
 
 

Computer Science Honours 
Final Paper 

2015 
 

Title: Transforming DSpace into a Research Information Management System: Ingestion Manager and 
Report Writer Components 
 
Author: Darryl Meyer 
 
Project Abbreviation: NRFDB 
 
Supervisor: Assoc. Prof. Hussein Suleman 
 
 
 
 

Category Min  Max Chosen 
Requirement Analysis and Design 0 20 20 
Theoretical Analysis 0 25 0 
Experiment Design and Execution 0 20 0 
System Development and Implementation 0 15 15 
Results, Findings and Conclusion  10 20 13 
Aim Formulation and Background Work 10 15 12 
Quality of Paper Writing and Presentation 10 10 
Adherence to Project Proposal and Quality of 
Deliverables 

10 10 

Overall General Project Evaluation (this section 
allowed only with motivation letter from supervisor) 

0 10 0 

Total marks 80 80 
 
 

  

DEPARTMENT OF COMPUTER SCIENCE 



Transforming DSpace into a Research Information 
Management System: Ingestion Manager and Report 

Writer Components 
Darryl Meyer 

Dept. of Computer Science 
University of Cape Town  

Private Bag X3, 
Rondebosch, 7701 

South Africa 
myrdar003@myuct.ac.za

ABSTRACT 
Two databases of the South African National Research Foundation 
are to be migrated from a legacy database system to a more modern 
DSpace repository. Opportunities for transforming DSpace into a 
research information management system were identified, which in 
turn led to the development of add-ons for DSpace. The add-ons 
were developed to assist users with tasks that are not currently 
supported in DSpace. These tasks are: allowing non-admin users to 
remotely ingest batches of new items and generating detailed 
reports on the information in a DSpace repository. The add-ons 
were designed to be simple and require minimal user interaction. 
The design resulted in add-ons that met all the functional 
requirements, had acceptable performance for increasing task size, 
and scored highly in usability tests.  

Categories and Subject Descriptors 
H.3.7 [Information Storage and Retrieval]: Digital Libraries –
Collection, System issues, User issues. 

General Terms 
Documentation, Design, Human Factors, Verification. 

Keywords 

DSpace, Research Information Management Systems, Ingestion 
Management, Report Writing 

1.   INTRODUCTION 
The South African National Research Foundation has identified a 
need to migrate their existing Current and Completed Research 
Projects and Funded Projects databases to DSpace. The data in 
these databases is of particular importance for the retention and 
promotion of research in South Africa. These databases are to be 
migrated to a more modern DSpace repository, which will help 
streamline the ingestion of information from universities across 
South Africa into the NRF’s databases. There are also opportunities 
to build advanced features into DSpace that will further assist the 
ingestion of information into these, and other databases. 

This project has identified some of the opportunities as developing 
add-ons for DSpace that would help transform it into more of a 
research information management system (RIMS). The add-ons 
that were developed for this project will assist the users of DSpace 
to perform tasks that are labour-intensive or would otherwise not 
be possible. The first add-on is a workflow-based ingestion 
management system to assist non-admin users of DSpace to import 
batches of items into DSpace while maintaining the approval 
workflow system present in DSpace. The second add-on is a report 
generation tool that provides reporting on items in DSpace that are 
more detailed than the statistics reports already available in 
DSpace. Some of the existing approaches to these opportunities 
require technically skilled users to perform sometimes tedious tasks 
in order to achieve the same results that these add-ons achieve with 
minimal user interaction.  

This paper presents a review on some of the literature that is 
relevant to the functionality of the add-ons. In addition, it describes 
the design and implementation of the add-ons and concludes with 
discussions on the results of testing the add-ons. 

2.   BACKGROUND 
2.1   Institutional Repositories 
A digital repository is a collection of digital objects. It differs from 
other digital collections in that the architecture of the repository 
enables management of the content and related metadata [7]. An 
institutional repository (IR) is a kind of digital repository. An IR is 
specialised to preserve and disseminate the intellectual output of 
the researchers at universities or other research institutions [2]. 

2.2   DSpace 
DSpace is an open source IR system that supports the capture of 
digital works, the distribution of those works over the Internet 
through a search and retrieval system, and ultimately the long-term 
preservation of those works [21]. DSpace was developed by a 
collaboration between Massachusetts Institute of Technology 
(MIT) Libraries and Hewlett-Packard Labs [15]. 

2.2.1   DSpace Submission Workflow 
Items in DSpace are sorted in a hierarchy of communities, sub-
communities and collections [15]. Collections in DSpace allow for 
the separation of different types or topics of content within a 
community. DSpace allows for different roles within the system, 
such as “submitters” and “reviewers.” Separation of roles is useful 
when the users who submit content are different from those who 
review and approve the content [6]. DSpace is the first open source 
solution to tackle the complex problem of allowing different 

For online supplementary material, please go to: pubs.cs.uct.ac.za 
and search for this project by it’s abbreviation–NRFDB. 
 



submission workflows for different communities. Separate 
workflows help when different communities have different 
restrictions in place. 

2.2.2   Importing into DSpace 
There are multiple ways to import data into DSpace. One of these 
ways, as The Ohio State University did, was to create custom 
scripts to format legacy data so that it can be imported using 
DSpace’s command line import tool [19]. The legacy data to be 
imported is usually in the format of Comma Separated Value (CSV) 
files or spreadsheet documents. These files have to be converted to 
XML or JSON formatted metadata files, with the metadata in the 
Dublin Core1 format, before they can be imported into DSpace.  

2.2.3   DSpace REST API 
A recent inclusion into the functionality of DSpace is a RESTful 
web services API [13]. The REST API allows third-party 
application developers access to the objects in DSpace. First 
introduced in DSpace version 4, with read-only access, the REST 
API was only able to provide publicly accessible objects [13]. In 
DSpace version 5, the REST API allows for user authorization to 
access restricted content and to view, create, edit and delete objects 
in DSpace [14].  

2.2.4   DSpace Storage Architecture 
DSpace was designed to allow for customization and enhancement. 
Its design is a familiar architecture—the layered architecture. This 
architecture is separated into three layers with each layer consisting 
of different components. The three layers are: storage, business 
logic and application [18]. The storage layer is designed to use the 
file system to store files and a relational database to store and 
manage metadata. DSpace can be set up to use either a PostgreSQL 
or Oracle database [15].  

