

Computer Science Honours

Final Paper

2015

Title: Transforming DSpace into a Research Information Management System: Automatic and Manual

Metadata Mapper

Author: Craig Feldman

Project Abbreviation: NRFDB

Supervisor: Associate Professor Hussein Suleman

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 18

System Development and Implementation 0 15 12

Results, Findings and Conclusion 10 20 15

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Adherence to Project Proposal and Quality of

Deliverables

10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Transforming DSpace into a Research Information
Management System: Automatic and Manual Metadata

Mapper
Craig Feldman

University of Cape Town, South Africa

fldcra001@myuct.ac.za

ABSTRACT
This paper presents the development of an automatic and manual

metadata mapper for DSpace. The idea for the development of this

tool arose from a request by the National Research Foundation of

South Africa to migrate data into a DSpace repository. We

identified that there was a need for an easy to use means to import

data and map it to the appropriate metadata fields as used by

DSpace. The tool developed and discussed in this paper aims to

facilitate the deposit and migration of data into a DSpace

repository. Machine learning is used to attempt to determine the

appropriate Dublin Core metadata field to which each field of the

input data belongs. Various algorithms were tested and, through

cross-validation, it was found that Random Forest was the best

performing algorithm. Usability testing showed that the system

developed provided an effective and usable means to import data

into a DSpace repository.

CCS Concepts
• Applied computing → Digital libraries and archives

Keywords
Institutional repositories, DSpace, database migration, textual

classification.

1. INTRODUCTION
The formulation of this project arose from a request by the National

Research Foundation (NRF) of South Africa to assist them in

migrating data from a legacy database system into the more modern

and sophisticated DSpace1 digital repository system. After

performing research into the needs of not only the NRF, but the

research management community as a whole, we set out to create a

set of tools with the aim of transforming DSpace into a Research

Information Management System (RIMS)2.

This paper presents information relating to an add-on that was

developed for DSpace – an automatic and manual metadata

mapper. This tool aims to assist users when adding data to DSpace

by attempting to automatically map the fields of the legacy system

to that of the metadata fields used by DSpace. Machine learning

was used to try to predict which Dublin Core metadata field a given

entry should be classified as. Five different machine learning

algorithms were selected and compared to determine the best

performing algorithm for this task. This tool also allows for data to

be added to an existing DSpace repository, and the metadata

mappings can be saved for future use. It is accessed through a Web-

based user interface that also allows for the user to review and

correct the attempted automatic metadata mappings.

1 See section 2.1
2 A RIMS is used to store and manage the intellectual data created

by an institution.
3 http://roar.eprints.org/

1.1 Project Significance
According to the Registry of Open Access Repositories (ROAR)3,

DSpace is the most widely used digital repository system in the

world, therefore useful additions to DSpace are likely to be well

received. The current solutions for migrating legacy data into

DSpace involves users having to understand how the legacy system

stored the data, then creating custom scripts capable of formatting

the data into a DSpace accepted format, as well as specifying how

the data maps to the DSpace metadata fields. The metadata mapper

aims to make this process easier, faster and more user friendly. It is

hoped that this software will help encourage users to transfer their

research management system into the modern and feature rich

DSpace. This would be beneficial not only to the people responsible

for the management of that research information, but also to the

general research community as research can be more effectively

preserved, managed and distributed.

This tool was developed along with two other tools that were

developed by Darryl Meyer – a report writer and ingestion manager

for DSpace. The report writer is not discussed in this paper, but

certain indirect references are made to the ingestion manager which

is used by the metadata mapper to add items into a DSpace

repository. It is hoped that these tools will help transform DSpace

into a RIMS by adding features to DSpace that are already available

in RIMS software packages.

