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ABSTRACT
Each year the stockpile of old and new Android smartphone
devices increases [21]. In addition, the functionality and
hardware capabilities increase and many older devices, fully
and partially functional, are replaced. The underutilized re-
sources can be and have been re-purposed. South Africa
has a rich running, outdoor activities culture, and a strong
Android mobile-device presence [3]. Outdoor activities have
risks though; participants are often isolated, terrain can be
uneven and dangerous, and there are incidents of crime [23,
17, 22, 8]. Re-purposed smart devices has successfully de-
tected motor-vehicle accidents [2, 16], geriatric falls [24],
devices’ accelerometers have sufficient sensitivity to iden-
tify potholes when a road’s quality deteriorates [9, 7] and
reckless driving, [4]. Identifying falls among runners shared
approaches with these previous works; magnitudes of the ac-
celerometer’s value vectors were recorded at increasing run-
ning speeds while the runner carried an Android device in
an arm-band, pocket, or backpack, and along various routes.
In addition; magnitudes were also calculated and recorded
while simulating falls a runner may experience. A static
magnitude threshold of approximately 15 detected nine out
of 10 falls on a final obstacle course but false-positives were
numerous. Reducing false-positives may require reanaly-
sis of fall magnitudes, analyzing proceeding and preceding
magnitude values would provide context whether a relative
magnitude is abnormal, or a combination of both. Further;
the field includes potential for various machine-learning or
learning-algorithms due to the physical differences between
runners and preferences of running style and equipment.
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1. INTRODUCTION
The total number of smartphones (specifically entry-level

or budget) increases every year. Smartphone technology is
becoming more powerful and the costs are decreasing [6].
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Increased turnover is further promoted by many cellular
contracts offering a new smartphone every few years and
a cultural demand for the most recent mobile devices. De-
creasing costs allow entry-level devices to have Global Posi-
tioning System (‘GPS’) and accelerometer capabilities, ca-
pabilities which may only have been available to high-end
smartphones until recently. Further; mobile penetration is
increasing (especially in developing countries)[3] which ex-
tends these capabilities to members of countries which may
lack technical infrastructure.

An increasing total number of smartphones results in un-
derutilized computational power of millions of smartphones,
and potential pollution. Many smartphones may be thrown
away if they can no longer be used as intended (the speaker
phone or touch screen is not fully responsive) or are replaced
and despite recycling this can create electronic waste, bat-
teries which contain Lithium and various metals (Cobalt,
Nickel, Silver) can leak [15]. These devices can be (and
have been) effectively re-purposed; functions including in-
car parking meters.

These concerns are not Android specific but the Android
platform is often chosen because the Android operating sys-
tem (‘OS’) is well-maintained and open-source which allows
modifying the OS to run on less powerful devices or for a
specific purpose. Android devices have also gained wide
use in developing countries and worldwide [21, 19]. The
sensors available vary between devices but sensors like ac-
celerometers and GPS have become standard since Android
2.3 (Gingerbread). Gingerbread was released in 2010 and ss
of September 5 2016, there are only 0.1% Android devices
running an OS older than Gingerbread [13]. Therefore there
is a large pool of potentially underutilized Android smart-
phones which can provide rich sensor functionality.

The Council for Scientific and Industrial Research (‘CSIR’)
has developed the Mobile On-Board Vehicle Event Recorder
(‘MOVER’) project which aims to detect motor-vehicle col-
lisions and high-impact runner events which may cause in-
jury. In addition; there is a specific focus on re-purposed
Android devices as they align with the economic environ-
ment of South Africa, it is a developing country and Android
devices are some of the cheapest smartphones. Re-purposed
devices have found use in multiple fields; motor-car acci-
dent collision, human-machine safety in manufacturing, and
road-condition analysis [9, 7, 2, 4, 16, 5, 20]. South Africa
has a large community and culture of running and interac-
tion with nature; these interactions include competitive and
recreational road running, trail-runs, and hiking. These ac-
tivities include an aspect of isolation, which many enjoy, but



there are also risks; there have been instances of runners or
hikers falling and injuring themselves, getting lost, and being
physically assaulted when the locations are located near city
centres which have areas of high crime and poverty rates [23,
17, 22, 8]. It is often recommended a hiker or runner keeps
a mobile device with them (and is often a requirement for
trial run events) but they may not have the opportunity to
contact emergency services as they may not be conscious or
have access to their mobile device if they have been injured
or attacked.