2.3   Research Information Management 
Systems 
A research information management system (RIMS), also known 
as a current research information system (CRIS), is a system that is 
used to manage the information about the research process. The 
information it manages can include: funding opportunities, 
proposal submissions, bids for funding and active research projects. 
The fundamental idea of a CRIS is to be able to manage the events 
of the research process and promote the research outputs [10]. 

2.3.1   CRIS solutions 
CRIS solutions attempt to improve the visibility of published 
research and to present the results of research in way that it can be 
easily absorbed [9]. One such CRIS solution is InfoEd Global. 
InfoEd Global provides solutions for institutions to manage their 
research produced. Their solutions include managing research from 
the initial concept to the final publication of the research [8]. The 
DSpace CRIS module is a good open source alternative to this, and 
other, established solutions. 

2.3.2   DSpace CRIS 
Provided with the DSpace source code is an additional module that 
adds CRIS features to DSpace. The module was developed by 
Cineca2 for the University of Hong Kong and has since been made 
available as an open source additional module for DSpace. The 
DSpace CRIS module extends upon the data model of DSpace to 
better showcase the works and promote the reputations of 

                                                                    
1 http://dublincore.org/ 
2 http://www.cineca.it/en 

researchers, as well as to support the interactions between 
researchers of different institutions [12].  

2.4   Business Intelligence Reporting 
Business Intelligence (BI) systems enable reporting and analysis on 
business operations [20].  Meaningful reports can help managers to 
make informed strategic decisions. Some BI systems connect 
directly to data sources to enable generation of reports. DSpace 
does not include a reporting tool that can match the functionality of 
a BI solution. It can, however, generate usage statistics such as item 
submission and view counts [11]. 

2.4.1   Existing BI Solutions 
Some existing open source BI solutions include OpenReports3 and 
ReportServer4. In both these solutions, reports are designed in a 
separate report designing software and are imported for later use. 
The development of OpenReports has ended and as a result its 
functionality is being surpassed by more modern solutions like 
ReportServer.  Furthermore, because ReportServer is under current 
development, there is an active user community and support from 
the creators. 

2.4.2   Integration into DSpace 
Integrating a BI solution into DSpace is made possible because 
DSpace uses a familiar relational database management system 
(PostgreSQL or Oracle) to manage metadata. In order to implement 
a BI solution to work with DSpace, it has to be able to have direct 
access to DSpace’s database. This is accomplished by configuring 
the BI solution to connect to the database using the correct JDBC 
driver and connection settings. However, the information in the 
database has to be interpreted and report templates must be 
designed before the BI solution can meet any reporting needs. 

3.   DESIGN 
3.1   Requirements Analysis 
3.1.1   National Research Foundation 
The requirements specified by our client, the South African 
National Research Foundation, was to migrate the data on two 
legacy database systems from the STAR Classic Application 
database to a more modern DSpace repository. The two databases 
are the Current and Completed Research Projects and the National 
Research Foundation’s Funded Projects databases. 

3.1.2   Identified RIMS Components 
Further requirements for our project were identified by our project 
supervisor, Assoc. Prof. Hussein Suleman, and agreed upon by our 
client. The requirements were to help transform an institutional 
repository (IR), like DSpace, into more of a research information 
management system (RIMS). The transformation was done by 
identifying components of a RIMS that DSpace does not include by 
default and those were built in as add-ons to DSpace. The 
components identified were: an automatic metadata mapping tool, 
a manual metadata mapping tool, a report generation tool, and a 
workflow-based ingestion management system. 

The automatic metadata mapping tool takes in legacy data (a CSV 
file) as input and attempts to automatically determine the 
appropriate Dublin Core field type of each column of data in the 
input. The manual metadata mapper allows the user to manually set 
the field type for each column, should the automatic metadata 
mapper have made a mistake. The automatic and manual metadata 

3 http://oreports.com/ 

4 http://reportserver.net/en/ 



mapping tools were developed by my team member, Craig 
Feldman. 

The report generation tool is able to generate detailed reports on the 
items stored in a DSpace repository. DSpace provides limited 
reporting functionality by default but the report generation tool is 
able to go beyond that and generate detailed reports using the 
metadata of items, communities and collections in DSpace. The 
workflow-based ingestion management system supports batch 
imports of items into DSpace from legacy data inputs. Batch 
imports are currently supported in DSpace, but only by 
administrators. This system allows non-administrator users to 
remotely ingest batches of items into a DSpace repository whilst 
still maintaining the approval workflow steps as in DSpace. The 
tool for report generation is called the Report Writer and the tool 
for the workflow-based ingestion management system is called the 
Ingestion Manager. 

3.1.3   User Survey 
A survey was compiled to gather feedback from the DSpace user 
community about our proposed add-ons. The survey included eight 
questions designed to gain an understanding on whether our 
proposed functionality would be useful to the DSpace community 
and to help refine our initial requirements. The survey was created 
using Lime Survey5 and a link to the survey with a brief description 
of our project was sent to the IRTalk, DSpace technical support and 
developers mailing lists. The survey link was also shown after a 
presentation of our project to the members attending the Digital 
Libraries workshop at the IFLA IT Section 2015 pre-conference 
satellite meeting. 

The survey was completed by 14 participants and after analysis of 
the results we could conclude that the functionality we had 
proposed would be useful to the DSpace community and was worth 
proceeding with. The results and statistics of the survey can be 
found in the online supplementary materials. 

 
Figure 1. Use Case Diagram for the Ingestion Manager 

3.1.4   Use Cases 
Use case diagrams and narratives for the Ingestion Manager and 
Report Writer were drawn up to define the goals of the users of both 
systems. Once the goals of the users were identified, we began to 
implement the functionality. The use case narratives for the 

                                                                    
5 https://www.limesurvey.org/en/ 

Ingestion Manager and Report Writer can be found in the online 
supplementary materials.  

