Review of smartphone based applications used to
monitor traffic

Literature review

William Lumala
University of Cape Town
ImIwil001@myuct.com

ABSTRACT

Previous research has shown that traffic accidents are
one of the leading causes of fatalities in both developed
and developing regions. The fatalities in some cases are
increased by the time between the accident and when
emergency medical personnel arrive at the scene. In a
bid to reduce on this time, some developers have de-
veloped smartphone applications that can detect car
accidents and notify the first responders. Smartphone
applications are considered a formidable solution. This
is because of ubiquitous usage of smartphones coupled
with the fact that services that provide safety and emer-
gency help such as OnStar are not affordable to every-
one. This paper analyses and evaluates accident detec-
tion applications that have been developed with special
attention given to the sensors that are used in the ac-
cident detection. In addition to this, the paper points
out some areas in this field where improvements can
be made based on the evaluation done. The analysis
shows that the leading challenge for these applications
is the prevention of false positives i.e. the smartphone
detecting an accident when it has not occurred. This is
an even bigger problem if the application provides no-
tification services. This paper concludes with how the
novel idea of using the camera on smartphones can be
used to improve on the current work that has been done
in this field.

Keywords

Android development, Accident Detection, Smartphone
Applications, Sensors, Triggered sensing

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

1. INTRODUCTION

This paper is about how Android based smartphone
applications can be used to detect and recall an accident
as it happened. This would require the smartphone run-
ning the application to be in the vehicle at the time of
the accident. During their research, Singh et al. (2013)
noted that at least 1.4 million people died due to road
accidents in India in 2011 [16]. In addition to that, one
of the leading causes of death in the US are car acci-
dents with 10.6 million traffic accidents being reported
in 2007 [18]. This shows that road accidents occur at
a high rate in both developed and developing regions.
While sometimes accidents cannot be avoided, the long
response time taken by emergency services to arrive at
the scene increases on the number of fatalities in serious
accidents [3].

A variety of services have been developed to keep
road users safe on the road. One such service is OnStar
which provides automatic car crash response as well as
diagnostics for vehicle maintenance, among other ser-
vices [1]. The eCall project, started by the European
Union, requires that by 2018, an automatic accident
notification system has to be built in each new car [9].
While such systems are certainly better equipped than
smartphones, they are expensive and only available in
new cars [9]. According to White et al. (2011), in 2007
most cars in the US did not have automatic detection
and notification systems [18].

Smartphone applications can and have been devel-
oped to detect accidents and notify emergency respon-
ders. In doing their research, White et al. (2011) found
that in 2010, 325.6 million devices were sold in the sec-
ond quarter [18]. Research done by Amanda Lenhart
(2009) showed that more teenagers own mobile phones
today than ever [11]. Furthermore, the teenage de-
mographic is historically the most accident prone age
group [12]. The recent increase in the processing power
of smartphones and their ubiquitous use around the
world also supports the notion that smartphones can
be used to research new areas [8]. This, coupled with
the findings of Lenhart (2009), shows that smartphone
applications that detect accidents can be developed and



would be very useful for drivers.

The paper critically discusses and evaluates smart-
phone applications that detect car accidents and appli-
cations that monitor other traffic conditions. Critical
analysis is be done on each of the applications to find
the similarities and differences between the different im-
plementations along a number of dimensions such as the
architecture used.

Section 2 gives an overview of the hardware and soft-
ware in mobile devices that is used in the development
of these applications while section 3 gives an overview
of the applications. A comparison (and analysis) along
three dimensions namely; approach, architecture and
algorithms is conducted in section 4. Section 5 presents
a critical analysis and evaluation of the accident detec-
tion applications. The paper ends with a conclusion in
section 6.

2. MEASUREMENT SYSTEMS ON MO-
BILE DEVICES

This section gives an overview of the various hard-
ware and software in mobile devices that can be used
to develop applications to monitor traffic. Section 2.1
looks at sensors while section 2.2 mentions some of the
other systems in mobile devices that have been used.