Could past approaches of collision or fall detection using
Android smart-phones be extended to runners?

Accelerometer values must be sampled from use-cases which
a smartphone would experience during regular usage in the
context of a runner. During a trial-run or road run, a phone
is likely to be in three different locations; the runner’s arm-
band, the runner’s front or back pocket in their pocket, or in
a backpack which is often a requirement during a trial-run
by the event organisers.

Section 2 will discuss the reason for choosing the Android-
based mobile-devices, the accelerometer functionality avail-
able to these devices, and previous work which re-purposed
the devices. Section 3 will discuss the chosen method for es-
tablishing a fall detection threshold and considerations and
adjustments which had to be made to capture and log the
accelerometer values and various events while performing
trials.Section 4 discusses the different routes and environ-
ments under which accelerometer values were captured with
the goal of satisfying as many of the experiences a mobile-
device carried by a runner would undergo. Finally; Section
5 will discuss and display notable results from the various
trails, highlight the analysis process which determined a fall-
detection threshold, and any complications which were ex-
perienced.

2. BACKGROUND

2.1 Android Operating System and Mobile De-
vices

Android is an open-source operating system (‘OS’) de-
veloped by Google implementing and Linux-based kernel.
Unlike closed OS’s implemented by some alternate mobile-
device developers and producers, Android promotes improve-
ment and re-use, some Android-based devices allow custom
firmware by default without any further technical involve-
ment from the end-user or developer [12]. Therefore, entry-
level smartphones significantly lean towards Android be-
cause performance and features can be catered and stripped
to match the hardware capabilities of these devices. Android
based devices are ideal for re-purposing.

2.2 (Android) Accelerometer
An accelerometer is a component which measures forces

applied on the device across three axes of movement; x-axis,
y-axis, and z-axis. The units are metres per second squared
(m/s2). Accelerometers used in smartphones introduce an
interesting use-case as the device is mobile along all three
axes i.e. the device can be moved in a three-dimensional
space and rotated. Given this; the three axes are not con-
stant with the ground (and thus gravity) as the three axes
are constant with the sides and face of the mobile-device
[11].

Figure 1: A diagram indicating the direction of
movement and association with the three axes of
a mobile-device

Given the definition of the diagram; the z-axis will always
been associated with the face (screen) of the mobile device,
the y-axis with the sides of device associated with its width
etc.

The values returned by the accelerometers include the ef-
fects of gravity and are a vector i.e. a stationary device
will reflect an approximate accelerometer value of 9.82 m/s2

along one of the three axes associated with gravity.

2.3 Previous Work
Re-purposing Android devices for accident collision has

leaned towards motor-vehicles, with success, and the ac-
celerometer was the one sensor consistently utilized between
works [26, 2, 27, 16]. Few works have focused on runners but
success of works focusing on pothole detection, reckless driv-
ing, and road quality identification (which don’t include as
large accelerometer forces as accidents) indicates that a run-
ner’s fall or collision is likely to be within the capabilities of
accelerometers.

Several works have attempted to implement other sensor
types like microphone and light in addition to an accelerom-
eter but the improvements in accident collision were minimal
[26]. Detection of accidents were mostly achieved by either
matching accelerometer templates or thresholds.

2.3.1 Reckless Driving Detection
Drunk driving detection was achieved with pattern match-

ing. Researchers established a template for various actions
which indicate reckless driving. If recorded data matched
multiple established templates, the chances that an occu-
pant is drunk or driving recklessly would increase. The cues
included; weaving, drifting, swerving across lanes, acceler-
ating or decelerating suddenly, braking erratically and stop-
ping inappropriately, slow response to signals, no headlights
and wide turns. Swerving and drifting affects lateral accel-
eration, abnormal side to side movements (drifting across
lanes). Spastic acceleration affects longitudinal acceleration
(front-to-back). Instead of relying on mounting the device,
calibrating to the orientation was implemented, this makes
more sense considering a drunk driver or reckless driver is
unlikely to go through the effort of mounting a phone.