The goals of the users of the Ingestion Manager, as depicted in 
Figure 1, are separated by the roles of the users. The Ingestion 
Manager includes two roles: a user and a manager. Both users and 
managers are able to log in and out of the system. A user can upload 
a batch and that batch will be entered into the holding area. Both 
users and managers can remove batches which will remove the 
batch from the holding area as well. A manager can approve a batch 
that is in the holding area, which will enter the batch into the 
DSpace repository and remove the batch from the holding area.  

There is only one user of the Report Writer, a manager, as depicted 
in Figure 2. A manager of the Ingestion Manager and a manager of 
the Report Writer can be the same person but does not necessarily 
have to be. A manager of the Report Writer can login, logout, 
generate reports, and download generated reports.  

 
Figure 2. Use Case Diagram for the Report Writer 

 
Figure 3. Layered architecture of the applications 

3.2   System Architecture and Design 
3.2.1   Architecture 
A layered architecture model is used in both the Ingestion Manger 
and the Report Writer. There are 4 layers in the model: storage, 



business services, business objects, and presentation. The layers 
and components of each layer of the architecture is depicted in the 
architecture diagram–Figure 3.  

3.2.2   User Roles 
Users of the system are separated into two categories: users and 
managers. This separation is important to enable a workflow 
whereby a manager has to approve a user’s submission before the 
submission can be entered into the DSpace repository. A user is 
able to upload a batch, view or remove batches pending approval, 
and view batches that have been approved. In the Ingestion 
Manager, a manager is able to review, remove or approve batches 
that are pending approval. In the Report Writer, a manager is able 
to generate reports from the available templates. To keep the reports 
confidential, only managers are able to access functionality of the 
Report Writer. 

3.2.3   Login  
DSpace requires a user to be logged in before they can submit items 
to the repository. The login functionality of the Ingestion Manager 
and Report Writer are the same. Upon loading the applications, a 
user is presented with a login screen. The login screen prompts the 
user to enter their email address and password so that they can be 
authenticated in the DSpace repository. Login is handled by 
interfacing with the REST API of DSpace. A successful call (a user 
with valid login credentials for the DSpace repository) to the 
DSpace REST API login endpoint will return a token. The token is 
stored and later passed to the submission REST API endpoint, 
together with the item. To log the user out, the token is passed to 
the logout REST API endpoint. The token is stored in a cookie to 
maintain the user’s logged-in status while they are interacting with 
the application. 

Separate from the DSpace login, the applications also keep a stored 
record of whether the user attempting to login is a manager. This 
record is used to redirect the user to the functionality appropriate 
for their role. The user’s login credentials are not stored by the 
applications; instead only a relation that states if the user has 
manager permissions is stored. 

3.2.4   Ingestion Manger 
The Ingestion Manager implements a submission workflow-based 
system that allows batches of items to be ingested into a DSpace 
repository. The core functionality of the submission workflow 
(described in more detail in Subsection 3.2.4.2) is to allow a 
submission to be approved by a manager before it is ingested into 
the DSpace repository. Other functions of the Ingestion Manager 
were built to add more control and convenience to the core 
functionality.  

The other functionality for the user includes two lists of 
submissions: one list is for the submissions that are pending 
approval and the other for submissions that have been approved. 
Wherever a submission is listed, it includes an option to view 
details about the submission. The details of submission are 
available to both the user who uploaded the submission and to 
managers. The details include: the user’s email address, the date 
and time the submission was uploaded, the date and time the 
submission was approved, the uploaded filename, the collection to 
submit to, a preview of the file contents, and an option to download 
the file that the user uploaded. The option to view details allows a 
manager to make the decision as to whether the user is allowed to 
submit to the collection that they are attempting to submit to and 
whether the content of the submission meets the submission 
policies of the institution, or not.  

 
Figure 4. Screen snapshot of submissions pending approval 

list 
A manager is presented with a list of submissions pending approval, 
as depicted in Figure 4. Each entry in the list includes: the user’s 
email address, the collection to submit to and the options to view 
details, approve or remove the submission. Should a manager 
choose to remove a submission, the email address of the user that 
uploaded the submission is formatted as a mailto link. The mailto 
link will open up a new email in the manager’s default email client 
with the recipient’s email address and subject line already filled in. 
This enables an out-of-band communication between the user and 
the manager, should the manager have a query or wish to notify the 
user of a removal of a submission. 

 
Figure 5. Component Diagram of connections between 

systems 

3.2.4.1   Interface with Metadata Mapper 
The Metadata Mapper (developed by Craig Feldman, and to be 
discussed further in his paper) is merged into the Ingestion 
Manager. Figure 5 depicts the connections between the Ingestion 
Manager, the Report Writer, and DSpace. The Metadata Mapper 
includes functionality to automatically determine the Dublin Core 
field type of each column of data in a CSV file. It also includes the 
option to correct any errors the automatic mapping process may 
have made. Login is handled by the Ingestion Manager, from there 
a user goes to a submission page that is shared by the Ingestion 
Manager and Metadata Mapper. The submission page, depicted in 
Figure 6, includes a form to upload a CSV file as well as for the 
user to enter other submission specific information. After the user 
submits the file, the Metadata Mapper processes the CSV file. The 
information from the Metadata Mapper is passed back to the 
Ingestion Manager, which then stores the submission and its 
associated information in the database. 



 
Figure 6. Screen snapshot of submission page upload form 

3.2.4.2   Submission Workflow 
The Ingestion Manager implements a workflow-based ingestion 
management system, similar to that which DSpace provides, 
whereby a manager has to approve a submission before it is entered 
into the repository. Refer to Figure 7 for an illustration of the 
process of the workflow. 

 
Figure 7. State Machine Diagram of submission workflow 

A user uploads a batch of items to be ingested into the DSpace 
repository. The batch is a CSV file in which one line contains the 
metadata for a single item. The CSV file is typically an exported 
file from a legacy database. The submission is first passed to the 
Metadata Mapper to determine and set the Dublin Core fields that 
correlate to the columns in the CSV file. The information 
determined by the Metadata Mapper and collected from user input 
is passed to the Ingestion Manager. This information is then stored 
in the application’s database. Thereafter, the submission is marked 
as pending approval and is then awaiting a manager to approve the 
submission.  