2.1 Sensors

One of the main components of smartphones that is
vital to detecting accidents is the sensor(s). Karin et
al. (2005) stated that in order for a mobile phone to
interact with the real world, a sensor in the device must
be used to establish a connection between the two [10].
Essentially, a sensor is an object used to detect changes
or occurrences in its surroundings. A common example
of sensors is seen in automatic doors which detect the
presence of an object in close proximity and causes them
to react accordingly.

Karin et al. (2005) observed that mobile phones had
three built-in sensors [10]. These were a camera, micro-
phone and a network interface. Like most technology,
the sensors in mobile devices have evolved. Moore et al.
(2011) mentioned that the varied and powerful sensors
in mobile devices such as audio sensors (microphone),
acceleration sensors (accelerometer) among others could
enable smartphones to do more than the basic function-
alities [8]. As of today, Android developers are exposed
to three broad categories of sensors that they can use
namely; motion sensors, environmental sensors and po-
sition sensors [2]. A short description of each of these
categories is shown in table 1. Sensor availability varies
from device to device as well as between Android ver-
sions [2]. Essentially, there are many sensors that de-
velopers can use for a variety of purposes.

2.2 Other systems

Besides sensors, many of these applications use Global
Positioning System (GPS) on the device. White et

al.(2011) mentioned the availability of a GPS in the
iPhone 4 which is used by their application [18]. This is
a vital component of a mobile phone as it can identify
the current location of the device. One of the draw-
backs of using the GPS system is that it uses a lot of
the smartphone energy, as this paper explains later [12].

3. APPLICATIONS

A number of applications and algorithms have been
developed to help smartphones detect accidents and
monitor traffic. This section gives an overview of these
applications and how the systems mentioned above, such
as the accelerometer, are used. Section 3.1 discusses
the accident detection applications while section 3.2 dis-
cusses those that monitor other traffic conditions.

3.1 Accident detection

The applications described below are used to specif-
ically detect road accidents using smartphones. Four
different applications are discussed in this section. The
first application is the WreckWatch application devel-
oped by White et al.(2011) which is a fully functioning
application and available on the Google play store [18].
The second is the iBump application proposed by Aloul
et al.(2014) [3]. Another approach is the Poster appli-
cation developed by Nicholas et al. (2014) [4]. Lastly,
is Car Crash Detection on Smartphones (CCDS) done
by and Lahn et al. (2015) respectively [9].

3.1.1 WreckWatch

Developed by White et al. (2011), WreckWatch is an
Android based application with a client/server architec-
ture [18]. The application records the path, speed and
acceleration of a vehicle leading up to and during an
accident. By sampling the accelerometer in the device,
the accident detection model used by the WreckWatch
application is able to predict when collisions have oc-
curred [18]. Besides accident detection, WreckWatch

provides notification services to emergency contacts through

the server side of the application.

3.1.2 iBump

Similar to the WreckWatch application, the iBump
application by Aloul et al. (2014) is also designed a
client/server architecture [3]. Using the built-in ac-
celerometer on a smartphone, the iBump application
continuously gathers and evaluates data [3]. Like the
WreckWatch application, the iBump application also
provides notification to emergency contacts as soon as
an accident is detected. This is done through the SMS
service.

3.1.3 Car Crash Detection on smartphones (CCDS)

Lahn et al.(2015) identified three reliable and general
criteria which if reliably met could be used to detect
any kind of car crash [9]. The criteria are:

1. The smartphone is currently inside of a vehicle.



Table 1: The types of sensors in android devices.

Sensor Type Description or Use

Motion sensors

These sensors measure the movement of a device in various ways such as the accelerometer

Environmental sensors

Measure different aspects of the environment e.g. temperature and pressure.

Position sensors

There are two position sensors and they are used to determine the position of a device.

Table 2: Shows the main systems used and their purpose.

Component or sensor | Description or use

Camera The camera is used to take images and or record as the car is moving.

Microphone Used for detecting various noises in traffic such as honking.

Accelerometer Measures the acceleration force applied to a device. One of the most commonly used sensors.
Gyroscope Is a motion sensor that is used to measure the rotation of a device along three axes.

2. The smartphone experiences a high acceleration
supposedly during the car crash.

3. The vehicle comes to a stop.

Similar to the applications mentioned above, the CCDS
system gathers data from the built-in accelerometer [9].
While White et al. (2011) [18] used noise detection to
help reduce the number false positives, the CCDS sys-
tem ignored the noise factor but rather claimed that
dropping the smartphone has a distinct acceleration
pattern which can be reliably filtered out of the data
stream [9].

