Category Min | Max Chosen
1 | Requirement analysis and design 0 20 0
2 | Theoretical analysis 0 25 25
3 | Experiment design and execution 0 20 15
4 | System development and implementation 0 15 5
5 | Results, findings and conclusions 10 20 15
6 | Aim formulation and background work 10 15 10
7 | Quality of report writing and presentation 10 5
8 | Adherence to the project proposal and quality of work 10 5
9 | Overall general project evaluation
Total marks: 80

UNIVERSITY OF CAPE TOWN

COMPUTER SCIENCE HONOURS 2015

AFRISPEL FINAL HONOURS REPORT

Superuvisors:
Dr. Maria KEET and
Prof. Hussein SULEMAN

Author:
Victor KABINE

November 9, 2015

AfriSpel: A rule based spell checker for the isiZulu
language

Victor Kabine
University of Cape Town
Rondebosch
Cape Town 7700, South Africa

victorkabini@yahoo.com

ABSTRACT

African languages that are in the Bantu language family
belong to the less resourced languages in the world. There
has not been much research on these languages and this is
evident based on the lack of digital tools that are available
to the language.

In this paper we design and implement a morphological
analyzer to be used for the spell checking of the isiZulu
language. The morphological analyzer is developed using
the regular expressions approach and regular language. Us-
ing regular expressions we are able to specify patterns that
words have to follow in order for them to be recognized as
valid isiZulu words.

This spell checker has an accuracy rating of 80 percent.
We conducted the experiments using the Ukwabelana cor-
pus, a 2ml token corpus developed at the University of Kwa-
Zulu Nata by Prof Langa Khumalo and words added by us
in order to test extreme cases such as words numbers and
special words accepted as valid isiZulu words.

CCS Concepts

eRegular languages — Regular expressions ; eMorphological

analyzer — Spell checker;

Keywords

Morphological analyzer; Spell checker; regular expressions;
Bantu language family; isiZulu language

1. INTRODUCTION

A spell checker is a computer program that performs the
act of spell checking. Spell checking is the process of detect-
ing incorrectly spelled words for a given language [1]. The
given language in this project is the isiZulu language. The
spell checking process also sometimes gives suggestions to
the incorrectly spelled words for the isiZulu language [22] .
Spell checking is also a sub-field of Natural Language Pro-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

(© 2015 Copyright held by the owner/author(s).
ACMISBN .
DOI:

cessing (NLP) [1]. Natural Language Processing is also com-
monly referred to as Computational linguistics.

Computational linguistics is a relatively new field in the
field of language and computer science, with the expression
only being coined in the 1950s [18]. Most of the research
from the field of computational linguistics goes to languages
from developed areas in the world, which are languages such
as English. Languages from the developing parts of the
world like Africa belong to the lesser studied languages of
the world,they are referred to as Bantu languages [26].

Research is vital to the advancement of knowledge in any
subject, there are more things that were discovered through
research than through trial and error. [9]. This then raises
a major issue in that because of there being a lack of re-
search on the isiZulu language, this results in a lack of the
linguistic resources available for the isiZulu language [20],
this includes not only tools such as spell checkers but also
other computational tools that produce and consume digital
information for the isiZulu language.

This problem is without a doubt a very important problem
that must be explored. There are 11 million people who
speak isiZulu in South Africa [32]. With the little research
that has been done so far and the little resources that are
available for the language [26], it then stands to reason that
more emphasis has to be focused on this language.

With the emergence of the world wide web and how the
internet has become part of our daily lives [14], the need for
these computational tools is is growing larger. With more
people looking to internet to find information, the need for
documents and other resources to be available digitally is
also growing larger. There is also a need to close down
the gap between the developed language and the developing
languages, research on spell checkers started in the late 1950s
however the first spell checker for an African language was
only designed in 1992 [15].

This paper focuses on the development of a spell checker
for the isiZulu language using a rule based approach. This
approach is essentially a theory driven approach involving
the study of the morphological structure of the isiZulu lan-
guage. A morphological structure involves looking at mor-
phemes, a morpheme is the smallest unit of a word [3]. This
paper focused on the modelling of morphotactics (rules on
how isiZulu words should be formed) as well as morpholog-
ical alternations (being able to identify the right form of a
morpheme) [3]

This is achieved through the use of a morphological an-
alyzer. This morphological analyzer can then be used to
perform spell checking functions such as lexical and error

recall. Lexical recall is the spell checker’s ability to recog-
nize correctly spelled words, while error recall refers to the
spell checkers ability to recognize incorrectly spelled words
[4]. We also use the confusion matrix approach in order to
find out the accuracy of the spell checker.

1.1 Background

The idea of using a morphological analyzer for spell check-
ing the isiZulu language has been carried out before. S.
Bosch and L. Pretorius [3] proposed a morphological ana-
lyzer for the isiZulu language that is built using xerox finite
state tools. The morphological analyzer is used for gram-
matical tagging (parts of speech tagging) of a corpus. S.
Bosch and R. Eiselen [4] describe how a morphological ana-
lyzer can be used to develop a spell checker for an aggluti-
native language like isiZulu.

The focus of the spell checker was on enhancing the lexical
and error recall, they used regular expressions to construct
the morphological analyzer. S. Spiegler, A. van der Spuy and
P. A. Flach[32] introduces a zulu corpus that was developed
with the use of a semi automatic morphological analyzer
and parts of speech tagger. S. Spiegler, B. Golenia et al [31]
introduce different types of supervision that can be used to
develop a morphological analyzer in the future.

