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ABSTRACT
Through the rapid development of smart-phone technology
in recent years, many smart-phone users have old devices,
equipped with useful technologies, that are no longer in
use. These devices are valuable resources that can be har-
nessed to improve users’ lives. This project aims at doing so
by helping improve road safety. An Android application –
MOVER (Mobile On-board Vehicle Event Recorder) – was
designed and built with the purpose of detecting car acci-
dents through the use of acceleration thresholds. Driving
data was gathered and crash simulations were run. With
this data, testing and analysis were conducted in order to
find as accurate a threshold as could be reached to separate
normal driving from accident situations. With this applica-
tion, users can leverage their mobile devices, be they old or
new, to improve road safety - for themselves, and their area
as a whole. A promising level of accuracy was achieved, but
significant improvements can be made to the application.
There is a wide gap for future work in the field, and hope-
fully through the development of this application, the door
can be opened for other researchers to investigate and test
such future work.

1. INTRODUCTION
The total number of users owning a mobile device has

grown significantly in the past decade [10]. Market penetra-
tion of mobile devices has increased, and significantly so in
developing countries [3]. Many Android devices, after users
have upgraded to a newer smart-phones, are left at home,
unused [10]. This is a waste of processing power as well
as useful sensor hardware. The processing power as well as
useful hardware of these mobile devices can be used every
day to improve users’ lives, without any additional costs to
users.

This project aims at harnessing the power of these unused
resources in such a way as to improve road safety. Users can
leverage their devices’ power while driving (in a way that
does not takes their focus away from driving) to help im-
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prove road safety for themselves as well as their area in gen-
eral. Through the use of mobile phone sensors, specifically
the accelerometer, an algorithm was developed that detects
collisions on the road in real-time, to an acceptable degree
of accuracy.

With the real time detection of car accidents on the road,
response times of emergency, traffic and police services to ac-
cident scenes can be significantly decreased. This has been
shown to lead to greater road safety and better traffic man-
agement in areas [16]. Although there are numerous projects
aimed at addressing the problem of accident detection in
cars, most of these propose solutions that rely on and re-
quire new technology that can be expensive or inaccessible
for most users. These solutions would also require a lot of
time before they can be expected to be implemented in a
large portion of cars on the road. By developing a mobile
application to detect car accidents in real time, the technol-
ogy required to solve the problem of accident detection will
be accessible to most users, thereby solving the accessibility
problem of other solutions that rely on newer technologies.
This solution can be implemented in any car, and thus can
theoretically be implemented by far more drivers in a far
shorter time space than other solutions.

An Android application, MOVER (Mobile On-board Ve-
hicle Event Recorder), was developed and tested for the pur-
poses of developing and testing an accurate and efficient al-
gorithm that can detect car collisions and other accidents.
Through the gathering and analysis of driving data and
crash simulations, appropriate accelerations thresholds were
set and tested that could separate normal driving from crash
situations.

The rest of this paper is structured as follows. Section
2 discusses the various ways in which Android devices have
been used to improve road safety and traffic management,
with subsections that explore solutions to monitoring traf-
fic, detecting when users are driving, detecting potholes, and
finally, detecting accidents. Section 3 describes the devel-
opment of the MOVER Android application. Section 4 de-
scribes how testing was done on the application and how
data was gathered and analysed, followed by how the test
data was used to develop an algorithm and threshold to de-
tect collisions. Section 5 goes through the results of testing
the final version of the application, Section 6 discusses these
results, considers the shortfalls of the project, and indicates
how they could have been mitigated. Section 7 breaks down
the conclusions made from the results, and finally, Section
8 suggests what future work can be done to improve the
application, or build on top of it.



2. BACKGROUND
Research aimed at integrating smart-phone technology into

users’ cars fall into three categories, namely adding conve-
nience while driving, gathering and providing data on traffic
situations and improving road safety. There is also research
that looks at the same areas, but focuses on improving tech-
nology within cars, or building external infrastructure, in-
stead of using mobile phones [5, 6, 11, 14]. The approach
of adding technology to cars or building external technology
specifically aimed at addressing these areas will take consid-
erably longer, and will bear considerably more cost to users,
than developing mobile applications. Users can download
and use a mobile app without any considerable cost in time
or money. This makes the mobile application approach a
far more accessible one than the approach of developing ex-
ternal technology. It is important to note that users should
not be using their devices while driving, as this has proven
to cause a lack in focus on driving and decreases overall
road safety [13, 18]. Thus, applications developed for the
project’s purposes must run in the background, without the
requirement of user input during driving. Distracting audio
or visual outputs must be avoided for the same reason.