While the submission is awaiting approval, both the user and the 
manager have an option to view details about or remove the 
submission. If a submission is removed, the submission details are 
deleted from the database. Alternatively, a manager has the option 

to approve the submission, which will then ingest the batch into the 
DSpace repository.  

3.2.4.3   Interfacing with DSpace 
The Ingestion Manager interfaces with DSpace through the REST 
API made available in DSpace.  

A collection ID is a unique ID used to identify a collection in 
DSpace. The collection ID of a collection in DSpace is needed in 
order to submit an item to a specific collection in DSpace. A call is 
made to the REST API to return an XML formatted list of 
communities. This list contains all the communities with their 
parent-communities (if applicable) and collections. From this a list 
of communities and collections is built, which helps the user 
identify the collection to submit to by name. 

Ingesting items into DSpace is done through the REST API by 
submitting one item at a time. This is done because the current 
functionality of the REST API does not include a batch submission 
option. It also allows for reporting on specific items, should the 
ingestion fail. The process of submitting a batch involves iterating 
through the CSV file the user uploaded line by line and mapping 
the Dublin Core field types to the value in the associated column of 
the line. The REST API only accepts a JSON or XML formatted 
array of metadata items, where each metadata item is a text value 
and Dublin Core identifier pair. The Ingestion Manager uses JSON 
formatting when submitting to the REST API. Upon an 
unsuccessful submission, an error message, a preview of the failed 
entries, and an option to download a CSV file of the failed entries 
is displayed to the user. 

 
Figure 8. Screen snapshot of report preview screen 

3.2.5   Report Writer 
The initial design of the Report Writer was to implement an open 
source business intelligence solution. The problem with this 
approach is that, although the open source solutions provided many 
extra features, they were unnecessarily complicated for the 
requirements of this project and they lacked the direct integration 
with DSpace that we sought. So the decision was made to develop 
a reporting tool that had only a small subset of the features of the 
open source solutions, but was enough to meet the requirements. 

The Report Writer generates reports from predefined templates. 
The templates are XML files (explained in Subsection 3.2.5.1) 
containing features which are translated to HTML components. 
Once logged in, a manager can select to generate a report from a 
list of available templates. Once the report has been generated, the 
manager is presented with a full preview of the report. The report 
preview screen is depicted in Figure 8. From the preview screen, 



the manager can choose to download the report or return to the 
previous page to select another template. 

Reports are generated in HTML format and are downloadable as a 
ZIP archive. ZIP archives were chosen so that the images can be 
bundled together with the HTML file in a single downloadable file. 
The option of embedding the images as Base 64 encoded images 
was investigated, but later dropped, because the embedded images 
were not visible in other applications.  

Table 1. XML report feature descriptions 

Feature Tag value Attributes 

Page title Text  

Heading Text Style (h1, h2, etc.) 

Paragraph Text  

Table SQL SELECT query  

Pie chart SQL SELECT query Chart title, width and 
height. 

Bar chart SQL SELECT query Chart title, width, height, 
x-axis and y-axis label. 

 

3.2.5.1   XML Template Specification 
The Report Writer was designed with a similar approach to other 
reporting solutions. That is, the layout and content of the report is 
specified in an external XML file. Report features (headings, 
paragraphs, tables, etc.) are specified in XML tags. Some tags allow 
for attributes to be set for extra customization. Table 1 lists each 
feature available, what the XML tag should contain and its optional 
attributes supported by the Report Writer. For features that contain 
SQL SELECT queries as the tag value, the database is queried and 
the results are displayed in the format specified by the feature.  

Table 2. Information stored in applications’ databases 

Application Stored in database 

Ingestion Manager Submission information. 

Report Writer Report template information. 

Both Which users are managers. 
 

3.2.6   Database Design 
An SQLite database is used by both the Ingestion Manager and the 
Report Writer. When selecting a database to use in the applications, 
different options were considered but SQLite was chosen because 
the applications require only small datasets and are likely to be of 
low volume use. SQLite is also beneficial in that it does not require 
a server to be run separately from the main application (unlike other 
RDBMSs, such as MySQL or PostgreSQL) and can be bundled 
together with the application [17]. Table 2 lists what the 
applications store in their SQLite databases.  

To assign manager permissions to any DSpace user, a Python script 
has been provided for convenience. The Python script simply adds 
a user to the application’s database and sets their role to manager.  

3.2.7   User Interface Design 
The design of the user interface for both the Ingestion Manager and 
the Report Writer is meant to resemble the DSpace 5 JSP UI. This 
decision was made so that users of DSpace 5 JSP UI will feel a 
familiarity when using our applications. 

                                                                    
6 https://reportserver.net/en/ 

The user interface for both applications was designed using a user-
centred design approach. A paper prototype of both applications 
was created and presented to a group of four masters and doctoral 
students from the Digital Libraries and Information and 
Communications Technology for Development labs at the 
Department of Computer Science at the University of Cape Town. 
The paper prototype consisted of an A4 page per screen of the UI 
with the components of the interface drawn in with pencil. 
Background information on the project was provided to the 
students and they were given use case tasks to complete.  

Some of the feedback from the session included changing the 
wording of navigation buttons to be more descriptive, combining 
components of the user interface into logical groups, using tabs to 
separate long lists, and adding the option to see additional 
information. A digital copy of the paper prototype and a document 
containing feedback from the session can be found in the online 
supplementary materials.  

4.   IMPLEMENTATION 
4.1   Initial Feasibility Demonstration 
For the initial feasibility demonstration of the Ingestion Manager, 
different methods of ingesting items into DSpace were 
investigated. DSpace provides a command line interface through an 
executable, a service-level API and a RESTful web services API. 
The DSpace developers mailing list was consulted when faced with 
the decision of choosing the best interface and methods of 
authentication in DSpace. The recommendation received from a 
developer of DSpace was to use the REST API, as it has the most 
control when authenticating a user in DSpace and to not use the 
command line interface directly. Therefore, we choose to use the 
REST API when interfacing with DSpace. 