2.3.2 Car Crash Detection on Smartphones
[16] considered the use of their application as a produc-



tion application, if a suspected accident occurred, the lo-
cation of the incident was recorded. A g-force threshold
using accelerometer values was established whereby it could
stated, any values greater than the threshold were not pos-
sible under regular driving conditions. ‘Regular’ conditions
included hard-braking and rapid acceleration, and dropping
the smartphone during usage. The smartphone was not
mounted, and thus forces exerted on the mobile by intended
usage were established; carry the mobile in a pocket, walk-
ing around, walking up stairs. This threshold was approx-
imately 3g ’s. Dropping the mobile has a distinctive pat-
tern. Testing the algorithm with real motor collisions is not
feasible; the paper acquired test data by the US American
governmental database which provides free velocity and ac-
celerometer data from motor-vehicle test crashes [16, 1].

2.3.3 Pothole Detection and Road Quality Approxi-
mation

Pothole detection and road quality estimation would be
impossible without the accelerometer (except in one case).
The paper records accelerometer values along all three-axes
when a driver encounters an incident of deterioration in road
quality [9] i.e. sudden drops into a pothole or ditch [20],
wobbling to the left and right on uneven roads. Isolating
pothole detection and recall to only the local device was not
feasible as a driver is more likely to avoid the same pothole
along a route often traveled - there is little benefit indicat-
ing a driver has experienced a pothole when it was first-hand
experienced by the same driver. Therefore; crowd-sourcing
was also a focus for the paper. Pothole data is uploaded
from each device running the application to a central server,
and other drivers running the application benefit from oth-
ers’ data [7]. Crowd-sourcing benefits the driver, but papers
stated the opportunity for government programmes or de-
partments which focus on road maintenance to use recorded
data and confirmed data by crowd-sourcing to preempt seri-
ous road quality deterioration. Further; if a driver is notified
that a road has poor quality, the driver is likely to avoid the
road and thus further prevent additional deterioration.

2.3.4 ICEDot Crash Sensor
ICEDot is a retail product which is marketed towards cy-

clists. It is a bluetooth device which attaches to the helmet
of a rider and if critical forces are detected (as quoted on the
website) the mobile-device will send an emergency response.
The ICEdot includes the same sensor types as most smart-
phones; the common triple-axis accelerometer (a x, y, and
z axis as discussed) which costs approximately 1.00 USD,
and a triple axis gyroscope which is not often included with
entry-level smart-phones because it is a more expensive com-
ponent than an accelerometer but is still often included in
the higher prices brackets, gyroscopes are required for most
Virtual Reality and Augmented Reality mobile applications
[14].

3. ESTABLISHING THRESHOLDS
There are two approaches from previous works which could

determine a potential runner collision; either the forces of a
collision upon a mobile-device are established and if those
forces are met, an collision has occurred. Alternatively the
forces upon a mobile-device during expected usage are estab-
lished and if forces which are outside of the expected range
occur, a collision has likely occurred - establishing a thresh-

old. ‘Expected usage’ is a runner storing the mobile-device
in either their pocket, arm-band or backpack, and using the
device during various running speeds (some more vigorous
than others), on various path types, bypassing obstacles.

The chosen approach must minimise false-negatives and
false-positives. Context; false-positives occur when it is de-
termined an accident has occurred, but there has not be an
accident. False-negatives occur when no accident has been
determined, but there has been an accident. False-negatives
would have the greatest consequences as a runner may gen-
uinely be injured and potentially unconscious but emergency
services are not notified. False-positives have a larger fi-
nancial consequences as rescue services may be dispatched
unnecessarily.

Accelerometers alone were used as the sensor of choice
because previous works have had successes with accelerome-
ter usage alone. Though gyroscopes and linear acceleration
sensors would be useful (some of which are virtual and not
hardware based), the sensors are not available to entry-level
smart-devices, even if the device has been released recently
as the sensors are more expensive than accelerometers.