There are also a few open source spell checkers available
for the isiZulu language. The first is by Apache OpenOffice
and it was created in the year 2009. There has only been
one update, it was released in the following year. There is
also an add-on by mozilla thunderbird. it was released in
the year 2011.

2. MORPHOLOGY OF ISIZULU

We can think of a language as a set of words and words
as a set of morphemes, words can be formed through one or
more morpheme(s) [24]. Often times, there are morphemes
that are dependent on other morphemes in order to form a
sensible or valid word.

In this case, these morphemes are called free morphemes
or root [3]. These morphemes cannot stand on their own
thus do not make sense on their own. An example of an
affix for the English language would be ‘ing’. An example
of an affix for the isiZulu language would be ‘im’.

Other times, there are morphemes that are not dependent
on any other morphemes and make a valid word and can
stand on their own. These morphemes are called bound
morphemes or affixes [24]. An example of such a morpheme
is the English word take.

Depending on the type of language, root morphemes can
often have meaning by themselves and count as valid words.
Fusional languages have root morphemes that can have mul-
tiple meanings [25]. The language may have one or more
morphemes and the boundary between the morphemes is
not always that easy to distinguish this is because the af-
fixes can be fused together with the root.

English is one of the popular language that is fusional [11].
One example from the English language is the word ‘spoke’,
this word denotes both ‘to speak’ which is the root word
and also the past tense. Most of the European languages
are somewhat fusional [24].

The other type of language in known as the agglutina-
tive language. Languages that belong to this category have
words that are composed of multiple morphemes [2]. The
morphemes are put together in way that Agglutinative lan-

guages can have one word has the same amount of informa-
tion as a sentence in an English sentence.

Agglutinative languages have multiple language families
and one language family in Africa is the Bantu language
family [5]. The Bantu language family has approximately
400 African languages, this includes the Nguni languages.
The isiZulu language belongs to the Bantu language family.
The Bantu language family belongs to the lesser studied
languages in the world [5].

For these reasons, developing a spell checker for the isiZulu
will provide a different challenge as opposed to developing
a spell checker for the English language. The isiZulu lan-
guage belongs to a different morphological type of language
than English thus research and methods on developing spell
checkers for the English cannot necessarily be used to model
the isiZulu language. The isiZulu language has little research
that has been done from it and out of that research some of
it might not be very useful to us.

Inflection is the process of adding morphemes to a word
in order to specify the mood, the tense, number gender etc.
Fusional languages lose their inflection as the years go by and
thus end up with little inflection [8]. However in the isiZulu
language, the inflection is more common, this is seen in the
nominal classification system and the concordial agreement
system [4].

The nominal classification system is a type of inflection
that is known as inherent inflection and it occurs in the
isiZulu language [34]. The inflectional morphemes that oc-
cur in this system are added onto nouns. They are in the
form of prefixes and each prefix classifies nouns to their re-
spective categories or classes [33].

Each class gives an indication of the type of nouns that
belong in that class, also what the nouns identifies in the
language. There are 17 classes in the nominal classification
system [4]. Please see appendix Al for the full view of the
table with the noun classes as well as the prefixes that are
included.

The concordial agreement is a type of inflection known as
contextual inflection [34] and it is different for the isiZulu
language. Instead of it affecting only the construction of
the sentence, it also changes the internal structure of the
words in the sentence. Concordial morphemes are added to
a word to make sure that the subject is in agreement with
the rest of the sentence [4]. This is why unlike in the English
language where it is only considered for grammar because it
only affects the sentence construction (ordering of words in
a sentence) instead of the structure of the word.

Another complex aspect in the isiZulu language deriva-
tion. derivation in isiZulu is post-inflectional [34], it occurs
as a suffix. The more common examples of the derivative
suffixes in the isiZulu language is the ‘i’ suffix. Appearing
in the word umuhambi and derived from the word hamba or
the root hamb [4].

However there are some exceptions to this, they occur
mostly in locative adverbs. In this case both the prefix and
suffix are added. the prefix is the locative prefix and the
suffix is the derivative suffix [4].

3. DEVELOPING THE RULES

3.1 Current methodology

There are multiple approaches that be taken to build the
morphological analyzer. There is the statistical approach,

this approach is commonly referred to as the corpus based
approach and the rule based approach [29]. We are using the
rule based approach for the development of the spell checker.
We will be using finite state technology for the development
of the morphological analyzer, this is a methodology that
has been applied before and is gaining more and popularity
[17].

Finite state automata is a type of model of computation
[17], this model has a finite number of states and arcs. A
state determines whether or not the machine accepts the
information that is given by the user. A state also enforces
the rules that are in the system, it is only if the input of the
user has met the conditions of the user that the system can
then transition to another state [30]. There can be multiple
states however there should always be two states in order for
the finite state machine to work, the start state to symbolise
the beginning and the final state [30]

The machine can only have one place to start (start state)
however in some cases it can have multiple places to finish
(finish states). As the name suggests there are only a limited
amount of options that can be accepted by the machine, if
the given input does not meet any of the conditions, then
the input is this case rejected by the machine[30] . There
are different types of finite state machines namely determin-
istic finite state automata and non deterministic finite state
automata [30].