1.2 Project Aims
This project had the primary aim of developing tools that will

facilitate the migration of data, from a legacy database system, into

DSpace. An initial survey was sent to a number of DSpace mailing

lists, asking for input into this project. The questions and results of

this survey are provided in the appendix. One issue that was

identified from this survey is that mapping the fields from the

source to the Dublin Core metadata fields was time-consuming and

there is no easy and intuitive way of doing so. Thus we set out to

investigate whether we could develop a tool that offered a more

usable and easier to use interface than that which is currently

offered by DSpace. This tool would accept a CSV file containing

the source data and use machine learning techniques to try to

automatically identify to which Dublin Core field each entry

belongs.

Secondary to this, we aimed to use these tools to assist with the

database migration for the NRF and hoped that these tools would

prove useful for them.

This paper references supplementary material that can be accessed via
UCT’s Department of Computer Science online publications page at:

http://pubs.cs.uct.ac.za. The project abbreviation used for this paper is

‘NRFDB’. All references to appendices made in this paper refer to these

online supplementary materials.

http://pubs.cs.uct.ac.za/

1.3 Structure of Report
This report first introduces a number of relevant papers and projects

as well as some of the latest state of the art work in the field of

metadata mapping and database migrations. Thereafter, the report

is broadly split into two sections – the first deals with the

development and execution of an experiment to determine the best

machine learning algorithms for the given problem, the results of

which are discussed in section 4. Section 5 then presents

information relating to the software development process and user

interface (UI) design. The results of usability testing, as well as

feedback received from the NRF, are discussed in section 6.

Finally, the report presents the conclusions that were reached, as

well as areas for future work.

2. BACKGROUND

2.1 DSpace
According to Smith et al. [31], the development of DSpace’s

architecture drew on the information provided in Kahn &

Wilensky’s [14] Framework for Distributed Digital Object Services

(which aimed to describe fundamental aspects of an open

architecture infrastructure that supports systems such as digital

libraries), as well as Arms’ [1] work on Key Concepts in the

Architecture of the Digital Library.

DSpace was developed by MIT to address an issue faced by their

library of having to collect, preserve, index and distribute an

increasing number of scholarly publications and research materials,

presented in complex digital formats; this was both time-

consuming and costly [31]. DSpace aims to act as a repository to

give digital research and educational material greater visibility and

accessibility over time. It was created to address all the basic

functionality required in a digital repository service, with the

intention of being expanded upon in the future, particularly to

address long term data preservation concerns [33]. According to the

DSpace website4, some of the main reasons to use DSpace are that
it:

 Can be customised to fit the institution’s needs.

 Can be easily installed and configured.

 Can manage and preserve all types of digital content.

DSpace uses a qualified Dublin Core metadata standard for

describing items [31]. There are 15 main Dublin Core fields, and

each field may contain several qualifiers. A list of the default

DSpace 15 Dublin Core fields, along with their qualifiers, can be

found in the appendix.

2.2 Database Migration
The complexities of the NRF database migration arise from the

need to transition an old legacy system to a new modern system

(DSpace). As such, it is important to focus on similar projects to

investigate past experiences and practices. According to Bisbal et

al. [4], legacy systems can pose considerable problems, including

brittleness, inflexibility, non-extensibility and a lack of openness.

2.2.1 General Principles of Data Migration
Bisbal et al. [4] argue that the naïve approach to migrating a legacy

system involves redeveloping the system from scratch using

modern tools, however, the risk of failure is usually very high when

4 http://www.dspace.org/
5 A protocol for depositing content from one location to another -

http://swordapp.org/about/

using this approach. Instead, Brodie & Stonebraker [6] suggest

three different approaches. (1) The Forward Migration Method

which involves first transferring the legacy data to the new, modern

database system and then incrementally migrating the legacy

applications. (2) The Reverse Migration method where the legacy

applications and interfaces are migrated, followed by the data. (3)

The Composite Database approach whereby legacy applications are

gradually rebuilt and the legacy and target system form a composite

system during migration. Wu et al. [40] proposed the ‘Butterfly

Methodology’ as an alternative to the current thinking on legacy

system migrations. The Butterfly Methodology eliminates the need

for users to simultaneously access both the legacy and target

systems by dividing the system migration into six independent and

sequential migration activities.