The three-axis accelerometer system described in 1 is prob-
lematic because evaluating values across individual axes can-
not be easily isolated, and a mobile-device in expected use
will seldom have forces invoked solely on one axis. There-
fore; the magnitude of the vector opposed to analysing forces
upon individual axes is calculated. In addition; a low-pass
filter was implemented to remove the effects of gravity (as
recommended and outlined by Android in their developer’s
sensor documentation). A low-pass filter and a magnitude
value negates having to establish the orientation of the mobile-
device for each accelerometer vector, and establishing an
axis-dependent collision algorithm. In addition; if gravity is
not filtered it will exaggerate magnitude values; this won’t
affect collision detection between it is relative but gravity
filtering (or non-filtering) must be consistently applied.√

(x)2 + (y)2 + (z)2

The aim of establishing an accident threshold requires the
data being acquired in an environment emulating use-cases
of the mobile-device would undergo when in use by a runner
as close as possible. This requires considering the physical
environment and physical events a runner may experience,
as running and trail-running is a physical sport, but is unfor-
tunately not constant as running can be performed almost
anywhere. The three environments considered which should
cover most variations are roads (which are designed to be
as flat and constant as possible), hills, and uneven trail-
running like environments which potentially include climb-
ing or jumps (an obstacle-course of sorts).

Extending this; it is necessary to consider how a runner
would realistically keep a mobile-device with them during
the duration of a run. Mentioned earlier, these locations are
likely to be in a runner’s arm-strap, a runners pocket, or
a runners backpack. These are also listed in order of how
much movement the mobile phone may experience. Though
a mobile-device stored in an arm-strap will move through
the greatest range-of-motion (ROM), the device is likely to
be the most constrained by its container.

3.1 Logging
Log files are created for each trial and magnitude values

are logged with a timestamp. Further; a stopwatch was used



for each trial to determine the speed of movement.

3.1.1 Logging Interval
Magnitudes were initially logged every five seconds but

this interval was too long for sprints, there were too few data
points as a sprint likely lasts less than a minute. Logging
was decreased to one second; this interval was sufficient for
most trials but was too large collision events as climbing,
jumping, falls etc. last less than a few seconds (climbing
over a structure is a longer event but dropping from the
structure to the ground or another structure is the former) -
the changes in sensor readings during impact periods could
not be captured with the original interval. Logging interval
was finally decreased to 1/8 of a second.

4. TESTING ENVIRONMENTS
For each environment, consistency is key; a single route

was chosen which best emulates the average instance of that
environment for a runner, the same distance was traveled
for each trial, the same direction, and preferably maintain
average speed per trial with minimal deviation. The envi-
ronments are described below, and any routes indicated on a
Google Map has personal identifiable information removed.

4.1 Road

Figure 2: Google Maps screenshot indicating the
route and distance of the path approximately fol-
lowed each road trial

Figure 2 represents the most basic environment a runner
would encounter; a flat public road in a neighbourhood. The
route is approximately 450 metres (m) and includes running
onto and off pavements (road safety).

Figure 3 indicates the route during a sprint, this route is a
subset of the road route as a runner will often intermittently
sprint shorter distances during their route. Sprints were
approximately 62m long (three lamp-posts).

Figure 3: Google Maps screenshot indicating subset
of the road route which was sprinted

Figure 4: Google Maps screenshot indicating the
route and distance of the path approximately fol-
lowed each hill trial)

4.1.1 Hills
Figure 4 has a constant gradient of 6.9% (a change in

elevation of 6.779m) [18] and is approximately 98m long.
Moving up the hill and moving down the hill were treated
as separate trials.

4.2 Simulated Falls and Obstacles
As discussed in previous works, falls (or car crashes) can-

not actually be performed because there is risk for injury and
mobile-device could potentially be damaged, thus simulating



the collisions as close as possible to the real event without
creating risk is necessary [2]. Falls were simulated by falling
onto a mattress which was 32 centimetres (cm) thick. There
is variation between mattresses; some are softer than others,
the springs are old and worn and do not resist force as ex-
pected etc. The mattress will act a lot like a car’s airbag, it
decreases the deceleration rate [10]. The definition of force
is;

force = mass x acceleration m/s2 [25]
If acceleration (negative acceleration) is decreased, force

is decreased. Therefore, the more cushioning the mattress
provides, the smaller the forces will be exerted, and falling
to a hard floor which creates sudden negative acceleration
will result larger forces. The various obstacles a trial-runner
may encounter during an event or trial was considered; the
runner may encounter rocks or walls of some sort which will
require climbing over, the runner may be required to jump
with most jumps being a small hop over an object in the
route but also some larger knee-height objects (or a jump
requiring a knee-height jump to satisfy the distance), and
falls. A structure was chosen which may emulate a runner
climbing over a rock shelf, wall, or boulder.