The difference between the two is that with deterministic
finite state automata, each path has to be unique from the
other and in this way the transition between the start state
and the following state has already been determined by the
system whereas with non deterministic finite state automata
a state can even no condition to meet and the system would
transition to the next state [30]

Non-deterministic finite state automaton is mostly used
for Natural language processing and is the approach that is
used in this system as well. This approach has led to the
creation of linguistic tools to help facilitate in the creation of
a morphological analyzer. There have been various aspects
to designing the morphological analyzer and we go through
these aspects to see which of these aspects we should focus
on

3.2 Finite state tools

Xerox finite state tools implement a finite state transducer
which is then used as a morphological analyzer. The finite
state tools use regular expressions to implement the finite
state transducer. Regular expressions are a type of formal
language that is used to match a given pattern [6]. The
pattern that is specified is the ‘condition’ that has to be
met in order for the given input to be seen as valid by the
system.

The finite state transducer is a nice tool to use because
a lot of the things are already done for you however based
on the documentation of the software and the availability
of it. The syntax of the regular expressions is also different
and it is unique and is set apart differently. The usability is
especially troublesome for Windows users

There have been other tools that have been developed and
most of these tools have the most of the functionality of the
xerox finite state tools. This includes tools such as Openfst,
Foma etc. Since we could not attain the results we wanted
by using the tools, we decided to use other sources that could
benefit us more.

3.3 Regular expressions

Regular expressions is a type of formal language that is
considered to be the one of the most useful tools in com-
puter science [18]. Regular expressions can be used to spec-
ify what pattern the system is supposed to achieve. Regular
expressions use formal language theory and in formal lan-
guage theory, a language is regarded as just a set of strings
and the linking of a series of zero or more symbols [17].

We can specify a type of search pattern using regular ex-
pressions for the system to follow, it uses the an algorithm of
string matching where the regular expression looks for any
string or a specific string that matches the pattern that is
given [6]. There are a number of regular expression char-
acters that are used and are the basic syntax of regular ex-
pressions.

The . symbol identifies any character as input. ? symbol
matches zero or one of the characters before it. * symbol
matches zero or more of the characters before it. + symbol
matches one or more characters before it. ~ acts as either as
an anchor or as negation depending on the context on which
is used. {} or [] matches the range of characters specified
in the brackets [18].

The use of regular expressions only for the creation of a
morphological analyzer and has also been explored however,
it has not been taken that and gives us a chance to build on
what is already there. The paper we will be building on is
the paper by S. Bosch and R. Eiselen [4]. This paper also
specifies use of ‘perl-like’ expressions to create a morpholog-
ical analyzer. We had to take precaution when modelling
the regular expressions, We first needed to find an informal
representation of the language.

3.4 Using Jflap

Instead of just modelling the entire language in one go
and leaving a lot of important aspects out, we have decided
to use a table which is an informal but structured represen-
tation of the language. We then used Jflap to experiment
with the language. This is the main use of Jflap, Jflap is a
software that is used to experiment with formal languages
[28]. We experiment with the language by creating a finite
state automata and testing it with random words from the
ukwabelana corpus. From this tool, we can generate regu-
lar expressions from the finite state automata that has been
created.

As stated above, the isiZulu language is an agglutinative
language, this means that the morphemes are ‘glued‘ to-
gether, this makes it easer to spot the morpheme boundary
[2]. This also means that we can model morphemes sepa-
rately and ‘glue’ the morphemes together in the end. The
morphemes were ‘glued together using an empty state. We
started off with the nominal classification system, an exam-
ple of how a finite state automata looks and how it looks
by examining the first iteration of the finite state automata
can be found on figure 1 which is on the next page

The finite state automata was then coverted to Jflap reg-
ular expressions. The regular expressions were as follows:

(isi+ um("+ uw)+ ama+ izi + imi+ ubu + uku)(w + v
+t+s+r+q+P+z+y+x+g+f+c+n
+m+ 1+ k + j + h) [a-z]([a-z]+[a-z] [a-z])
*(a+e+1+ o0+ u)

Note that these regular expressions have been cut off, they

Figure 1: First iteration of the finite state automata for isiZulu nouns using Jflap 7.

reduplicate after this particular sequence was finished. The
regular expressions had to be changed to a syntax that is
more compatible with the languages that are used in com-
puters. By checking to see which of the following regular
expression characters that were used meant something else.
We used the Jflap guidelines [28] to find regular expressions
that were still written in formal language notation.

The notation was changed to the syntax of the Perl pro-
gramming language. Unfortunately this was done by hand
based on the the formal language notation of Jflap [28] and
the syntax of the ‘perl-like’ regular expressions. Modelling
the was beneficial in that we got a more in depth study
of the language and to make changes before implementing
the regular expressions which would then become the formal
representation

There are some of the problems that occur with the change
of regular expressions from Jflap to Perl, there are some
symbols that are represented in Jflap that are not available
in the Perl programming language. This is seen through the
empty string shown as a mathematical symbol. Changing
the symbol to the regular expressions proved challenging
however the method of using solely regular expressions with
the help of tools such as Jflap to not only experiment with
the formal language gives us a better representation of the
isiZulu language. Although it is still incomplete because
there are still some rules that have not been modelled, this
method is still very effective in that it already modelled most
of the language in a form that is not only easy to replicate
but also easy to continue and to add onto. The basic starting
point for this methodology was found in the paper[4]

3.5 Modelling the morphological analyzer

The morphological analyzer performs the functions of a
spell checker in that it can identify when a word is mis-
spelled, or when a word has been spelled correctly. The ap-
proach that we used to come up with these computational
rules is through first the informal representation of the lan-
guage [19] in order to get a general idea of how the words
were structured and how to determine whether the words
were typographically correct. The informal representation
also helped us figure out how to use our rules to restrict
a lot of the words that are not found in the language. The
term informal representation refers to research that has been
done on the language that is represented in the form of ta-
bles [32] [27].