For the initial feasibility demonstration of the Report Writer, the 
open source business intelligence reporting solution, 
ReportServer6, was implemented. Although it provided many 
useful features, it was decided that ReportServer was too 
complicated for the requirements of this project. ReportServer also 
presented errors that could not be diagnosed when connecting to 
the DSpace database. For these reasons, it was decided that we 
would develop our own reporting solution to meet the requirements 
of this project. 

4.2   Software Development Methodology 
The methodology used in this project is based on the basic 
principles of an iterative development lifecycle but adapted to fit a 
team consisting of only two people and for a short time frame. The 
phases of the development process included: planning, generating 
a prototype, getting feedback, and implementing the feedback.  

During the planning phase, the DSpace mailing lists were consulted 
and the user survey was conducted. Following the planning phase, 
prototypes were developed. The initial feasibility demonstration 
prototype for the Ingestion Manager became an evolutionary 
prototype onto which functionality was added in increments. The 
initial feasibility demonstration prototype of the Report Writer 
became a throw away prototype because that prototype was 
discarded and a new application developed. 

4.2.1   Central Unified Process 
This project adopted ideas from the Central Unified Process during 
development. These ideas included: an iterative development cycle, 
tackle the high risk items early, regular engagement with our 



project supervisor, regular verification of the quality of our 
software, model the software using UML, and manage our 
requirements.  

Regular verification of the quality of our software was done by 
making use of unit testing and by seeking user feedback during 
development. Our requirements were managed by addressing the 
core features first and, only once they were addressed, did we 
consider additional functionality. We were not able to engage 
directly with the project’s client on a regular basis due to the 
physical distance between us. We did, however, have regular 
meetings with our project supervisor to discuss our progress. 

4.2.2   Scrum Board  
A simplified scrum board was created to track the software 
development of this project. The scrum board consisted of a large 
sheet of cardboard paper divided into 3 sections; “to do”, “in 
process” and “done.” As new tasks of development were identified, 
they were written onto sheets of a note pad and stuck in the “to do” 
section. During the task’s development they were moved to the “in 
process” section and once completed they were moved to the 
“done” section. Images of the scrum board taken during 
development can be found in the online supplementary materials.  

4.3   Development Frameworks 
4.3.1   DSpace 
The applications were developed to work with DSpace version 5.2. 

4.3.2   Backend 
The backend of the Web application was developed using Java 
version 8. The backend consists of both Java Classes and Servlets. 

Two versions of Apache Tomcat server were used during this 
project. For development, version 8 was used, and during testing 
version 7 was used. 

4.3.3   Frontend 
The user interfaces of both applications were developed using 
JavaServer Pages (JSPs) with HTML 5. Custom style elements 
were specified in CSS 3. JSPs were used because we wanted our 
applications to match the look and feel of the DSpace 5 JSP UI, 
which is built using JSPs. Some JavaScript was used in the 
applications as well as to ensure that some elements were reset 
when reloading the page. As in the DSpace 5 JSP UI, our 
applications used Bootstrap7 version 3 for all the HTML 
components and the default Bootstrap theme for styling.  

4.3.4   Database 
The Xerial SQLite JDBC8 library was used in both applications for 
accessing and creating the SQLite databases. All methods that 
contained SQL statements and variable user input made use of 
prepared statements when connecting to the application’s database. 
This was done to help mitigate the effects of either malicious or 
accidental SQL injections. 

Python was used when creating the script to add new users to the 
applications’ databases. The script interfaces directly with the 
SQLite database file that is included with the application. When 
setting up the applications, only managers need be added to the 
database; all other users are treated as non-managers by default. 

                                                                    
7 http://getbootstrap.com/ 
8 https://github.com/xerial/sqlite-jdbc 

9 https://code.google.com/p/json-simple/ 

10 http://www.jfree.org/jfreechart/ 

This is done so that there is no need to add every user of DSpace to 
the applications’ databases. 

4.3.5   REST API 
Descriptions of each use and the endpoint of the DSpace REST API 
that was used are listed in Table 3. The host and port connection 
information to the REST API is specified in an external 
“properties” file. This is done to allow for the host or port of the 
REST API to change without the need to change programming 
code. 

Table 3. Uses of the DSpace REST API 

Application Use of REST API REST API endpoint 

Ingestion 
Manger 

Build a list of all 
collections. 

/communities 

Ingestion 
Manger 

Submit an item to a 
specific collection. 

/collections/{collection 
ID}/items 

Both  User login. /login 

Both  User logout. /logout 
 

4.3.6   Ingestion Manger 
The Ingestion Manager makes use of the JSON Simple9 library 
when compiling the JSON metadata arrays to pass to the REST 
API. A JSON metadata array of Dublin Core identifiers and text 
values is passed to the REST API endpoint. One JSON metadata 
array corresponds to one item in DSpace. 

4.3.7   Report Writer 
The Report Writer connects directly to the DSpace database to get 
a level of detail not available through the REST API. Connection 
configuration information for the DSpace database is specified in 
an external “properties” file to allow changes to the connection 
host, port, database name, username or password without the need 
to change programming code.  

Only the PostgreSQL implementation of DSpace is supported by 
the Report Writer. The decision to not support the Oracle 
implementation was made because PostgreSQL is open source and 
being so is likely to have a greater user base than Oracle. Oracle 
also has licensing restrictions that proved troublesome when 
investigating the possibility of adding support for an Oracle 
database. The Report Writer accesses the PostgreSQL database of 
DSpace using the PostgreSQL 9.4 JDBC.  

The JFreeChart10 library is used when creating charts to graphically 
display information.  

4.4   Development Environment 
4.4.1   Integrated Development Environment 
The IntelliJ IDEA11 Java integrated development environment 
(IDE) was used when developing the applications. The DSpace 
source code was setup as a Maven project in the IDE. Following 
the example of the DSpace source code, both applications are also 
Maven projects. 

4.4.2   Version Source Control 
BitBucket12 was used for source code management throughout the 
project. 

11 https://www.jetbrains.com/idea/ 

12 https://bitbucket.org/ 



4.4.3   Project Management 
The OpenProject13 project management solution at the Department 
of Computer Science at the University of Cape Town was used for 
project management and milestone deliverable submissions. 