Figure 5: The climbing structure. The direction of
movement is indicated by arrows.)

5. RESULTS AND DISCUSSION
Average magnitude readings are established for regular

usage; running, walking or sprinting (run-events) with the
mobile-device contained in either an arm-band, pocket, or
backpack. The upper-bound of deviation should be noted
because these magnitudes are most likely to generate false-
negatives if there is overlap between simulated falls (fall-
events). Following; simulated falls for each expected use-
case must be compared i.e. a simulated fall while running
with the average runner magnitude values, a simulated fall
while sprinting with the average sprinting magnitude val-
ues etc. If the fall magnitude values are greater than the
average magnitude values during expected usage, a ’greater-
than threshold’ accident logic can be implemented but this
does not negate false-positives; flagging the event as a po-
tential accident and considering the context will be required
if this situation occurs. If simulated fall magnitude values

are not greater than the average magnitude values, or close,
the probability of false-negatives will increase as the simu-
lated fall magnitudes approach the expected magnitude val-
ues (and vice-versa). If the latter, a threshold accident logic
will not suffice in the context of runner accident collision and
either there will need to be a greater focus on context or the
algorithm for runner collisions will need to be reconsidered.
It is important to note that runners unlike motor-vehicle or
bicycle collisions do not implemented suspension and break-
ing systems which may reduce the variation of magnitude
values.

There is likely variation between the various ways to carry
the mobile-device. This is expected but it may create inter-
action between average magnitude values and magnitudes
of simulated falls for other run-events which will increase
the chance of false-positives. False-negatives are least likely
because magnitude values for fall-events would need to less
than average values of expected run-type magnitude values.
The preceding sentences support the use of context; there
may be an average change between magnitude values pre-
ceding shared between the run-events or the smallest change
is less than the other more disperse and vigorous run-events.

The average magnitude values paired with the standard
deviation for these use-cases are the most important as set-
ting a threshold based on these values will satisfy the major-
ity of usage. The average of max magnitude values cannot
be ignored though because these spikes may trigger false-
positives. Interestingly; greater forces are effected on the
mobile-device when the user carries the phone in their pocket
but only when the user is walking. This may be that a
mobile-device in the user’s pocket is experiencing a greater
range of motion and the fall of their feet on the path during
usage is experienced by the device. Following, the upper
body (and a backpack by extension) does not have as wide
range of motion and remains in a rather constant position
during a walking pace versus running or sprinting. A mobile-
device may be more loosely packed in user’s pocket where
there may even be a factor of swinging involved in their
pocket determined by the looseness, fit, and design of their
clothing. This looseness may have also effect running and
sprinting because an arm-band which is too large may allow
shifting of the mobile-device and a backpack is more likely to
experience bounce and range of motion under quicker paces.

Consistently the variance increases as the running speed
increases; keeping a device in a pocket has highest average
magnitude and variance. This trial variation has a average
magnitude and standard deviation of 8.251 and 4.331 re-
spectively, the upper magnitude bound thus being 12.582.
Almost every other trial variation including one standard
deviation to the upper bound does not exceed magnitude of
10. Following the previous definitions of two different ap-
proaches of determining an accident, a threshold of approx-
imately 13 could be assigned but referencing the columns of
Max. Magn. and Avg. Max. Magn. in Table 2 and Table 1
there are values greater than that range during usage which
may trigger false-positives.

Running on a hill with the device in a pocket has an up
and down pattern, this may match with a runner’s stride on
the given leg which the pocket is located. Running on a hill
with pocket which constrains and minimizes the shifting of
a mobile device increases the average magnitude values and
variance when the run-type changes, the increases due to the
speed are more easily isolated from the shifting in the pocket.