2.2.2 DSpace Data Migration
The primary means of adding items into DSpace are to either enter

each entry via the DSpace Web portal or in batch upload via the

DSpace item importer (a command-line tool for batch ingesting

items that makes use of a simple archive format) but enhancements

to DSpace include new deposit options making use of SWORD5,

OAI-ORE6, and DSpace package importers [37]. Many projects

have been implemented that make use of scripts to automate the

process of creating the archive directory to assist in batch

uploading. There is a considerable amount of literature

documenting the methods used for batch ingestion to populate

institutional repositories. Mishra et al. [21] and Mundle [22]

developed Perl scripts to create the DSpace archive directory for

batch imports of electronic theses and dissertations (ETDs) whereas

Brownlee [8] made use of Python scripts to process CSV files

(created using FileMaker7). Walsh [37] describes using Perl scripts

to migrate data from spreadsheets and CSV files into the DSpace

archive format for the Ohio State University’s institutional

repository. Ribaric [26] describes the use of PHP utilities for the

automatic preparation of ETDs (from the Internet Archive8) for

deposit into DSpace. Several other similar projects are introduced

by Walsh [37].

From the above, it is clear that a considerable number of database

migrations into the DSpace platform led to customized ‘throw

away’ tools being developed to migrate data from a legacy system

into DSpace. There appears to be a need for a generic tool that

would take a standardized file as input, and automatically add this

to a DSpace repository. Such a tool could also attempt to perform

automatic matching of fields from the input data to those of the

DSpace Dublin Core metadata fields, thus further simplifying the

process of migrating a legacy system to DSpace.

2.3 Metadata Mapping
The process of mapping legacy data fields to metadata fields from

the qualified Dublin Core metadata standard can be seen as being

strongly related to a process known as schema mapping (mapping

a source database into a different, but fixed, target schema) [20].

2.3.1 General Principles and Potential Issues
Haslhofer & Klas [11] looked at various techniques to achieve

interoperability amongst metadata standards by (1) agreeing on

certain metadata models, (2) agreeing on a common meta-model by

6 A set of standards for the description and exchange of

aggregations of Web resources -

https://www.openarchives.org/ore/
7 http://www.filemaker.com
8 http://www.archive.org

forming a relationship between models to a common meta-model,

or (3) reconciliation of the structural and semantic heterogeneities.

In their paper, they also discuss how various problems can arise

when moving between metadata standards or trying to map fields

to a metadata standard from a legacy system. Some of these issues

have already been identified in the early history of database

research, with the first in depth analysis of this field being

conducted by Sheth & Larson [29]. These issues have been

investigated in more detail throughout the years (for example by

Ouksel & Sheth [23], Visser et al. [35] and Wache [36]). Haslhofer

& Klas [11] found that a number of problems may inhibit the

interoperability of different metadata standards and fields - these

include either structural or semantic differences.

Structural differences in the metadata models may include things

such as conflicting constraints placed on the metadata fields,

differences in field names, as well as more complicated problems

such as those arising from implicit or explicit generalization and

aggregation in the metadata fields. Various other structural issues

are discussed in the paper by Haslhofer & Klas [11].

Semantic issues occur as a result of differences in the semantics of

the metadata models. Semantic issues include when the domains of

the metadata standards differ and cannot be mapped to one another

and when different units are used to represent a field (for example,

when one metadata standard represents a width in pixels, and

another in centimeters, or when different date formats are used).

2.3.2 Prior Research and Approaches
Various techniques and approaches have been used to perform

metadata mappings and database migrations. The techniques and

research that have been employed by past projects is discussed here.

Rahm & Bernstein [25] present a number of papers that make use

of machine learning to learn how fields map between databases, for

example the LSD (Learning Source Descriptions) system that uses

machine learning techniques to semi-automatically create semantic

mappings [9, 10]. The system has two general phases: training and

matching. In the training phase, the user is required to specify a

one-to-one mapping from several input sources. This supervised

learning approach is used to extract different types of information

from the source schema and data to train a set of ‘base learners’.