3.1.4 Poster

Nicholas et al. (2014) designed an approach that con-
sists of three portable devices namely; a smartphone,
Raspberry Pi and SensorTags [4]. The application, de-
veloped to run on the smartphone, continuously mon-
itors the accelerometer and gyroscope in the smart-
phone [4]. In order to improve the accuracy of the al-
gorithm and reduce the number of false positives, this
approach introduced a Raspberry Pi as well as Sen-
sorTags [4]. Section 5 provides more explanation on
this.

This system differs from the other three applications
along two dimensions. Firstly, is the use of the gyro-
scope to detect the orientation of the device and the
vehicle. Secondly, is the use of a second pair of sen-
sors to get a second opinion and detect accidents the
smartphone sensors could have missed.

3.2 Monitoring traffic conditions

Some researchers have developed applications that
are used to monitor traffic and discover any anomalies
that are not necessarily road accidents. These appli-
cations monitor poor road conditions such as the pres-
ence of potholes, or driving patterns. While these ap-
plications and research are not directly linked with our
project, there are different components or approaches
that could provide valuable insight to our project.

Some of the prior work that has been done with re-
gard to monitoring road conditions involves deploying

sensors on the road-side [16]. A case in point is the work
done by Raman et al. (2010) which deployed audio sen-
sors on roadsides in India to gather data and detect vari-
ous traffic conditions [15]. Another approach mentioned
by Singh et al. (2013) involved using the senors embed-
ded in the vehicles to detect the road conditions [16].
However, as already mentioned, not all drivers drive
the latest versions of vehicles which have the sensors
and the technology to do this [18]. Singh et al. (2013)
added that one of the advantages of using a smartphone
application to monitor traffic conditions is that it could
assist the driver become more careful [16]. This section
gives an overview and analysis of three smartphone ap-
plications that have been developed to monitor traffic
conditions.

3.2.1 Using Mobile Phone Sensors to Detect Driv-
ing Behaviour

Singh et al. (2013) developed an application on the
Android platform to monitor the driving pattern of the
user [16]. This application is divided into two sections
namely; data collection and data analysis. The applica-
tion collects data from the accelerometer as well as au-
dio data from the built-in microphone [16]. Analysis of
this data enabled them to find a variety of patterns. In
addition to finding patterns, Singh et al. (2013) stated
that they could correlate the accelerometer data with
the audio data to make other deductions [16].

The idea of data correlation could be useful in our
project as we could need different criteria to confirm
that an accident has indeed occurred. Correlation of
data could be one way of reducing on the number of false
positives. In their closing remarks, Singh et al. (2013)
mentioned the use of machine learning algorithms to
classify the data collected [16]. We agree with this idea
and think that there two ways this can be approached.
One way would entail using ’supervised learning’ to
teach the algorithm which patterns could be dangerous.
Another way would involve using clustering techniques
to classify the data along different dimensions like loca-
tion of occurrence or time of occurrence. Such statistics
could be used to find out the causes of road accidents




and when or where they are likely to occur.

In their research, Mohan et al. (2008) claimed that
there is a lot of aimless honking by some drivers [12]. In
such cases, the data collected by the microphone could
lead to wrong inferences being made and we think this
is one of the major drawbacks of this application. This
is also a problem in applications that use noise data in
the detection of car accidents.

3.2.2 Nericell

Raman et al. (2010) stated that traffic conditions
in developed and developing regions are fundamentally
different [15]. In addition to this, Mohan et al. (2008)
cited the varied traffic conditions in developing regions
as one of the reasons for doing their research [12]. This
led to the development of Nericell, an application used
to monitor road conditions as well as other traffic con-
ditions such as congestion [12]. Similar to a majority
of the applications already discussed such as Wreck-
Watch [18], Nericell uses the accelerometer to collect
data for a variety of purposes. One of these purposes
is detecting brake events. They concluded that the fre-
quency of braking could be indicative of the quality of a
drive [12]. Mohan et al. (2008) the used the accelerome-
ter for purpose of detecting break events, because while
GPS could provide a similar functionality, it would be
at a high energy cost [12]. This is an example of how
optimisation can be done in such applications.