Variation Type Trial Type Avg. Magn. Std Dev. Max. Magn. Avg. Max Magn. Avg. km/h
Arm Walk 2.406 1.053 6.031 5.175 5.69
Arm Run 7.959 3.559 14.368 13.702 11.31
Arm Sprint 6.383 4.327 16.385 13.287 18.03

Pocket Walk 4.686 2.594 14.202 13.248 5.93
Pocket Run 8.251 4.331 19.800 18.555 10.88
Pocket Sprint 5.813 5.210 25.686 19.220 18.6

Bag Run 6.257 3.237 16.943 15.027 10.43
Bag Sprint 4.299 4.054 20.684 17.142 17.54

Table 1: A table presenting the various magnitude averages and maximum magnitudes experienced during
the road running trials

Variation Trial Type Up/Down Avg. Magn. Std Dev. Max. Magn. Avg. Max Magn. Avg. km/h
Arm Walk Up 2.518 1.058 4.486 4.745 5.81
Arm Walk Down 2.30 1.487 5.760 6.433 6.03
Arm Run Up 6.693 3.326 12.605 13.194 10.98
Arm Run Down 6.495 3.456 12.996 18.509 11.34

Pocket Walk Up 4.922 2.833 17.830 14.014 6.46
Pocket Walk Down 4.899 3.147 17.287 15.803 6.71
Pocket Run Up 6.616 4.281 20.011 18.809 11.78
Pocket Run Down 6.708 5.059 19.574 20.507 12.20

Bag Walk Up 2.920 1.552 6.887 8.804 6.36
Bag Walk Down 2.842 2.258 9.392 10.782 6.46
Bag Run Up 4.987 3.511 12.992 14.934 10.78
Bag Run Down 6.471 3.398 13.355 14.668 10.66

Table 2: A table presenting the various magnitude averages and maximum magnitudes experienced during
the hill running trials

Interestingly; pockets had a higher average magnitude value
and variance than a backpack, if the mobile is constrained
in the backpack and does not have a lot of room to shift,
the device is moving through area and does not experience
the forces upon the legs during a run.

Figure 6: Spikes in magnitude values during an up-
hill run with mobile-device in user’s pocket

Referencing the plots of Figure 7 and Figure 6; even with
the walking-pace, there are rhythmic spikes in the magni-
tude readings, this is likely to be the landing of the user’s
foot which becomes more pronounced in 7 where the user
would be landing with more force each step when they run
compared with walking up a hill. The relationship between
the magnitude maximums, speed-type, and carry-type be-
come problematic because a static threshold likely cannot

Figure 7: Spikes in magnitude values during an up-
hill run with mobile-device in user’s pocket

be set without incurring a high rate of false-positives.

5.1 Fall/Climbing Events
Events which occur outside of regular usage, but with

enough frequency to be considered are the previously men-
tioned fall or climbing events. During a trial of running with
the mobile-device in a non-locking pocket, the mobile-device
fell out of the pocket. In addition; arm-bands can fail or slip.

The following table indicates the magnitudes values of var-
ious potential false-positive events. Note; not all fields are
applicable for each event e.g. mobile-device can only be
dropped one way and the events are too quick for a time
series. In addition; some data has been excluded because



more ‘intense’ variations of the trial were included and the
data does not contribute to the discussion.

Potential false-positive events on average sit within the
same ranges of regular-usage and thus are not likely to false-
positives. This can be further supported by the trial in which
the mobile-device fell out of a pocket during a run.

Figure 8: Plot indicating a mobile-device falling out
of the user’s pocket while running

In the trial indicated by Figure 8 there is a high variance
because the mobile-device was loosely constrained by the
user’s pocket, and as result the mobile-device fell midday
of the route. The plot does not indicate this event clearly
despite the brief moment of rest while the device was recov-
ered and thus the mobile-device would not determine the
drop event as significant among the trial.

Simulated falls are the last required trials. These are
events in which a runner has fallen and may injured; these
events were simulated by falling onto mattress. If the mag-
nitude values of simulated falls are greater the average and
max magnitudes of values during expected usage, a static
threshold can be set and and tested on the final route. As the
run-types and contain-types for these events are the same as
trial run events, the average maximum thresholds will be fo-
cused and compared with the respective running trial.

