
to draw the SEADM in a manner that could be followed
and understood by user, but without the ability to make
structural changes to the SEADM itself. An image of the
visualization is depicted in the figure below:

Figure 5: The visualization of the SEADM created
by the visualization tool

4. SOFTWARE ENGINEERING PRACTICES

CARRIED OUT
The software engineering methodology practiced through-

out the development of the 3 elements of the project was sim-
ilar to that of the Rapid Application Development (RAD), a
methodology which favoured the rapid development of pro-
totypes over excessive planning [6].
This form of methodology was chosen given the time con-

straints of the project. This would allow for working pro-
totypes of the software to be available at any given stage
of development, thus ensuring that at least some working
functionality was completed by deadlines, with the more im-
portant functionality given a higher priority to be developed
first.

4.1 In the Development of the Web-API
During the development of the web-API, working proto-

types of different aspects were developed. For example, in
the initial phase, the functionality of the API regarding the
returning of information from the database in JSON for-
mat after receiving URL requests was completed without

any actual connection to the database as the data from the
database was mocked into the application. Only later in
the development was an actual connectivity to the database
established.

Early prototypes of the web-API involved monolithic code
(all the code for an application contained in a singular file)
and did not have any regard for structure. The MVC struc-
ture was only later implemented after early prototypes suc-
cessfully performed all the required functionality.

4.2 In the Development of the Visualization
Tool

Similarly to the development of the Web-API, early pro-
totypes of the visualization tool had no actual connectivity
to the database and instead relied on mock data. This was
to first establish a familiarity with working with the visual-
ization library to and to try to ensure that it was capable of
the visualization of the model.

5. CONCLUSIONS
As part of the SEPTT project, 3 major element were de-

veloped in order to provide services to support the devel-
opment of social engineering prevention and training tools.
While the database and Web-API service were successfully
developed, the Visualization tool fell short of the require-
ments.

5.1 Reflection on the Development of the Vi-
sualization Tool

The failure of the Visualization tool to meet the require-
ments set out was due to several factors. One of which was
that the development of the tool was left to last, as it re-
lied on both the database and the web-API to be complete.
Given the time-constraints involved, the development had
to rely on the functionality of third party visualization li-
braries, namely VIS.js. While initially VIS.js looked very
promising, its limitations only became apparent once it was
too late to start over from scratch, forcing the removal of
key features from the visualization tool.

In order to have created a visualization tool that met
the requirements, one of two aspects needed to have been
done differently. Firstly, a visualization library could have
been picked and experimented with before the design of the
database. This would have allowed for any limitations with
the visualization library to have been found early on and
for the design of the database to cater to these limitations.
Alternatively, a new custom visualization library could have
been developed with the specific needs of the project in mind
to ensure that there are no limitations that will hinder de-
velopment of the visualization tool.

5.2 Future Work
A possible avenue for improvement on what’s been made

would be to allow for the backend web-services to store and
provide access to multiple different versions of the SEADM.
This would allow for the development of versions of the
SEADM that tailored to particular situations or companies.

In the broader scope of the prevention of social engineer-
ing attacks, tools based on other means of detecting and
preventing such attacks other than the SEADM could be
considered. Their effectiveness in preventing attacks as well
as educating users about social engineering could be com-
pared with effectiveness of the SEADM.



References

[1] Monique Bezuidenhout, Francois Mouton, and Hein
S Venter. “Social engineering attack detection model:
SEADM”. In: 2010 Information Security for South Africa.
IEEE. 2010, pp. 1–8.

[2] Rick Copeland. Essential sqlalchemy. ” O’Reilly Me-
dia, Inc.”, 2008.

[3] Miguel Grinberg. Flask Web Development: Developing
Web Applications with Python. ”O’Reilly Media, Inc.”,
2014.

[4] Michael Hoeschele and Marcus Rogers. “Detecting so-
cial engineering”. In: IFIP International Conference on
Digital Forensics. Springer. 2005, pp. 67–77.

[5] Avraham Leff and James T Rayfield.“Web-application
development using the model/view/controller design
pattern”. In: Enterprise Distributed Object Computing
Conference, 2001. EDOC’01. Proceedings. Fifth IEEE
International. IEEE. 2001, pp. 118–127.

[6] Hugh Mackay et al. “Reconfiguring the user: Using
rapid application development”. In: Social studies of
science 30.5 (2000), pp. 737–757.

[7] Kevin D Mitnick and William L Simon. The art of
deception: Controlling the human element of security.
John Wiley & Sons, 2011.

[8] Francois Mouton, Louise Leenen, and HS Venter. “So-
cial Engineering Attack Detection Model: SEADMv2”.
In: 2015 International Conference on Cyberworlds (CW).
IEEE. 2015, pp. 216–223.

[9] Francois Mouton, Louise Leenen, and HS Venter. “So-
cial engineering attack examples, templates and sce-
narios”. In: Computers & Security 59 (2016), pp. 186–
209.

[10] Francois Mouton et al. “Towards an ontological model
defining the social engineering domain”. In: IFIP In-
ternational Conference on Human Choice and Com-
puters. Springer. 2014, pp. 266–279.

[11] Hanan Sandouka, Andrea J Cullen, and Ian Mann.
“Social Engineering Detection using Neural Networks”.
In: CyberWorlds, 2009. CW’09. International Confer-
ence on. IEEE. 2009, pp. 273–278.

[12] Yuki Sawa et al. “Detection of Social Engineering At-
tacks Through Natural Language Processing of Con-
versations”. In: 2016 IEEE Tenth International Con-
ference on Semantic Computing (ICSC). IEEE. 2016,
pp. 262–265.