Similar to the WreckWatch application, Nericell also
uses the built-in microphone to detect any noises such
as honking [12]. At this point, we notice that some of
the mobile phone components such as the microphone
and accelerometer are being repeatedly used for similar
functions. This gives a novice researcher in this field a
direction to follow.

Lastly, Mohan et al. (2008) used the concept of trig-
gered sensing. Essentially, triggered sensing is using
one sensor which low energy and less accurate to trig-
ger the operation of a high energy and more accurate
sensor [12]. An example of this is shown in the Nericell
application where the GSM-based localisation triggers
the GPS which provides a more accurate location [12].
This ensures that energy cost effective sensors are used
for most of the time and the expensive sensors are only
used when accuracy is desired.

The major take-away from this application is that dif-
ferent sensors consume the smartphone battery at dif-
ferent rates. Therefore, it is imperative that developers
research on this and use the sensors that consume the
least battery while providing the best service.

3.2.3 Mobile Assistant for Inattentive Drivers

Tong et al. (2012), discussed an approach that uses
the smartphone camera to watch the driver’s face and
watch the road as well [17]. In our research, this is
the first approach that makes use of the camera and is
similar to want we want to implement for this project.
This approach could enable recording of any collisions

as they occur. Tong et al. (2012) claimed that with a
combination of image processing and data from other
sensors such as audio data, a smartphone could be used
to approximate the safety features in luxury cars [17].

This approach has a few drawbacks. One of them is
the fact that the application has to continuously switch
between the front and back camera. This leads to la-
tency, as Tong et al. (2012) found out during their
research [17]. Although this paper claims they can over-
come all the challenges they had thought of, one issue
still stands out in our opinion. We cannot be certain
that something vital will not be missed while the ap-
plication is switching from one camera to another. We
think users can also miss something important on one
of the cameras when the other is being used.

However, the use of the “camera sensor” can be used
to reduce the number of false positives or rather help to
confirm that an accident has indeed occurred. An acci-
dent detection application could run in the background
while using the camera to record what is happening.
Upon detecting an accident, the application would then
send a short video to the servers which would then be
viewed to confirm the accident. This would require fast
and efficient aggregation of the data.

4. DESIGN COMPARISON

This section compares the four accident detection ap-
plications along three dimensions namely; architecture,
algorithms and approach.

4.1 Architecture

The WreckWatch application is Android based ap-
plication with a client/server architecture [18]. This is
similar to the work done by Aloul et al. (2014) in the
development of the iBump application [3]. The iBump
system consists of an application which runs on a smart-
phone and an application server. While the application
uses the sensors on the mobile device to detect acci-
dents, the server provides a variety of other services [3].
The application server is used for reporting accidents as
they occur as well as registering and tracking users [3].

Based on this, we can conclude that to develop a suc-
cessful accident application we need to take into consid-
eration the client, server and the effective communica-
tion between the two, especially for real-time reporting
of accidents.

4.2 Approach taken

As already mentioned, the Poster prototype consists
of three portable devices namely; a smartphone, Rasp-
berry Pi and SensorTags [4]. The approach taken by
Nicholas et al. (2014) attempts to detect two types of
accidents namely; (1) accidents where the vehicle has a
quick and significant change in orientation and (2) force-
ful accidents such as head-on collisions [4]. This is dif-
ferent from the approach used by Lahn et al. (2015) who
identified three reliable and general criteria (mentioned



in 3.1.3) which if reliably met could be used to detect
any kind of car crash [9]. The algorithm designed for
this approach assumes that all the vehicles involved in a
car accident experience a high acceleration before com-
ing to an inevitable stop. However, that may not be the
case all the time and therefore this algorithm could miss
crashes that do not have the mentioned characteristics.
On the other hand, Aloul et al.(2014) assumed that a
vehicle could be in four states namely; no accident, low
severity, medium severity and high severity [3]. Lastly,
the WreckWatch application didn’t specify any criteria
but rather tried to detect any kind of collision involving
the vehicle [18].