The average maximum magnitudes of fall events, which
would be simply a moment in time and thus we can look
specifically at the magnitude spikes, are greater than the
average magnitude in addition to one standard deviation to
the upper-bound of regular usage. As mentioned; there are
spikes in magnitude during regular usage which may be as
a result of; error, variation of clothing, variation in speed,
misstep etc - there is a lot more opportunity for inconsis-
tency and variation in a running context compared with
motor-vehicle whereby the device may be mounted to the
dashboard.

Nevertheless; excluding walking with a mobile-device in
an arm-band, the lowest average max magnitude in Table 4
is that of walking with a mobile-device in the user’s pocket
(the interesting case of walking with mobile-device in pocket
as mentioned earlier). This trial variation would be more so
indicative of user hiking or a post-run rest and thus the pace
is also lower and least liking to injure themselves if a fall
occurs at this pace. At a slower pace the user have greater
opportunity to prevent the biggest impact of the fall with
their hands and a slower pace will result in a small force
during a fall.

The maximum Avg. Max. Magn. in Table 4 is 12.062,
and is greater than the Avg. Magn. presented in 2 and
thus a threshold of between 13 and 15 could be set with
a likely chance of near-to-zero false-negatives and minimal
false-positives.

Figure 9: Walking towards and falling onto a mat-
tress, mobile-device strapped to arm

The first figure represents the most ideal form whereby the
device is firmly constrained with minimal movement during
the user’s actions; the sudden changes are most obvious.
The proceeding graphs indicate trials whereby the runner
was either moving with a greater pace (sprinting) or the
mobile-device is likely to be not as constrained.

Figure 10: Running and falling onto a mattress using
a mobile-phone arm-band

Increasing the speed of the device user increases the av-
erage accelerometer magnitude registered (and forced) in-
volved with the user falling to the mattress. The two pre-
ceding graphs are the most clear and clean value plots unless
a greater smooth filter is used on the series of values. The
proceeding graphs represent the increasing looseness of the
mobile-device in the runner’s bag, pocket and how that along
with increasing speed a sprint or even at the same speed of
a run will increase the range and deviation of values from
each other.

5.2 Testing
A final obstacle course incorporating the discussed events

which may generate false-positives, various run-speeds and
one fall was designed. The route consists;



Event Type Contain Type Avg. Magn. Std Dev. Max. Magn. Avg. Max Magn.
Phone drop 12.900 8.792

Structure climb & jump Arm 1.344 1.711 12.482 8.944
Structure climb & jump Pocket 2.340 2.873 24.211 12.504
Structure climb & jump Bag 2.215 2.437 15.503 12.802

Obstacle jump, 42cm x 42cm Arm 1.923 2.749 14.760 11.580
Obstacle jump, 42cm x 42cm Pocket 3.016 3.235 14.344 12.701
Obstacle jump, 42cm x 42cm Bag 2.231 2.436 18.059 15.121

Table 3: A table presenting the various magnitude averages and maximum magnitudes experienced during
events which are not falls, but may trigger a collision event.

Contain Type Trial Type Max. Magn. Avg. Max Magn.
Arm Walk 13.090 9.464
Arm Run 20.998 15.040
Arm Sprint 19.251 15.654

Pocket Walk 17.297 12.062
Pocket Run 17.426 15.444
Pocket Sprint 21.158 17.348

Bag Walk 19.167 12.292
Bag Run 18.430 14.739
Bag Sprint 21.385 17.115

Table 4: A table presenting the various magnitude averages and maximum magnitudes experienced during
simulated falls

1. 50m run from the start on a flat road

2. Another 10m before the user jumps over an obstacle
and continues running

3. User sprints approximately 30m with a 1.5m uphill

4. Runs approximately 10m on uneven Earthy ground

5. User climbs over the structure in Figure 5

6. User runs approximately another 3m until falling to a
mattress

This course will be run while having the accident threshold
set to the value of 15, as established in the previous section.