5.   TESTING AND EVALUATION 
5.1   Unit Testing 
Apart from the informal testing completed throughout 
development, unit testing of selected methods was used to verify 
quality and consistency of the applications. The unit tests were 
written using the JUnit14 testing library. The focus of the unit 
testing was to test connections to other application’s interfaces and 
whether the use of external libraries produced the results that were 
expected. Descriptions of the unit tests written can be found in 
Table 4. 

Table 4. Description of unit tests for applications 

Application Unit Test 

Ingestion 
Manager 

Test the connection to the DSpace REST API 
used when building the collections list. 

Report 
Writer 

Test report generation, chart creation, and the 
connection to the DSpace database. 

Both Test the connection to the DSpace REST API for 
login and logout and to test the connection to the 
application’s own SQLite database. 

 

The unit tests proved particularly useful when merging the 
Ingestion Manager and Metadata Mapper components together, as 
they helped identify points where the two components needed to 
share information.  

5.2   User Evaluation 
A user evaluation was conducted after the first iteration of 
development to gather feedback from users. It involved presenting 
the development version of the applications to five Computer 
Science Honours students at the University of Cape Town and 
asking them to perform a set of tasks designed to test the core 
functionality of the applications. Most of the feedback the users 
provided concerned the user interface, however some feedback 
helped us improve the functionality the applications. The use case 
tasks and feedback from the user evaluation can be found in the 
online supplementary materials.  

5.3   Performance Testing 
Performance testing was conducted on both applications to 
determine whether the performance of the application degraded as 
the amount of work increased. Both applications were timed using 
the Java standard library’s system time. The core piece of 
functionality for each application was identified and the difference 
between when that functionality ended, and when it began was used 
to make observations about the application’s performance.  
All performance testing was conducted on a computer with a 2,4 
GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 RAM. 
Both the DSpace server and the PostgreSQL database server ran on 
the same computer that was used to do the performance testing. 

5.3.1   Ingestion Manager 
The core functionality of the Ingestion Manager is the process of 
ingesting a CSV file into a DSpace repository. This process 
includes: iterating through the CSV file line-by-line and mapping 
                                                                    
13 https://www.openproject.org/ 

the Dublin Core fields to the values in the columns of the line, 
generating a JSON array of the line, and passing that JSON array 
to the REST API endpoint. 

An error in the DSpace source code was identified during 
performance testing (discussed in more detail in Section 6.2.1) 
which meant that the method of testing the Ingestion Manager had 
to be adjusted accordingly. Approximately 1 out of 100 lines would 
fail when attempting to ingest a batch into DSpace. To account for 
this error, the time required to ingest each line was recorded and if 
the ingestion failed the time spent on that line would be added to a 
cumulative total. This cumulative total was called the “error time” 
and is the amount of time a particular batch spent handling errors. 
The number of errors that occurred per batch was also recorded.  

The performance testing of the Ingestion Manager involved 
ingesting large batches of items. Batch sizes ranged from 500 to 
3000 lines and increased in steps of 500, but the metadata fields 
remained constant. Each batch was ingested five times and the 
amount of time taken to ingest the batch was recorded. In an attempt 
to reduce errors, the DSpace Web server and database server were 
restarted after each test trial. This test did not take into account the 
amount of time spent caching because the servers were restarted 
after each test trial so every trial would include time spent caching. 

5.3.2   Report Writer 
The core functionality of the Report Writer is the generation of a 
report, which includes parsing the XML template file and building 
the HTML report. The performance testing of the Report Writer 
involved recording the amount of time that it takes to generate a 
report depending on the number of items in the DSpace repository. 
The report template remained constant while the size of the 
repository was increased. The test included generating a report six 
times for each repository size. The sizes of the repository were 10, 
100, 1,000, 10,000 and 100,000 items. The report was generated six 
times but the first trial was discarded to account for caching. An 
average of the remaining five trails for each repository size was 
calculated. 

5.4   Usability Testing 
In the usability test and acceptance test, when discussing the 
Ingestion Manager, included are both the Ingestion Manager and 
Metadata Mapper. This is because both components were merged 
together at this stage.  

Usability testing was conducted to evaluate the usability of the 
applications we had developed. The usability testing was conducted 
with twelve Computer Science Honours students at The University 
of Cape Town. The students were presented with usability test tasks 
and asked to complete a questionnaire related to the usability of 
each application. The usability test tasks we created were based on 
the template available online from a book by Carolyn Snyder [16]. 
That template was chosen because of its similarity to a use case 
narrative. We used the System Usability Scale (SUS) designed by 
John Brooke as our usability questionnaire [5]. SUS gives a 
subjective assessment of the application’s usability. It covers 
aspects of the need for training or support and the complexity of the 
system. It was used because it is a well established and tested 
methodology for testing the usability of a system. The results of 
SUS are used to determine a usability score.  

5.5   User Acceptance Testing 
The user acceptance test document we created was based on a 
template available from The Ohio Department of Higher Education 

14 http://junit.org/ 



[1]. This template was chosen because it was simple to adapt and 
easy for a user to understand. In our user acceptance test document, 
we listed the four functional requirements that we initially proposed 
to our client. With each functional requirement was the option to 
accept or reject it based on whether we had met the requirement. 
The document also included sections for the client to indicate 
whether the project met the initial objectives agreed upon and if it 
required any changes before it could be put into a production 
environment.  

A server was setup to host the applications we developed so that 
our client could evaluate them remotely. For the evaluation, we 
setup an instance of DSpace on the server and used a PostgreSQL 
database already available to us. The source code repositories for 
DSpace, the Ingestion Manager and the Report Writer were cloned 
onto the server, configured and, using Maven, compiled to run on 
the server. Once the applications were available online we sent a 
SUS questionnaire, the user acceptance test document and 
instructions to our client. 

6.   RESULTS AND DISCUSSION 
The full results of the usability testing and performance testing can 
be found in the online supplementary materials.  