2.1 Traffic monitoring
An Android application, DriveAssist [9] was developed to

provide a user interface for data collected from Vehicle-to-
X (V2X) services that come built with many modern cars.
This service, comprising of Vehicle-to-Vehicle and Vehicle-
to-Infrastructure systems, gathers information from all cars
connected through a wireless network to provide traffic knowl-
edge to users relevant to their current area. Users are able
to – in real time – view incidents on the road that are near
them, so as to avoid danger, as well as find alternate routes
where and when necessary for arriving at their destinations
with less delay [9]. This application is an inefficient solu-
tion to the problem faced in this project because it relies
on technology outside of the user’s smart-phone. The V2X
framework is only found in a small proportion of cars that
are on the road, only introduced in 2012, and first imple-
mented in 2013.

2.2 Driving detection
One way in which smart-phones can aid in improving road

safety is to protect users from the smart-phones themselves.
Through driving detection, a device can be locked, essen-
tially preventing the driver from using their phone in a way
that impairs their driving ability.

Chu et al [8] developed a Driver Detection System (DDS)
which uses smart-phone sensors to detect when a user is
driving a car. The system is able to, with a success rate of
over 80%, recognise when a user is inside a moving vehicle,
as well as detect when a user is the actual driver of the ve-
hicle. This is done through the processing of various micro
patterns that separate passengers from driver. For example,
a driver will regularly move their right foot to manoeuvre the
driving pedals. The intended application of the system is to
prevent drivers from receiving notifications on their phones
while driving, for increased road safety. Another applica-
tion of the system is driving analytics for insurance com-
panies, who would be able to track their customers driving
habits and adjust premiums and such accordingly. Though
the DDS system can be implemented in any car, with the
only requirement being that the user has a smart-phone, the

system does not achieve the projects aim in significantly in-
creasing users’ road safety, or make the activity of driving
any more convenient for users.

2.3 Pothole detection
Mednis et al. [15] explored the concept of using smart-

phones to automatically detect potholes while driving. They
proposed a system in which road authorities would have ac-
cess to automatically generated statistical data related to
damaged areas on the road, allowing the fixing of damaged
areas to happen in a more efficient and organised manner.
Four different detection algorithms were tested, all using
the accelerometer sensor found on most Android devices. A
success rate of over 90% was achieved on a test track over
multiple runs, showing the effectiveness of the algorithms
tested as well as the developed software. This application of
Android devices in cars does not require any other technol-
ogy, making it widely available to all car and smart-phone
owners. But this system is a solution for road maintenance,
and does not significantly improve users’ lives while they are
driving.

2.4 Accident detection
Accident detection can be vital with regard to preventing

as much harm as possible to those involved in accidents.
Often, the biggest problem in preventing permanent injuries
is the time taken for emergency services to be notified about
an accident, fetch whoever was injured and deliver them to
the nearest hospital. Through accident detection systems,
this time can be reduced considerably, which could result in
far less permanent injuries and deaths on the road. Another
application for accident detection is for insurance purposes.
Being able to track where and when customers were involved
in road accidents will be very useful to insurance companies.

Lahn et al [12] used Android smart-phones and their sen-
sors to detect car crashes using a software application that
makes use of a pipeline architecture to filter and combine
sensor data in order to recognise crashes. Their applica-
tion was very good at recognising crashes, with 100% of
test data crashes recognised. But they had a problem with
false negatives, where the application would detect a crash
where there hadn’t been one. This solution to car collision
detection is very relevant to the project and was be closely
studied with the intention of improving on their application
and algorithm.

WreckWatch is an Android application developed in 2011
by White et al. [17] which proved to be very successful in the
detection of car accidents. It was developed as a means of
increasing road safety, with the driving idea behind it being
that a decrease in emergency services response time to ac-
cidents and an increase in the situational awareness related
to an accident would decrease road injuries and deaths [16].
The application makes use of a well-tested algorithm, with
inputs from multiple sensors on a users smart-phone, which
determines if a given circumstance is indeed a car accident
or not. When a user’s phone detects an accident, it auto-
matically sends data related to the accident to emergency
services, including geographic location and user medical in-
formation, who then are dispatched to the scene of the acci-
dent. WreckWatch also allows for bystanders of accidents to
report on an incident. Witnesses to an accident can provide
additional information to emergency services, or notifying
them of the accident in the case where the drivers phone has