The main take away from this sub-subsection is that
different approaches can be used but it is certainly dif-
ficult to find a perfect approach.

4.3 Algorithms

The Poster application attempts to detect both force-
ful accidents (such as head-on collisions) as well as those
where a vehicle has a significant change in orientation.
This is achieved by continuously monitoring the ac-
celerometer and gyroscope in the smartphone [4]. The
gyroscope is used to detect accidents where a vehicle has
a quick and significant change in orientation, while the
accelerometer detects forceful accidents such as head-on
collisions [4].

The accelerometer is one of the common sensors used
in this field, as all four of the applications reviewed use
it in their detection algorithms. In addition to the ac-
celerometer, the CCDS system also uses location sen-
sors to determine the location of the device [9]. One
unique feature only seen in the CCDS system is the use
of a pipeline architecture to process the data. After
obtaining the acceleration and velocity data from the
accelerometer, the CCDS system uses a pipeline archi-
tecture to filter and combine the data before compar-
ing it to a predetermined threshold [9]. As mentioned
by Lahn et al. (2015), the use of a pipeline architec-
ture reduces the complexity of the overall algorithm [9].
Furthermore, the pipeline steps can be re-used and it is
easier to find any bugs in the algorithm.

The use of a predetermined threshold is also seen in
the Poster application as well as the WreckWatch ap-
plication. To predict if an accident had occurred, the
WreckWatch application filters the data from the ac-
celerometer based on a predetermined threshold [18].
Essentially, acceleration events are used to determine
if an accident has occurred. For the Poster prototype,
Nicholas et al. (2014) designed an algorithm that com-
pares accelerometer and gyroscope data against multi-
ple predetermined thresholds [4].

Rather than use a threshold-based method, the iBump
application uses both Dynamic Time Warping (DTW)
and Hidden Markov Models (HMM) to predict a colli-
sion [3]. Dynamic Time Warping is a technique used
to find an optimal alignment between any two time-
dependent sequences [13]. Meinard (2007) went on to

explain that DTW can be used to compare patterns [13].
Meanwhile, Hidden Markov Models are mainly used for
modelling linear problems such as time series [5]. Aloul
et al. (2014) used DTW to differentiate between the
four states (mentioned in section 4.2) [3]. After testing
their algorithm, Aloul et al. (2014) concluded that their
hybrid approach yielded a false positive rate of 2 percent
which was better than threshold-based methods [3]. h

4.4 Summary

Based on the above subsections, I think that acci-
dent detection applications would function better with
a client/server architecture. This would enable fast and
efficient aggregation of data on the server side, while
the client side would cover all the calculations and data
collection. However, the approach used can differ as it
would be hard to cover all types of accidents. Finally,
the algorithm used depends on the developer but should
do as much optimisation as possible. One of the main
talking points not mentioned above is the prevention of
false positives in such applications which is mentioned
in section 5 under evaluation.

S. EVALUATION OF THE APPLICATIONS

This evaluation is mainly for the accident detection
applications. However, some of the other applications
are mentioned briefly where necessary. In addition to
this, this section concludes with some of the challenges
facing developers of such applications and what they
should focus on. Huy et al. (2012) settled on an eval-
uation model for mobile applications that consisted of
three criteria namely; developer’s viewpoint, users’ view-
point and service provider viewpoint [7]. Since we nei-
ther developed nor used any of the applications, we de-
vised three criteria to evaluate the applications. These
criteria are; optimisation, false positives, data aggrega-
tion and notification and are described in sections 5.1,
5.2 and 5.3 respectively.

5.1 Optimisation

Ferriera et al. (2011) explained that the increased
functionality and usage of smartphones means that de-
vices requires more power to sustain these processes for
a period of time [6]. In addition to that, smartphones
have services running in the background that use up
the battery. This is why it is important to design smart-
phone applications with optimisation of the smartphone
energy at the forefront. This evaluation section reviews
how the different applications tried to achieve optimi-
sation. As well as optimisation of energy, the section
explains how some algorithms were optimised to run
faster.