This regular expression was then changed into Perl pro-
gramming language without the use of other tools. The
regular expression that was done was the once again the
following:

/" Esilum("$lw) lam(ale) [izili("$|m) lubulukulab(ale)

linlyelezilolulu) ("$| [bcdfghjklmnpgrstvwxyz])
([a-z]+) ([alelilolul$)/

This approach was then carried out to model other words
besides nouns, parts of speech such as verbs, pronouns and
other concords as well. In the Perl programming language
there is no symbol for empty string, we had to improvise in
order to model words that could be seen as exceptions. The
empty string modelled in Perl in place of regular language
empty string was modelled as ~$. Putting both anchors
together could work as a sign of an empty string.

This however did not model the exception. The fourth
iteration involved adding another regular expression without
the use of prefixes. the fourth iteration can be seen as the

following;:

/ ([bcdfghjklmnpgrstvwxyz]) ([a-z]+) ([alelilo|ul$)/

With these regular expressions, we were able to design
a morphological analyzer that was used as a spell checker
which is able to detect incorrectly spelled words. The spell
checker was tested using a word list compiled from words
from the Ukwabelana corpus and the corpus from the corpus
from Prof. Langa Khumalo. We also put nonsensical words
in there to test the validity of the spell checker.

An advantage that the Perl programming language regu-
lar expressions syntax has over the Jflap regular language
syntax is that Perl gives the option to enforce certain rules
through the use of anchors, these anchors are either ~ to
indicate that the string, pattern or word has to start with
a particular pattern or string that has been specified or $
which indicates that the string, pattern or word has to end
with a particular pattern or string [18].

4. FINITE STATE NETWORK FOR ISIZULU

The most important factor that all finite state machines
must have a initial state (start state) and the final state
[30]. This theory can be implemented through the use of a
formal language know as regular expressions. We know that
a formal language refers to a language a set of strings of any
kind [17]. The regular expressions are compiled into non
deterministic finite state automata. With the use of non
deterministic finite state automata, we can model a large
array words with a single final state that accepts different
kind of words that link up to the finite state network.

4.1 Process of finite state automata develop-
ment

We modelled three different finite state networks to handle
different types of morphological rules within the language.
We stated off by modelling one part of the nouns which was
the prefixes. Then we modelled the rest of the noun. We do
know that the noun starts with a consonant [12]. Although
there has been research that advices against the clustering or
combination of consonants [23]. We have decided to not to
put restrictions to this rule as there are always exceptions to
the rule. Please see appendix for all the finite state automata
developed

Tighter restrictions may cause words that are correctly
spelled isiZulu words to be flagged as incorrectly spelled. We
also know that isiZulu words always end with a vowel [23],
these discoveries happened iteratively and this is perhaps the
reason why this morphological analyzer is a more accurate
model. There are still some words that will not be modelled
by the morphological analyzer, these are words that start
with a vowel instead of a consonant as well as remarks and
words that include an apostrophe.

We then modelled the verbs, from the verbs we can tell
that the verbs that verbs are structured as subject, verb
stem (verb root) and object [16]. Using this, we can model
the parts of speech that form the word. These include the
subject marker, the object marker, singular marker, negative
marker as well as class markers within the word. Once we
can model the morphological analyzer to accept words of
the isiZulu language. We have also modelled pronouns both
personal and possessive. The pronouns do not have prefixes
but they do have a common suffix, this suffix is e, i or a [7].

The negative markers in the isiZulu language appear both
as prefixes and as suffixes. The prefix is a and the suffix is

anga, the infinitive word form appears with the affirmative
prefix uku. The who, what, why questions within the isiZulu
language all have the suffix phi.

Some of the markers were modelled into one finite state
network, they were connected or joined together through
the use of what in regular language is known as an empty
string or symbol. In the Jflap language, this is referred to
as a lamda. This empty string was not only used to link
the markers together but also to handle a few of the isiZulu
words that do not meet a certain aspect of the rule that has
been specified.

We also did not model infixes because with the structure
that has been made by the finite state network, the morpho-
logical analyzer will be able to accept those type of words.
QO signifies the start state. The arrows signify the transition
of one state to another. When the arrow is pointed towards
the current state, the input needs to be inputed more than
once. When there are two states arrows alternating between
each other, this allows an odd number of the input to be ac-
cepted by the finite state network. The range of alphabets
from a to z is the input that can be accepted by the state.
The accepting state illustrated as a state within a state.

From the development of the non deterministic finite state
automata, we transform the deterministic finite state au-
tomata. The deterministic finite state automata can be com-
piled to regular expressions using the Jflap Software tool

4.2 Changing to regular expressions

The deterministic finite state automata is then converted
to regular expressions. The regular expressions were written
in regular language. The syntax for the regular expressions
in the regular language differs from the regular expressions
of the programming languages in computing.