been destroyed, or the driver doesn’t have the application
installed on their device. Through information sent to emer-
gency services via victims’ and bystanders’ devices, a higher
situational awareness is given to the emergency services dis-
patched to the scene of the accident. This higher situational
awareness allows for more efficiency in dealing with the prob-
lems associated with the accident [4]. The application runs
on a client-server architecture model, with user information
stored and various computations done on the server, and
each user’s smart-phone device acting as a client, sending
requests to the server. This solution to accident detection is
low cost to users, who only need a smart-phone to take full
advantage of the application’s features.

Zaldivar et al [19] developed a similar system to Wreck-
Watch, the key difference being that instead of relying on
Android sensors to detect accidents, an On Board Diagnos-
tics II (OBD II) interface is used, a system built into the ve-
hicle with various sensors to detect faults and accidents. The
OBD interface then communicates through wireless technol-
ogy with a user’s smart-phone that then alerts emergency
services of an accident. Although ODB technology has been
required in all cars manufactured since 2001, it is not found
in older cars, making this solution not applicable to as wide
an audience as that which WreckWatch is applicable to, with
the ony requirement being that a user has a smart-phone.

3. PROTOTYPE
The MOVER application was developed as a prototype

application to illustrate a concept with focus being kept on
time-efficiency. This allowed a significant amount of time to
be available for testing and data gathering. Basic function-
ality was implemented: a log-in and sign-up screen, and a
main activity that displayed current accelerometer value as
well as GPS position. Accompanying the values in the main
activity is a Google map fragment showing current GPS po-
sition.

The application communicates with a server through HTTP
requests, allowing for secure log-in and sign-up, as well as
the posting of accident data. All requests are translated into
SQL database queries for communication with a database lo-
cated on the server. The final prototype was released as a
Beta version to the Google Play store, and can be found at
the following link: goo.gl/WJzG48.

Logging functionality was implemented, where accelera-
tion data is written to a local file stored on the mobile device
running the application. Acceleration values for logging are
taken with a time resolution of 0.3 seconds, recording the
maximum acceleration value achieved every 0.3 second win-
dow.

4. TESTING METHODS AND ALGORITHMS

4.1 Approach
Testing of the MOVER application was done through gath-

ering drive data from car trips driven with an Android phone
running the app, as well as crash simulations, performed
with shopping trolleys. With these tests, normal driving ac-
celeration patterns were recognised and categorised as well
as various crash situations. Through the analysis of the test
data, threshold acceleration values were reached that sep-
arated normal driving from certain collisions. All normal
driving and crash simulation data can be found in a shared

Figure 1: Screenshot of Mover application

Google Drive folder at the following link: https://goo.gl/0IfrBX.
While the application is running, acceleration values are

logged to a local file on the device. Every 300 milliseconds,
the maximum acceleration value measured for that window
is written to file. These log files were used for the analysis
of acceleration data gathered during testing.

4.2 Gravity and Filters
Android accelerometer data comes as a 3-dimensional vec-

tor. Using each dimension of this vector individually was not
a viable option for accident detection, because the orienta-
tion of the recording device in a car could not be ensured.
Thus, only the magnitude of the acceleration vector was used
for testing and analysis.

Raw accelerometer data captured from android phones,
is only 0 when the phone is free falling. While the phone
is at rest, the accelerometer will read at approximately 9.8
m.s-2, because of the force of gravity. To normalise accel-
eration data, gravity was accounted for, by subtracting 9.8
from every acceleration value received followed by taking
the absolute value of the subtracted result, ensuring only
positive values were recorded.

A low pass filter was also used to test if such a filter could
allow for more efficient identification and classification of
acceleration spikes. Since collisions will result in a spike in



acceleration, this would be very useful for collision detec-
tion. However, the filter proved to in fact cause these spikes
to become less efficient to identify. Hence, only the raw ac-
celeration values – with gravity accounted for – were used
for analysis.

Figure 2: Example of acceleration data with raw val-
ues, values with gravity accounted for, and filtered
values

4.3 Crash Simulation Environment
Real car crash data could not be used for analysis in the

search for accurate threshold values to use for collision de-
tection. Crash simulation data was gathered by crashing
shopping trolleys in numerous different crash situations. It
was decided that trolleys were the closest thing to cars that
were available to crash. Although real car accident speeds
could not be achieved with trolleys, data from trolley crashes
could be extrapolated reliably to mimic the data that would
be generated from a high speed crash. For the tests, a mobile
device was fixed to a trolley, by means of cable ties, and the
application was run on the device, recording all acceleration
values, while the trolley was put through various different
crash situations.