The leading optimisation (with regard to smartphone
energy) method we have come across so far is triggered
sensing used in the Nericell application. This is a sound
technique as it allows the application to control which
sensors it uses at all times. The Nericell application



uses the GPS, one of the most expensive sensors, only
when it needs the accurate location of the device [12].
None of the four accident detection applications dis-
cussed in this paper used such a technique. This makes
the determination of the location of a device an expen-
sive operation because the GPS is always used. A case
in point is the WreckWatch and iBump applications
which constantly use the GPS to find the location of
the device [18, 3]. White et al. (2011) mentioned that
one of the challenges faced by smartphone applications
in this field is that the application consumes a lot of
battery power [18]. However, White et al.(2011) did
not attempt to optimise their application with regard
to energy consumption but rather suggested that users
could charge their devices in their vehicles [18].

The system developed by Nicholas et al.(2014) had
the same algorithm running on both a smartphone and
a Raspberry Pi [4]. The Raspberry Pi is used to read
and process the data from a pair of SensorTags, which is
the third component of this system. With this method,
the smartphone does not have to communicate(through
wireless communication) with the SensorTags and thus,
saves a lot of energy. Furthermore, we think that the
Raspberry Pi can be used to do all the complex cal-
culations thus, ensuring the smartphone does even less
computation.

Finally, the pipeline architecture used by Lahn et
al. (2015) in the CCDS system provides optimisation
because it simulates parallelism [9]. Pipline comput-
ing increases the throughput of the algorithm. This is
possible because of the processing power available to
smartphones today. White et al.(2011) cited the HTC
Nexus One smartphone which has 1GHz processor and
512 RAM [18]. Smartphones have improved and now
have multi-core systems in addition to the strong pro-
cessors. This provides a basis for applications to use
parallel algorithms to ensure faster processing.

As evidenced above, not all developers put optimi-
sation at the forefront during their research and devel-
opment. This is one of the gaps that our project will
try to address. The concept of triggered sensing can
save a lot of energy, while pipe-lining could ensure that
the algorithm runs faster. Both these techniques pro-
vide different types of optimisation and can be used in
development of the same application.

5.2 False positives

As mentioned by White et al.(2011), one of the chal-
lenges of accident detection applications is the preven-
tion of false positives [18]. This subsection reviews how
each of the applications tried to reduce on the number
of false positives.

As already discussed in detail, the iBump applica-
tion unlike the other three accident detection applica-
tions does not use a threshold based method, but rather
uses a combination of DTW and HMMs which Aloul
et al.(2014) concluded had a better performance with
regard to false positives [3]. This is certainly different

from the Poster system which uses SensorTags to reduce
on the number of false positives [4]. The Raspberry Pi
runs the same algorithm as the smartphone and evalu-
ates the data collected from the SensorTags [4]. Differ-
ent results could signal a false positive or that one of the
devices could be wrong. An improvement on this would
be having two different algorithms running, to test for
efficiency of the algorithm and which sensors are more
accurate. The downside to this prototype is the use
of SensorTags and the Raspberry Pi which cannot be
carried on every journey.

In a bid to reduce on the false positives and to have
the ability to detect low speed collisions in the Wreck-
Watch application, White et al.(2011) used the built-in
microphone to detect accident noises such as airbag de-
ployment and car horns [18]. Aimless honking by some
drivers can distort the findings or lead to wrong predic-
tions [12].

Lastly, the CCDS system developed by Lahn et al.(2015),

claimed that dropping a mobile device has a distinct
acceleration pattern which they filtered out [9]. They
went on to state that shaking a mobile device could also
lead to false positives but did not cater for this.

5.3 Data aggregation and Notification

This section discusses how the data was aggregated
and used. This is vital especially with accident detec-
tion where the data needs to be relayed onto emergency
contacts as fast and accurately as possible.

Only the iBump and WreckWatch application pro-
vide notification services. As soon as an accident is
detected, the iBump application (client side) sends an
SMS to the emergency contacts and police [3]. On the
other hand, the WreckWatch application uses the server
(server side) to communicate to emergency responders
as well as aggregate all the data collected [18]. In addi-
tion to this, the server (WreckWatch application) posts
location and severity information to help the emergency
responders.

We think that the WreckWatch application uses a
better strategy than the iBump application because the
server aggregates all the data and then relays onto the
emergency responders. Not only is it a more effective
process, but the server can also easily send data faster
over longer distances.