 
Figure 9. Comparisons between SUS, the adjective scale, the 
school grading scale, and the acceptability ranges scale [4] 

6.1   Usability Testing 
The results of the System Usability Scale (SUS) were recorded and 
analysed to produce a usability measure for the user interfaces of 
the Web applications. Scoring SUS produces a single value. The 
problem faced when using a single value to represent the usability 
of a system is how to interpret that single value. In a study 
conducted by Bangor, Kortum and Miller, where the relationship 
between the results of SUS, a seven-point adjective Likert scale and 
the school letter grading scale were compared to give a better 
understanding on how to interpret the results of SUS [4]. They had 
also previously proposed a set of acceptability ranges that help 
indicate whether a user interface can be considered acceptable or 
not [3]. Figure 9 is an image created by them to show the 
comparisons between the four scales. This will be used when 
discussing the results of the usability testing conducted. 

6.1.1   Ingestion Manager 
The Ingestion Manager achieved a SUS score of 84.167, which 
rounding to the nearest whole number is 84. Matching a SUS score 
of 84 to Figure 9, we can see that the Ingestion Manager scores just 
below “excellent” in terms of the adjective rating scale, a grade 
scale score of B and is well within the acceptability range’s scale 
of acceptable. Overall, the Ingestion Manger scored a very good 
result in terms of usability. 

6.1.2   Report Writer 
The Report Writer achieved a SUS score of 89.583, which rounding 
to the nearest whole number is 90. Matching a SUS score of 90 to 
Figure 9, we can see that the Report Writer scores within the 
“excellent” range in terms of the adjective rating scale, a grade 
scale score of A, and is well within the acceptability range’s scale 

of acceptable. Overall the Report Writer scored an excellent result 
in terms of usability. 

 
Figure 10. Ingestion Manager performance test results 

6.2   Performance Testing 
6.2.1   Ingestion Manager 
The aforementioned error encountered whilst testing the 
performance of the Ingestion Manager had to do with the way in 
which DSpace handles database connections. After approximately 
100 connections to the DSpace database the following connection 
would fail. This may be due to the fact that the database connections 
within DSpace are not cleared but the error was out of the scope of 
the Ingestion Manager development. 

The results of the performance test for the Ingestion Manager show 
an approximately linear increase in the average amount of time it 
took to ingest a batch into DSpace. In Figure 10 (a), the darker line 
plots the average total amount of time the batch took to ingest while 
the lighter line plots the average total amount of time that was spent 
handling errors. In Figure 10 (b), the average number of errors that 
occurred during each ingestion also shows an approximately linear 
increase.  

The results of the performance test of the Ingestion Manager show 
that, on average, there is no degradation in performance as the size 
of the batch increases. However, it did take a substantial amount of 
time to ingest large batches of over 1000 items. To help with the 
database connection error, the Ingestion Manager will retry once 
for a failed ingest. After the attempt to retry, if the item fails again, 
it will be added to an array of failed items, which is later made 
available to the manager to download as a CSV file. 

6.2.2   Report Writer 
The results of the performance test for the Report Writer are 
presented in Figure 11. The scale for both axes in Figure 11 are 
logarithmic and the graph depicts an exponential increase in the 
average time taken to generate a report on all items in the repository 
as the size of the repository increases. The report used in this test 



was called “Community Productivity.” It was designed to showcase 
the productivity of each community in a DSpace repository. 

 
Figure 11. Report Writer performance test results 

The results of the performance test of the Report Writer show that 
as the repository size increases, the amount of time needed to 
generate a report increases exponentially. To understand why the 
performance degraded so drastically a further test was done, but 
this time the report being generated was changed. The report used 
in this test was called “Collection Statistics.” It was designed to 
report basic statistics on the number of items in each collection. 
This report showed a large improvement in performance when 
compared to the previous test. For a repository size of 100,000 
items, the report took on average 1,547 milliseconds to generate. 

From these two tests we now know that the performance of the 
Report Writer is largely dependant on the complexity of the report 
being generated. The first report, “Community Productivity,” 
contained multiple complex SQL queries, each with multiple inner 
joins and aggregate functions. The second report also contained 
multiple SQL queries with inner joins but they were much simpler. 
These results show that the Report Writer can perform well when 
generating complex reports with smaller repository sizes of up to 
10,000 items. However, for repositories greater than 10,000 item in 
size, there is a trade of in the time it takes to generate a report and 
the complexity of a report. To support complex SQL queries with 
large repository sizes, indexing could be used in the database. The 
performance of the query can be improved by indexing the fields 
used when joining tables. 

6.3   User Acceptance Testing 
Our client accepted that we had met all four of the functional 
requirements we had set out to meet. His comments on the 
Ingestion Manager were that it is “…faster and appropriate for 
content coming from HEIs [Higher Education Institutes].” He 
commented on whether the software produced met the objectives 
by saying that “The project is good, and it will expose research titles 
for both Masters and PhDs.” On the topic of whether there are any 
changes required before the software could be put into a production 
environment, he commented that “There [are] some fields that need 
to [be] enhanced before this can be in a production environment, 
i.e. date display (publication date) in the simple record.” Overall, 
the client approved the software we had created. 

Both applications were given a score of 90 on the SUS 
questionnaires sent to our client. Matching a score of 90 to Figure 
9 we can interpret that both applications score within the excellent 
range in terms of the adjective rating scale, a grade scale score of 
A and is well within the acceptability range’s scale of acceptable. 
The completed acceptance test document can be found in the online 
supplementary materials. 

6.4   Difficulties Encountered 
Of the difficulties encountered during this project, the three most 
notable are: the lack of detailed documentation for the DSpace API, 
the lack of documentation for DSpace’s database schema and the 
database connection error experienced during testing. When 
investigating DSpace API options, detailed documentation could 
not be found. This made the selection of API and development of 
the applications more difficult. DSpace’s database schema is not 
intuitive to understand nor is there documentation available to 
explain the rationale for the schema design.  

7.   CONCLUSIONS 
Add-ons that help to transform DSpace from an institutional 
repository into more of a research information management system 
were developed. The add-ons were: a workflow-based ingestion 
management system called the Ingestion Manager and a report 
generation tool called the Report Writer. The Ingestion Manager 
allows for batches of items to be remotely submitted into a DSpace 
repository by non-administrator users. The batches are entered into 
a workflow-based system whereby managers are required to 
approve the submission before it is ingested into DSpace. The 
Report Writer was designed to enable detailed reporting on the 
objects in a DSpace repository. It borrows from the design of other 
business intelligence reporting solutions where XML report 
templates are used when generating reports. 