5. RESULTS

5.1 Driving Data
Normal, non-crash driving data were collected by running

a number of tests where the application recorded accelera-
tion values while driving certain distances in a car. Driving
tests ranged in distance from 10km to 500km. All data were
logged to a local file, and for analysis, the data were then
graphed, as shown in Figure 3. This example graph visu-
alises acceleration data from a long-distance driving trip of
approximately 3 hours. The x-axis represents each 0.3 sec-
ond window that acceleration data was recorded at, and the
y-axis measures magnitude of acceleration (in m.s-2).

A total of 10 tests drives were performed. This number
was limited to the availability of a car. However, aggressive
driving techniques were used in order to achieve higher than

normal acceleration values during drives. Aggressive driv-
ing techniques included both accelerating from stand-still as
quickly as possible (Pushing the accelerator to the floor), as
well as hard breaking to stop.

Figure 3: Example of driving test with approxi-
mately 500km covered

The maximum acceleration value recorded during the driv-
ing tests was 14.84m.s-2, which probably happened during
a sharp brake action.

To consider boundary cases, where acceleration values
while driving may be similar to those of a crash, extreme
cases were looked at. The fastest 0-100 km/h acceleration
in a car on record took 1.513 seconds[2]. The equation of mo-
tion below can be used to calculate the acceleration achieved
in this record.

V elocityfinal = V elocityinitial + Acceleration ∗ T ime

100 km/h equates to 27.77 m.s-1.

27.77 = 0 + Acceleration ∗ 1.513

Acceleration = 27.77/1.513

= 18.36 m.s-2

Although there is no world record for braking accelera-
tion, the Bloodhound Super Sonic Car (SSC) was used as an
extreme braking case. The Bloodhound SSC was designed
to break land speed records, and can travel at speeds above
1600 km/h. At full braking force, the car’s velocity decreases
by approximately 66 miles per hour, per second[1]. Or 105.6
km/h per second. Using the same equation as above, this
translates to an acceleration magnitude of approximately
29m.s-2.

Clearly these extreme case values are well above what val-
ues can be achieved in normal driving conditions. They serve
as outlier cases that mark acceleration points below which
all normal driving data falls.

5.2 Crash Simulation Data
Tests for crash situations were conducted by attaching a

mobile device to a shopping trolley and acting out various
crash situations. Two main crash situations were tested:



collisions with a wall, and collisions with another trolley.
Two separate crash tests were performed, with a total of 13
collisions. The speed at which collisions were tested ranged
from 5km/h to 15km/h (fast walking to moderate running
speeds). All data was logged, just as was done for the normal
driving data, to a local file, and the data was then graphed.
Figure 4 shows an example of a crash test graph, containing
acceleration spikes from two separate collisions.

In this example crash graph, there are clearly two accel-
eration spikes, which both correspond to crashes against a
wall. The first spike is considerably larger than the second,
and this is due to the different speeds at which collisions
took place across the different crashes. The first collision
was tested at running speed, approximately 15km/h, while
the second crash only happened slow jogging speed, approx-
imately 10km/h. This accounts for the different acceleration
spikes shown on the graph.

Figure 4: Example crash simulation with two colli-
sions

Wall crashes were either head on, running the trolley straight
into the wall. Or they were side on, crashing into the wall
at an approximately 45 degree angle, as shown in Figure 5
below. Crashes with other trolleys were either head on with
the other trolley standing still, or head on with the other
trolley moving towards the crash trolley.

Different crash situations all showed different spike pat-
terns and magnitudes. For example, direct collisions with
the wall, as shown in the top right of Figure 5, produced ac-
celeration spikes considerably higher than side on collisions,
shown in the op left of Figure 5. Figure 6 is a graph rep-
resenting four crashes, the first was a direct wall collision,
and the next three were side on. All collisions were tested at
similar speed, but the direct crash has a considerably higher
acceleration spike than the side on crashes. This is because
a direct crash causes the vehicle to come to a complete halt
during the collision, blocking its entire path. In a side on col-
lision, however, the wall is only blocking part of the vehicle’s
motion, and the vehicle will continue to move (in a slightly
different direction) after the collision, therefore not feeling
the same force (and acceleration change) that would occur
in a direct collision. Similarly, collisions with one stationary
trolley produced smaller acceleration spikes than collisions
with trolleys moving towards each other.