The programming language that has been used in this
project is Perl. The output that has been generated by the
Jflap software tool, had to be modified to meet the syntax
of the Perl programming language. The regular expressions
also had to be changed. The regular expressions that have
been generated by the Jflap tool for the isiZulu noun finite
state network looks like the following:

(isi+ um("+ uw)+ ama+ izi + imi+ ubu + ukuw)(w + v
+t+s+r+qgrtp+tz+ty+x+g+f+c+n
+m+ 1+ k + j +h) [a-z]([a-z]+[a-z] [a-2z])
*(a+e+1i+o0+u)

The regular expression continues in this fashion and be-
comes incredibly redundant, repeating the same sequence
and this exact pattern a number of times. This has made
it very hard to translate the language into Perl syntax for
a number of reasons. The most crucial reason being that
the notations used have slightly different meaning. In regu-
lar language syntax, the logical or function that depicts that
the state will either accept input shown on the left hand side
or on the right hand side is represented with the notation +.
In the Perl programming language, this notation indicates a
range of one or more inputs that can be entered by the user.

Another difference in syntax is the use of the ~ notation.
This notation in regular language represents an empty string
and is referred to as lamda. This notation in perl however,
is known as an anchor, this symbol makes sure to check
whether or not the pattern starts with the input that has
been specified. Knowing these facts, we have changed the

Figure 2: Final iteration of the finite state automata for isiZulu nouns using Jflap 7.

regular expressions to the following:

“(isilum("$luw) lam(ale) [izili("$|m) |ubulukulab(ale)
|in|yelezilolulu) ("$| [bcdfghjklmnpqrstvwxyz])
([a-z]+) ([alelilolul$)

This particular regular expressions is the final product of
the noun model representation. Through this regular ex-
pression, we can see that all of the 17 noun prefixes are
handled and we ensure that the following input is a conso-
nant then the morphological analyzer can accept a number
of inputs that the user has entered afterwards and there is
a range of inputs that must be entered by the user at the
end of the pattern in order for the string to be accepted as
a valid word in isiZulu.

These anchors bring us closer to a more accurate represen-
tation of the language. The regular expression above does
not only model nouns, it also models other concords such as
the adjective concord. Since we are not focusing on gram-
mar, our objective is to model as many linguistic rules of
the language as we can. We decided to group some of the
concords together but not all.

We did not group all of the concords and words into one
finite state network because the regular expressions would
have been too complex to comprehend. Another aim of this
project is to make sure the results of the project are readable
and reproducible. This lead to the development of three dif-
ferent finite state networks and regular expressions all mod-
elling different types of words

The verb finite state network in Jflap produced the fol-
lowing regular expression:

(u+ i+ a+ngi+ ni+ ba+ku+sizi+ 1i+ 1lu
+((u+ i+ a+ngi+ni+ ba)y+ kuy + siy +
+ziy + 1liy + luy)ala-z] ([a-z] [a-z])*a +
((u+1i+ a+ ngi+ni+ ba)la-z]+

+ ku [a-z] + si [a-z] + zi [a-z] 1i [a-z]

+ lula-z])*ile

Once again, we can see that there are some redundancies
in the regular expressions that do not make it very accurate.
The regular expression was changed again to match the reg-
ular expression syntax in the Perl programming language.
The Perl programming language is the following:

“(ulilalngl|lilsilnilbalkulzillu)ya
([bcdfghjklmnpgrstvwxyz]) ([a-z]+)

(a$) | (ulilalnglsillillulkulzilnil|ba) ([a-z]+)
(elile$) | (tIk)h(oli)na$| (blw|llylz|s)onke$

This is the Perl regular expression for isiZulu verb pattern
matching, it followes the subject, verb stem, object and final
vowel word structure. Although it was meant to only handle
verbs, it has been expanded to include possessive pronouns,
past tense as well as future tense. However it does not words
that are in the passive form. The make up of nouns and
verbs is very complex and differ in a lot of ways. The struc-
ture being one of the most important, this has made it very
difficult for us to model them together. There are as is the
case with many natural languages, exceptions to the rules,
these exceptions were not modelled.

By modelling each sets of concords separately, we were
able to model the verbs. With the help of the structure
guidelines of isiZulu words [7]. The next regular expression

that was generated was targeted at negative markers and
concords. We used the Jflap tool to convert the finite state
network to a regular expression. The regular expression for
negation on the Jflap tool is shown below:

(akatabatawutayi+azi+alu+a(k+b)u+
(akat+aba+awu+ayi+azi+al (u+i)+a(k+b)
u(yi+si) (r+s+p+qtvtu+y+z+btc+i+g
j+k+h+n+m+1 [a-z] ([a-z]+[a-2z] [a-z]) * (i+0)

From this we are able to change these regular expressions
to the syntax the Perl programming languages. The regular

expression for perl is as follows:

/~(elakalabalaw(alu) layilazilalull) ("$Isilyi)/

/ ([bdcfghjklmnpqrstvwxyz]) ([a-z]+) (alolilanga|phi$)/

There are steps that were taken in the changing of the
Jflap regular expressions to the perl programming language
regular expressions. The notations mean the following: [a-
z] specifies the range of alphabets from a to z. This is only
specific to lower case alphabets. [A-Z] is specific to upper
case alphabets, when specifying ranges we use the symbols
1, O or {}.

The * symbol specifies that the user can enter the charac-
ters shown zero or more times. The + symbol specifies that
the user can enter the inputs shown once or more times. The
| symbol specifies the logical or function, this function shows
that the system can accept either of the characters specified.

The * symbol is known as a greedy operator, it matches
the described pattern as much as it possibly can. This means
that the symbol could match a pattern that is as close to
the word as it can be. this leads to a lot of false positives
and inaccurate words being matched correctly. This symbol
has been changed to the + symbol.

5. METHODOLOGY

The question we are asking in this study is this, just
how accurate is this spell checker when compared to a spell
checker designed using a similar approach by S. Bosch and
R. Eiselen [4]. The paper mentioned also made use of perl
regular expressions and obtained an accuracy rate of 82.