Table 3 summarises the pros and cons of each of the
applications reviewed.

5.4 Challenges

In researching the prior work, we discovered two main
problems facing accident detection applications.

In the development of the WreckWatch application,
White et al.(2011) claimed that one of the major chal-
lenges that developers of such applications had to solve
is the prevention of false positives [18]. Lahn et al.
(2015) suggested that a major cause of the false posi-
tives is the device being dropped, but observed that the
distinct pattern of the fall could be filtered out of the



Table 3: A table showing the pros and cons of each application

Application

Pros

Cons

WreckWatch by
White et al. (2011)

-Server side that does data aggregation.
-The server is configured to notify emer-
gency contacts without interacting with
client thus saving time.

-Noise data used to reduce on the num-
ber of false positives is not consistent
especially in traffic congestion

iBump by Aloul et
al. (2014)

-DTW and HMM methods used can de-
tect the severity of an accident. -DTW
and HMM methods have less false posi-
tives than the more common threshold-
based methods.

-Use of DTW and HMM could lead to
computational overhead and drain the
smartphone battery.

Poster by Nicholas
et al. (2014)

-Uses a second set of sensors in addition
to the smartphone sensors which in-
creases on the accuracy of results. -The
Raspberry Pi and Smartphone run the
algorithm concurrently therefore false
positives are reliably detected.

-Difficult to implement such a system
with all the components.

CCDS by Lahn et
al. (2015)

-Optimised the algorithm by using a
pipeline architecture to evaluate the

-The detection and removal of false pos-
itives is not comprehensive enough.

data.

data stream [9]. Therefore, such applications have to be
able to detect the difference between an accident occur-
ring and a smartphone being dropped to the ground.

Another challenge for such applications is reliably
communicating with emergency responders in the event
an accident is detected. As stated by White et al.
(2011), accident detection applications running on smart-
phones should be able to inform first responders as soon
as possible and with as much information about the ac-
cident as can be obtained [18]. More expensive systems
like OnStar which has already been mentioned, can de-
tect the seriousness of an accident using information
from airbag deployment [18]. Essentially, accident de-
tection applications should be able to communicate ef-
ficiently and effectively with first responders, otherwise
it defeats the purpose of detecting the accident.

Therefore, I think such applications have two main
tasks; (1) accurately detecting car accidents (with min-
imal false positives) and *(2) informing emergency re-
sponders as fast as possible.

6. CONCLUSION

Despite all the progress made by smartphone appli-
cations in accident detection, we am of the opinion that
in-vehicles accident detection systems are better suited
to detect road accidents. These systems are able to use
the sensor networks in the car and interact with the ve-
hicle’s electronic control unit which a smartphone can-
not do [18]. However, smartphone applications can pro-
vide a viable stop-gap solution until every driver has a
vehicle with the ability to reliably detect accidents and
notify emergency contacts.

The main challenge for all the applications is reli-
ably filtering out any false positives [9]. One sure way
to know whether an accident has occurred or not is to

view what has happened. This would entail using the
camera to constantly record as the car is moving. As
soon as an accident is detected, a short video is sent
to the server depicting exactly what happened. In ad-
dition to confirming accidents, the short videos can be
studied to identify the causes of accidents and the com-
mon locations where they occur. The use of the camera
will be an area of focus in our project.

One concept not mentioned by any of the applica-
tions reviewed is the security of the data. It is not clear
whether the data on the servers is secured and backed
up. Providing security features would enable the server
save more data about the users that could be used in
case of an emergency. This is one of the gaps in this
field. Our project is focusing on mainly collision detec-
tion and recording of the accident, and therefore it is
out of the scope.

An improvement can be made in the aggregation of
data and notification of emergency contacts. The iBump
application uses the SMS service to notify emergency
contacts when an accident is detected [3]. Communi-
cation with emergency responders can be improved by
using both the application (client side) and the server to
send a message. The application would provide an in-
stant notification while the server would send a more de-
tailed message a few seconds later. This would require
effective and efficient data aggregation on the server
side. In addition to this, a stable and effective network
would be required to transmit the data as fast as possi-
ble. One way of achieving this would be through the use
of Content Delivery Network (CDN). The use of a CDN
ensures that the data is sent to closest servers and is ac-
cessible as soon as the accident has occurred[14]. Pallis
et al. (2006) also added that the use of a CDN reduces
congestion over servers [14]. This could directly reduce



on the time spent waiting for the emergency responders.