The previously mentioned variance and inconsistency be-
tween contain-types reappeared in the final obstacle course.
A threshold of 15 was able to detect the eventual fall to a
mattress in all trial runs except one trial where the mobile-
device was contained in an arm-band. False-negatives have
the greatest real repercussions because the user may be in-
jured. In addition; multiple false-positives were detected
during each trial with bag contain-type haven’t the least.
This may be due to that a correct fitting backpack with
tight straps (including a strap across the chest which is com-
mon among numbers) will essentially have the same forces
exerted on it as a runner’s upper-body would, they would
effectively be moving as much, and at more vigorous speed-
types the mobile-device will have the shortest ROM (if the
device is tightly packed within the backpack with minimal
shifting or movement within the backpack).

6. CONCLUSIONS AND FUTURE WORK
MOVER Runner aimed to add to the two fields of re-

purposed smart-phones, specifically Android, and collision
detection. Previous works have had success with using a

Figure 11: A depiction of the final obstacle course

static threshold, using accelerometer values, and an accident
is likely to have occurred once the threshold is breached.
Establishing a potential threshold required recording ac-
celerometer values while performing runs carrying the smart-
phone the various ways a runner would (in an arm-band,
pocket, or backpack) and at various speeds (walking, run-
ning, and sprinting). Having established averages and upper-
bounds, events which may trigger a suspected accident but
are not had to be addressed. Potential false-positives in-
cluded runners performing various jumps, climbing over struc-



Contain Type Detected Falls Avg. False-Positives
Arm 4/5 7

Pocket 5/5 15.8
Bag 5/5 2

Table 5: A table presenting the results of the final obstacle-course

tures, and dropping a smart-phone. Variation was present;
variables like the freedom of movement of the device within
its container, running style, and the movement of the device
container e.g. a non-tightly secured backpack to the run-
ner’s body, introduced value spikes and inconsistencies. Fi-
nally; the average accelerometer values of emulated falls, at
various running speeds, were recorded. Comparing the two
groups of data indicated the average values of emulated falls
at a pace greater than walking was greater than the upper-
bounds of values recorded from expected usage. Though
there were spikes in the recorded values of expected usage
which were greater than the average max values of emulated
falls, the spikes are inconsistent and difficult to compensate
or negate.

A magnitude threshold of 15 was able to detect of a total of
14/15 fall events, 93.3%, but the instances of false-positives
were high, specifically when the smart-phone was carried in
a pocket. This was discussed earlier in that carrying the
mobile-device in a pocket will result in more potential for
variation as pace increases or runner’s stride varies.

Figure 12: A final run on the obstacle course

Running lacks the consistency between ‘models’ (runners)
and the dampening of suspension systems. Detecting runner
falls is possible but the final obstacle course data supports
the notion that running contains a lot more variation and
inconsistency than a motor-vehicle would provide and es-
tablishing a threshold which will apply to all runners, dress
styles, and physical running operations is difficult. The
threshold value should be reevaluated and potentially ad-
justed upwards as a fall to a less cushioned mattress (or the
ground) would be expected to generate impacts forces upon
the runner and thus the mobile-device. This would be in-
crease the fall magnitudes while the previously established
averages and magnitudes would be unchanged (excluding
their natural variances which are experienced due the wide
variation among runners). The number of false-positives
would decrease without increasing false-negatives (requiring
testing for confirmation) and without having to implement
additional algorithmic considerations. Additional algorithm
features would be a focus on context of a large increase in
magnitude i.e. this is would assist identifying falls in the

trials like walking which has a lower level and lots of in-
teraction with values generated by quicker paces as there
are greater forces generated. Specialization of contain-type
could allow establishing more detailed graph forms and plot
values, this would require the user choosing the contain-type
of their mobile-device before starting the application. This
could allow estimating the speed-type of the runner by the
variance of magnitude values (as the variances and expected
ranges could be established for each contain-type and the
variations of run, walk, and sprint). Extending the previous
idea, implementing a learning algorithm whereby the an in-
dividual user’s running style is profiled and applied to their
user account’s magnitude values during usage to reduce the
potential false-positives simply due to a runner being heav-
ier, having a longer stride, or a lumbering and heavy-footed
running style.
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