5.1 Hypothesis

Our hypothesis is as follows, this spell checker will have
a higher accuracy rate than that of the paper by S. Bosch
because it goes into more depth concerning the language.

5.2 List of Materials

‘We made use of 2 corpora, the first from the Ukwabela cor-
pus and the second from the University of Kwa-Zulu Natal.
On the grounds that we do not have expert level knowledge
of the language to be able to discern between false positives
and true negatives, so to give a more accurate look at our
spell checker we have added a mini word list that is short
and tests the extreme cases for example a number found
within a string. 50 words will be taken from each of the
corpora and put together to form one word list. The system
will then test the word list on the basis of 4 important ques-
tions, these questions are derived from the confusion matrix
[27].

The four questions that are derived from the confusion
matrix are the following: how many correctly spelled words

appeared as incorrectly spelled words to the spell checker,
this term is known as a false negative. Secondly, how many
incorrectly spelled words are flagged as correctly spelled
words by the spell checker. This term known as a false
positive [10]. Thirdly, how many correctly spelled are recog-
nized as correctly spelled words by the spell checker. This
term is known as True positive [10].

Lastly, how many incorrectly spelled words are recognized
as incorrectly spelled words by the spell checker. This term
is known as true negative.

One computer will be used in conducting these experi-
ments, it contains all of the materials needed for the exper-
iment and there is no means any need for another. We used
the following software for the development of this morpho-
logical analyzer which will be used for spell checking and
is now about to be evaluated. The first software tool is
Jflap, this tool is used to experiment with formal languages
and also works for natural language processing. The second
software tool is Perl. It is with this software tool that the
morphological analyzer was implemented. It is that same
morphological analyzer that we will be evaluating.

5.3 Procedures

The manipulated variable in this experiment is the word
list, this is because the size of the word list can be ma-
nipulated at any time. This variable is also known as the
independent variable. The responding variable in this ex-
periment is the accuracy to be measured, this is because of
the value of the output cannot be changed in any way.

The experimental control in this experiment is the accu-
racy of the spell checker suggested in the paper by S. Bosch
and R. Eiselen. That spell checker will be our standard
for comparison and in the end we will compare the two in
terms of accuracy, they however have calculated the accu-
racy of their spell checker using only lexical recall. Thanks
to the confusion matrix, we can also know what the lexical
recall of the spell checker is.

The controlled variables in this experiment are the vari-
ables that we think will stay constant and never changing,
these variables would also be the results obtained. These
results will always remain constant. The validity measures
that have been taken to ensure that the results stay the
same and are reliable are that we have recorded the data.
The words that have been used to test the spell checker and
to evaluate it have been stored in a word list.

The results have been stored and tabulated into a table
of confusion [10]. So if the trials were to be repeated again,
the results could be cross checked for proof.

6. RESULTS

The hypothesis specified above stated again that we be-
lieve that our spell checker would do better and be more
accurate than the spell checker proposed by the paper [4].
Our results are in two parts, the accuracy level for the Uk-
wabelana corpus and the accuracy rate for the 2ml token
corpus we have received from the University of Kwa-Zulu
Natal. In the end, the words will put together onto one for
a full view of our system.

The abbreviated terms mean the following: TN: True neg-
atives, TP: True positives, FP: False positives and FN: False
negatives. The accuracy of the spell checker using the Uk-
wabelana corpus registered at 86 percent. The reason why
we were able to achieve this results is because theoretically

Table 1: Confusion matrix
Corpus TN | TP | FP | FN
Ukwabelana 43 7
2ml token 1 46 1 2
Self made mini word-list 1 7 4

the morphological analyzer that has been created by using a
step by step procedure allows us to get a more in depth look
at the language in order to provide a spell checker that gives
a more accurate representation of the isiZulu language.

The accuracy of the spell checker when tested using the
2ml corpus, the accuracy rate of this is at 92 percent. This
is very surprising because this corpus has strings of very old
isiZulu language and the dialect is a little off and is very old.
This is a surprising turn of events. The regular expression
from the paper was: /~(u) (.*) (a)$/
While this regular expression may handle many isiZulu words,
there are many false patterns that will be matched as correct
isiZulu words. The use of the . symbol in regular expressions
means any character (numbers and other symbols within the
string included) will be allowed in the string

An example of the words that can be accepted by the
regular expressions are ubaba and uyabaleka, in short, this
regular expression can accept isiZulu words that start with
u and end with a. However input entered in the middle of
the string will also be accepted. Words such as ub223ba or
uya332233bale33[Jka would also be accepted.

This is why

From this we could see that tighter restrictions were needed
in order to make sure the spell checker would be an accurate
representation of the language. The third iteration was the
following regular expression:

/~isi(A-Z) (a-z)*([aeioul) $/

/" ama(A-Z) (a-z) *([aeiou]) $/

/~izi(A-Z) (a-z)*([aeioul) $/

/"in(A-Z) (a-z)*([aeioul) $/

/"u(A-Z) (a-z)*([aeioul) $/

/"1(A-Z) (a-z)*([aeioul) $/

/~aba(A-Z) (a-z) *([aeiou]) $/

/" uku(A-Z) (a-z) *([aeoiul) $/

Although these regular expressions have gone a step closer
to solving the problem of shown above, there were still a
number of discrepancies that were found with this set of
regular expressions. They did not handle all of the rules of
the isiZulu language and not most of the rules of the isiZulu
language.