There is a lack of a visual aspect to the accident de-
tection as well as a perfect solution to preventing false
positives. This presents an opportunity for contribution
by our project in the work it will be conducting.

7.
1]

2]

REFERENCES

Onstar.
https://www.onstar.com/us/en/home.html.
Accessed: 2016-04-20.

Senors overview. http://developer.android.com/
guide/topics/sensors/sensors_overview.html.
Accessed: 2016-04-20.

Fadi Aloul, Imran Zualkernan, Ruba Abu-Salma,
Humaid Al-Ali, and May Al-Merri. ibump:
Smartphone application to detect car accidents.
In Industrial Automation, Information and
Communications Technology (IAICT), 2014
International Conference on (pp. 52-56). IEEE.,
2014.

Nicholas Capurso, Eric Elsken, Donnell Payne,
and Liran Ma. A robust vehicular accident
detection system using inexpensive portable
devices. In Proceedings of the 12th annual
international conference on Mobile systems,
applications, and services (pp. 367-367). ACM.,
2014.

Sean R Eddy. Hidden markov models. Current
opinion in structural biology, 6(3):361-365, 1996.
Denzil Ferreira, Anind K Dey, and Vassilis
Kostakos. Understanding human-smartphone
concerns: a study of battery life. Pervasive
computing, pages 19-33, 2011.

Ngu Phuc Huy and Do vanThanh. Evaluation of
mobile app paradigms. In Proceedings of the 10th
International Conference on Advances in Mobile
Computing & Multimedia, pages 25-30. ACM,
2012.

Jennifer R Kwapisz, Gary M Weiss, and

Samuel A Moore. Activity recognition using cell
phone accelerometers. ACM SigKDD Explorations
Newsletter, 12(2):74-82, 2011.

Julia Lahn, Peter Heiko, and Peter Braun. Car
crash detection on smartphones. Proceedings of
the 2nd international Workshop on Sensor-based
Activity Recognition and Interaction. ACM, 2015,
2015.

Karin Leichtenstern, Alexander De Luca, and
Enrico Rukzio. Analysis of built-in mobile phone
sensors for supporting interactions with the real
world. In PERMID (pp. 31-34), 2005.

Amanda Lenhart. Teens, smartphones & texting.
Pew Internet & American Life Project, 2012.
Prashanth Mohan, Venkata N, and
Ramachandran Ramjee. Nericell: rich monitoring
of road and traffic conditions using mobile
smart-phones. In Proceedings of the 6th ACM

13

[18]

conference on Embedded network sensor systems
(pp. 8258-356). ACM., 2008.

Meinard Miiller. Dynamic time warping.
Information retrieval for music and motion, pages
69-84, 2007.

George Pallis and Athena Vakali. Insight and
perspectives for content delivery networks.
Communications of the ACM, 49(1):101-106,
2006.

Rijurekha Sen, Bhaskaran Raman, and Prashima
Sharma. Horn-ok-please. Proceedings of the Sth
international conference on Mobile systems,
applications, and services, pages 137-150, 2010.
Pushpendra Singh, Nikita Juneja, and Shruti
Kapoor. Using mobile phone sensors to detect
driving behavior. Proceedings of the 3rd ACM
Symposium on Computing for Development, 2013.
Sanjeev Singh, Srihari Nelakuditi, Romit

Roy Choudhury, and Yang Tong. Your
smartphone can watch the road and you: mobile
assistant for inattentive drivers. Proceedings of the
thirteenth ACM international symposium on
Mobile Ad Hoc Networking and Computing, pages
261-262, 2012.

Jules White, Chris Thompson, Hamilton Turner,
Brian Dougherty, and Douglas C. Schmidt.
Wreckwatch: Automatic traffic accident detection
and notification with smart-phones. Mobile
Networks and Applications 16.3 (2011): 285-303.,
2011.