An iterative software development methodology and user-centred 
design approach were used when developing the add-ons. A survey 
was conducted and the DSpace mailing lists were consulted to help 
guide the functional requirements of the add-ons. In addition, a 
paper prototyping session was held and user evaluations were done 
to help guide the user interface design of the applications.  
The results from performance tests indicated that the add-ons have 
acceptable performance for increasing task size but perform best 
when used with smaller sized repositories. The results of the 
usability testing showed that we had designed and built software 
that is of a highly acceptable standard and easy for users to interact 
with. Feedback from the user acceptance testing indicated that we 
had met the functional requirements that we had set out to address. 

We have achieved what we set out to accomplish, and that is to help 
transform an institutional repository, DSpace, to become more like 
a research information management system by identifying and 
addressing features that DSpace lacks.  

8.   FUTURE WORK 
Possible future work on the Ingestion Manager would be: to 
implement an email notification system that alerts users on 
successful or failed submissions and alerts managers when there is 
a new batch pending approval, or to implement a queuing system 
to better handle large batches that completes the submission as a 
background task and alerts the manager when it is complete. 

Possible future work on the Report Writer would be to perform 
security penetration testing. This is recommended as it connects 
directly to the DSpace database. If the Report Writer is vulnerable 
to SQL injection, for example, it could mean a compromise of the 
DSpace database is possible. 

9.   ACKNOWLEDGMENTS 
I would like to thank our project supervisor, Assoc. Prof. Hussein 
Suleman, for his valuable input and guidance throughout our 
project. I would also like to thank our client, Lazarus Matizirofa 
from the NRF, for his input and for the test data he provided. 
Finally, I would like to thank my project team member, Craig 
Feldman, for help and cooperation throughout the project. 



10.   REFERENCES 
[1]   Acceptance Test Template, 2003. 

http://regents.ohio.gov/obrpmcop/forms/templates/temp_acce
ptancetesting.doc. 

[2]   Adewumi, A. and Omoregbe, N. Institutional repositories: 
features, architecture, design and implementation 
technologies. Journal of Computing, 2, 8 (2011). 

[3]   Bangor, A., Kortum, P. and Miller, J. The system usability 
scale (SUS): An empirical evaluation. International Journal 
of Human-Computer Interaction, 24, 6 (2008), 574-594. 

[4]   Bangor, A., Kortum, P. and Miller, J. Determining what 
individual SUS scores mean: Adding an adjective rating 
scale. Journal of Usability Studies, 4, 3 (2009), 114-123.  

[5]   Brooke, J. SUS: A “quick and dirty” usability scale. In 
Jordan, P. W., Homas, B. T., Weerdmeester, B.A., Clellan, I. 
L. M. Ed. Usability Evaluation in Industry, Taylor & Francis, 
London, 1996, 189-194.  

[6]   Garfinkel, S. MIT's DSpace Explained-Electronic 
repositories stretch to meet scholars’ needs. Technology 
Review-Palm Coast, 108, 7 (July 2005), 50-51. 

[7]   Heery, R. and Anderson, S. 2005. Digital repositories 
review. Joint Information Systems Committee JISC Review, 
London, UK. 

[8]   InfoEd Global. What We Do – eRA 101 – InfoEd, 2012. 
http://infoedglobal.com/about-research-administration/what-
we-do-%E2%80%93-era-101/. 

[9]   Ivanovic, L., Ivanovic, D., Surla, D. and Konjovic, Z. User 
interface of web application for searching PhD dissertations 
of the University of Novi Sad. In IEEE 11th International 
Symposium on Intelligent Systems and Informatics, 
(Subotica, Serbia, 2013), IEEE, 117-122. 

[10]  Joint, N. Current research information systems, open access 
repositories and libraries: ANTAEUS. Library Review, 57, 8 
(2008), 570-575.  

[11]  Khan, S., Usman, A., Irfan, R. and Hayat, A. DSpace@ 
SEECS: SEECS institutional repository system. In 
Proceedings of 7th International Conference on Emerging 
Technologies, (Islamabad, Pakistan, 2011), IEEE, 1-6. 

[12]  Palmer, D. T., Bollini, A., Mornati, S. and Mennielli, M. 
DSpace-CRIS@ HKU: Achieving visibility with a CERIF 
compliant open source system. Procedia Computer Science, 
33 (2014), 118-123.  

[13]  REST API - DSpace 4.x Documentation - DuraSpace Wiki, 
2013. 
https://wiki.duraspace.org/display/DSDOC4x/REST+API. 

[14]  REST API - DSpace 5.x Documentation - DuraSpace Wiki, 
2013. 
https://wiki.duraspace.org/display/DSDOC5x/REST+API.  

[15]  Smith, M., Barton, M., Bass, M., Branschofsky, M., 
McClellan, G., Stuve, D., Tansley, R. and Walker, J. H. 
DSpace: An open source dynamic digital repository. D-Lib 
Magazine, 9, 1 (2003). 

[16]  Snyder, C. Paper prototyping: The fast and easy way to 
design and refine user interfaces. Morgan Kaufmann 
Publishers, Boston, 2003.  

[17]  SQLite. Appropriate Uses for SQLite, 2015. 
https://www.sqlite.org/whentouse.html. 

[18]  Tansley, R., Bass, M. and Smith, M. DSpace as an open 
archival information system: Current status and future 
directions. In Koch, T., Sølvberg, I. Ed. Research and 
advanced technology for digital libraries. Springer, 
Heidelberg, 2003, 446-460. 

[19]  Walsh, M. P. Batch Loading Collections into DSpace: Using 
Perl Scripts for Automation and Quality Control. Information 
Technology & Libraries, 29, 3 (Sept. 2010), 117-127. 

[20]  White, C. The Next Generation of Business Intelligence: 
Operation BI. DM Review, 15, 5 (May 2005), 34-37. 

[21]  Yeates, R. Institutional repositories. Vine, 33, 2 (2003), 96-
101. 

 