isiZulu words always start with a consonant after the pre-
fix and always end with a vowel. There was also a problem
of the use of the greedy operators such as * which would
undoubtedly match incorrect patterns including those with
numbers

The third iteration involved starting over and introducing
the Jflap software tool. This tool gave us a correct indication
of how the language can be modelled. This software allows
us to experiment with the formal language, it also allows us
to test the formal language with a string of input and from
that generate regular languages using the Jflap software tool.
The regular expression that was generated was once again
was the following:

(isi+ um("+ u)+ ama+ izi + imi+ ubu + uku) (w + v

+t+s+r+qgtp+rz+y+x+g+f+c+n
+m+ 1+ k + j + h) [a-z]([a-z]+[a-z] [a-z])
*(a+e+1+o0+u)

7. DISCUSSIONS

There have been many stumbling blocks with this project
and there are still many parts that are meant to looked with
this problem. We have not been able to model all of the rules
of the language and thus there still some improvements that
are meant to take place in order for a more complete and
accurate spell checker.

For future works, we want to fuse multiple approaches to-
gether so one approach can cater for the short comings of
another. There are certain features of the regular expres-
sions that the regular expression cannot measure. Not to
mention the size of the regular expressions makes it very
hard to find a point of failure and to fix it.

We would also like to gain further knowledge of the lan-
guage so that we can be able to model the exceptions to
certain without at the same time, damaging the integrity of
the spell checker by having it accept more nonsensical words
than the exceptions that it was meant to cater for

8. CONCLUSIONS

In this article, we discuss how to build a morphological
analyzer that can be used as a spell checker. We discuss
how we can use the morphological structure of the language
to model a spell checker.

We also discuss the other methodologies that have been
tried and that have and how we used other resources as a
springing board to modelling the language.

9. ACKNOWLEDGMENTS

We would like to thank the University of Cape Town and
the Department of Computer Science for this wonderful op-
portunity to be able to undertake in this project. This op-
portunity has granted me the chance to learn more about
ourselves in a more academic standpoint.

We thank our supervisors for the support that they have
provided us. We would have never been able to complete
this journey without their support. We would also like to
thank the support of the Honours conveiner Prof. Michelle
Kuttel for all her support with the honours year.

We would also like to thank Prof. Langa Khumalo and
the University of Kwa Zulu Natal for the help that has been
offered to us. We would also like to thank NRF for funding
us during the development of this project

10. REFERENCES

[1] Y. Bassil and M. Alwani. Context-sensitive spelling
correction using google web 1t 5-gram information.
Computer and information science, 5(3):37, May 2012.

[2] A. Bergmann, K. Currie, and S. M. Ross. Language
files: Materials for an introduction to language and
linguistics. Ohio State University Press., Columbus,
USA, 10th edition, 2007.

[3] S. Bosch and L. Pretorius. The significance of
computational morphological analysis for zulu
lexicography. International Journal of Computer
Trends and Technology (IJCTT), 4(3):372-374, June
2002.

[4]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

S. E. Bosch and R. Eiselen. The effectiveness of
morphological rules for an isizulu spelling checker.
South African Journal of African Languages,
25(1):25-36, 2005.

S. E. Bosch, A. Fleisch, and L. Pretorius.
Experimental bootstrapping of morphological
analyzers for nguni languages. Nordic Journal of
African Studies, 17(2):66-88, November 2008.

A. Briiggemann-Klein. Regular expressions into finite
automata. Theoretical Computer Science,
120(2):197-213, 1993.

M. de Dreu. The internal structure of the zulu DP.
Master’s thesis, Leiden University, Netherlands, 2008.
G. Deutscher. The unfolding of language: An
evolutionary tour of mankind’s greatest invention.
Holt paperbacks, New York, USA, 2006.

R. Farr and P. Timm. Business Research: An Informal
Guide. Fifty-Minute series. Crisp Publications, 1994.
T. Fawcett. An introduction to roc analysis. Pattern
Recognition letters, 27(8):291-296, 2006.

L. B. Feldman, R. Frost, and T. Pnini. Decomposing
words into their constituent morphemes: Evidence
from english and hebrew. Journal of Exzperimental
Psychology: Learning, Memory and Cognition,
21:947-960, 1995.

L. Grout. The Isizulu: A Grammar of the Zulu
Language. Triibner & Company, London, United
Kingdom, 1st edition, 1859.

A. M. Harrison. Introduction to formal language
theory. Addison-Wesley Longman Publishing Co., Inc.,
Boston MA, USA, 1st edition, 1978.

B. A. Huberman and L. A. Adamic. Internet: growth
dynamics of the world-wide web. Nature,
401(6749):131-131, 1999.

A. Hurskainen. A two-level computer formalism for
the analysis of bantu morphology. Nordic Journal of
African studies, 1(1):87-119, 1992.

M. Kafrika and S. Zerbian. Quantification across
bantu language. Quantification: a cross linguistic
perspective, North Holland Linguistic Series:
Linguistic Variations, 64(1):383-414, 2008.

L. Karttunen, J.-P. Chanod, G. Grefenstette, and

A. Schille. Regular expressions for language
engineering. Natural Language Engineering,
2(4):305-328, 1996.

G. Kaur. Usage of regular expressions in nlp.
International Journal of Research in Engineering and
Technology (IJRET), 3(1):168-174, January 2014.

C. M. Keet and L. Khumalo. Basics for a grammar
engine to verbalize logical theories in isizulu. In Rules
on the Web. From Theory to Applications, pages
216-225. Springer, 2014.