Figure 5: Sketch showing different crash test sce-
narios

Figure 6: Crash graph showing 1 direct collision and
3 side on collisions

The maximum acceleration spike from a test crash was
23.82 m.s-2, while the minimum was 10.55 m.s-2. Al-
though these values can be argued to be similar to values
achieved with normal driving – especially for the minimum
spike value – the tests were performed at very low speeds,
and the results can be extrapolated to give an estimate of
acceleration values achieved from similar crashes that occur
at higher speeds.

5.3 Threshold
20m.s-2 was used as the threshold value to separate nor-

mal driving and collisions. This value, which is substantially
higher than any acceleration value achieved through normal
driving tests, was chosen conservatively. False positives – de-
tecting collisions without there being any collision – should
be completely avoided through this high threshold value.
Avoidance of false positives means that no resources will be
wasted or alarm raised for situations that aren’t accidents
on the road. While some very low speed collisions (Car trav-
elling at less than 20km/h) may not go above the threshold,
any serious collision will cause acceleration to surpass the
threshold, thus resulting in successful detection through the



application.
After the final threshold was finalised, the data from the

already completed driving tests were run trough the appli-
cation manually, confirming that no false positive collision
was detected. Another aggressive driving test was carried
out as well, also resulting in no false positive detections.

A final trolley crash test was also conducted. Crash test
speeds were higher than in previous trolley tests – at least
12km/h – and this ensured that collisions were detected in
every crash. There were no false negatives, where no colli-
sion was detected despite there being an actual collision that
occurred. All collisions were detected successfully.

Figure 7: Final Trolley Crash Test

6. DISCUSSION
Due to the limited time and resources available for the

completion of this project, compromises had to be made re-
garding the development and testing of the application. Far
more can be implemented in terms of features within the
app, allowing users to view and interact with their driving
data from within the app itself for example. App design was
not put into major consideration and many improvements
could be made on the look and feel of the application, allow-
ing for automatic log in, by remembering user’s credentials
for example.

Testing of the application was also done in a limited ca-
pacity. Far more driving data could be captured. Crowd
sourcing could be used to gather data pertaining to differ-
ent cars in different areas, and through the gathering of sub-
stantially more driving data, more accurate results could be
achieved. Crash simulations, although useful, could also be
improved by using real cars in real accidents. This could be
done through crowd sourcing as well, or by using crash test
operations that already crash cars on a regular basis. In ad-
dition to improving the quality of crash tests, the quantity
of tests could also be increased to gather more crash data
for analysis and possibly improve the accuracy of collision
detection.

7. CONCLUSIONS
The final tests of the application with the threshold in

place show that success was achieved in implementing a col-
lision detection tool using android mobile devices. Normal
driving is highly unlikely to trigger a false positive collision
detection due to the high-valued threshold. Collisions that
occur at low speeds, however, may go by undetected due to
acceleration not exceeding the threshold. False negatives,
where a collision occurs but goes by undetected, could only
happen at speeds below 15km/k, or for very minor collisions,
for example knocking a side mirror into a street light.

Although a promising level of accuracy was achieved in
collision detection with this project’s outcome, it can defi-
nitely be improved upon. Using only a basic threshold can
be improved by means of other analytical techniques, for
example processing the data around periods of spiked ac-
celeration to confirm or deny a collision. Another possible
improvement could be the inclusion of machine learning to
analyse all crash and normal data [7]. Using gathered data
from users of the application, an algorithm could continu-
ously learn how to better differentiate between the patterns
found in the data related to different situations. Hence being
able to detect collision more accurately.

The application lends itself to solutions in traffic moni-
toring and management areas, and functionality could be
built in to show users data regarding their surrounding area
and traffic. Insurance companies may be interested in the
application as they could track their clients driving habits,
adjusting premiums depending on your driving history. Al-
though there are already solutions available that insurance
companies use, most of them rely of technology that can be
expensive. Using users’ mobile phones as sensors instead
would be far cheaper and easier to implement across a com-
pany’s client base. Emergency services could also use the
application to help lower their response times, possibly us-
ing the application to send them alerts whenever a collision
is detected. All these applications require additional fea-
tures and functionality to be built on top of the application.
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