M. Koleva. Towards adaptation of NLP tools for
closely-related Bantu languages: Building a
Parts-of-Speech tagger for Zulu. Master’s thesis,
Saarland University, Germany, 2013.

K. Kukich. Technique for automatically correcting
words in text. ACM Computing Surveys,
24(4):377-439, December 1992.

R. Mishra and N. Kaur. A survey of spelling error
detection and correction techniques. International

23]

24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

33]

(34]

Journal of Computer Trends and Technology (IJCTT),
4(3):372-374, September 2013.

Y. Naidoo, A. van der Merwe, E. Groenewald, and

E. Naude. Development of speech sounds and syllable
structure of words in zulu speaking children. Southern
African Linguistic and Applied Language studies,
23(1):59-79, November 2009.

T. E. Payne. Describing morphosyntax: A guide for
field linguistics. Cambridge University Press., New
York, USA, 1997.

A. Pirkola. Morphological typology of languages for ir.
Journal of Documentation, 57(3):330-348, 2001.

L. Pretorius and S. E. Bosch. Finite-state
computational morphology: An analyzer prototype for
zulu. Machine Translation, 18(3):195-216, 2003.

F. J. Provost, T. Fawcett, and R. Kohavi. The case
against accuracy estimation for comparing induction
algorithms. In ICML, volume 98, pages 445-453, 1998.
S. H. Rodger and T. W. Finley. JELAP: an interactive
formal languages and automata package. Jones and
Bartlett Learning, California, USA, 2006.

K. Shaalan. Rule-based approach in arabic natural
language processing. The International Journal on
Information and communication Technologies,
3:11-19, 2010.

S. Shandilya and R. Yadav. Determinism and non
determinism of finite automata. International Journal
of Research in Information Technology (IJRIT),
2(8):291-296, 2014.

S. Spiegler, B. Golénia, K. Shalonova, P. Flach, and
R. Tucker. Learning the morphology of zulu with
different degrees of supervision. Spoken Language
Technology Workshop (SLT), 25(1):9-12, 2008.

S. Spiegler, A. Van Der Spuy, and P. A. Flach.
Ukwabelana: an open-source morphological zulu
corpus. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages
1020-1028. Association for Computational Linguistics,
2010.

E. K. Twala. The noun class system of isiZulu.
Master’s thesis, University of Johannesburg, South
Africa, 1992.

A. van der Spuy. Post-inflectional derivation in zulu:
further evidence against the split morphology
hypothesis. Language matters: Studies in the
languages of Africa, 44:78-93, 2013.

APPENDIX

NC|AU |[PRE [Stem (example) |[Meaning | Example

1 u- m(u)- |-fana humans and other umfana baoy

2 a- ba- -fana animates abafana boys

la |u- |- -baba kinship terms and proper |ubaba father

2a |o- - -baba names obaba fathers

3a |u- |- -shizi nonhuman ushizi cheese

(2a) |o- |- -shizi oshizi cheeses

3 u- m(u)- |-fula trees, plants, non-paired |umfula river

4 mi- -fula body parts imifula rivers

5 (Li)- -gama fruits, paired body parts, |igama name

6 a- ma- -gama and natural phenomena |amagama |names

7 si- -hlalo inanimates and manner/ |isihlalo chair

8 Zi- -hlalo style izihlalo chairs

Oa - -rabha nonhuman irabha rubber

(6) |a- ma- -rabha amarabha |rubbers

9 i(n)- |- -ja animals inja dog

10 | zi(n)- |-ja izinja dogs

11 |u- (lu)- |-thi inanimates and long thin |uthi stick

(10) zi(n})- |-thi objects izinthi sticks

14 |u- |bu- -hle abstract nouns ubuhle beauty

15 |u- |ku- -cula infinitives ukucula to sing

17 ku- locatives, remote,/ general locative

Figure 3: Nominal classification system for isiZulu [19]

NC QC (all) NEG SC |PRON RC QC4qwalEC
QCoral+tonke ‘anke

1 u-onke — wonke |wo- aka- yena o- ye- mu-

2 ba-onke — bonke |bo- aba- bona aba- |bo- ba-

la u-onke — wonke |wo- aka- yena o- ye- -

2a ba-onke — bonke |bo- aba- bona aba- |bo- ba-

3a u-onke — wonke |wo- aka- wona o- ye- mu-

(2a) |ba-onke — bonke |bo- aba- bona aba- |bo- ba-

3 u-onke — wonke |wo- awll- wona o- Wo- -

4 i-onke — yonke yo- ayi- yona o- yo- mi-

5 li-onke — lonke lo- ali- lona eli- lo- li-

6 a-onke — onke o- awa- wona a- Wo- ma-

7 si-onke — sonke |so- asi- sona esi- s0- si-

8 zi-onke — zonke |zo- azi- zona ezi ZO- zi-

Oa i-onke — vonke Vo- ayi- yona e- yo- yi-

(6) |a-onke — onke awa- Wona a- WO- ma-

9 i-onke — vonke Vo- ayi- yona e- yO- vi-

10 zi-onke — zonke |zo- azi- zona ezi- ZO- zi-

11 In-onke — lonke |lo- alu- lona olu- lo- lu-

(10) |zi-onke — zonke |zo- AZi- zona ezi- zo- zi-

14 ba-onke — bonke |bo- abu- bona obu- |bo- bu-

15 ku-onke — konke |zo- aku- khona oku- |zo- ku-

Figure 4: Other concords that appear in isiZulu [19]