These base learners can be any set of algorithms that accept inputs

and produce an output, for example, neural networks or Bayesian

based algorithms. The outputs of these base learners are then used

to train a ‘meta-learner’ that uses a technique called stacking [34,

39] to combine the predictions of the base learners into one output.

Once the training phase is complete, LSD can be used to predict the

semantic mapping for unseen, new sources. The LSD system is

shown in Figure 1.

Artificial Neural Networks (ANNs) have been used as an effective

tool in schema mapping. For example, Li & Clifton [18] present a

procedure for using an ANN to classify attributes based on their

field specifications and data values. Li et al. [17] applied ANNs to

the problem of mapping corresponding attributes between two

databases. In their paper, they describe how they used an ANN in a

database integration problem and how they represented an attribute

with its metadata as discriminators (inputs to the ANN). They focus

on experiments into the effectiveness of ANNs and each input, as

well as the difficulties involved in using ANNs for this problem.

The authors were satisfied with the ANN’s performance in general

but felt that the results could be further improved by incorporating

9 http://www.greenstone.org/

methods using other information such as attribute names. Many of

the problems they faced are those discussed in section 2.3.1.

The SEMINT system [16] uses a neural network to match schema

elements using properties such as field specifications (e.g. data

types and sizes) as well as statistics based on the data content (e.g.

maximum, minimum and mean values). Unlike the LSD system

however, it does not exploit other types of data information such as

word frequencies and field formats.

Berlin & Motro [3] describe a system called Automatch that uses

machine learning techniques to automate schema mapping. The

system described is based primarily on Bayesian learning and

acquires probabilistic knowledge from examples that have been

provided by domain experts. The system was able to show

performance that exceeds 70% (measured as the harmonic mean of

precision and recall).

Miller et al. [20] developed a semi-automatic tool that tried to help

solve the schema mapping problem. The tool developed, Clio,

employs a ‘mapping-by-example’ paradigm that allows the user to

select mappings between fields based on example data provided to

the user. Clio dynamically adjusts and ranks alternative mappings,

with the top-ranked alternatives being suggested first.

Witten et al. [38] developed a tool to allow users to easily migrate

data between DSpace and Greenstone9 (another tool for managing

digital libraries). In order to map the metadata from Greenstone,

they developed a ‘metadata crosswalk’ that specifies the source and

metadata elements and how they map to their Dublin Core

counterpart.

Shvaiko & Euzenat [30] look at numerous different state of the art

matching solutions and introduce their own technique for schema

matching that they say “builds on top of state of the art in both

schema and ontology matching”. The authors build on top of

previous state of the art solutions and add innovations such as

introducing new criteria which are based on general properties of

matching techniques, as well as interpreting the input information.

In their research, they found that the state of the art matching

systems tend to incorporate various techniques into a single ‘hybrid

approach’. For example, the ‘Cupid’ system that makes use of a

hybrid matching algorithm that combines both linguistic and

structural schema matching techniques to compute a similarity

index [19].

Figure 1: The two phases of the LSD system [9]

3. EXPERIMENT DESIGN AND

EXECUTION
In order to test which machine learning algorithm was most

effective at performing the required tasks, it was necessary to

develop a set of experiments.

3.1 Overview of Experiment
In order to compare the performance of the chosen machine

learning algorithms, Weka10 was used to train and test the selected

algorithms. Training data was gathered from a variety of open

access repositories and a simple Java application was then written

to extract numerical features from this training data and generate

the input file that is used by Weka for training and testing. Cross-

validation, as well as an unseen data set were used to compare the

performance of the various algorithms. This process is discussed in

more detail in the following sections.

3.2 Machine Learning Framework
Weka was identified as a good machine learning framework to use

as it provides a large collection of machine learning algorithms as

well as the ability to perform statistical tests on the comparative

performance of the algorithms.

The aim of this experiment was to identify the most effective

machine learning algorithm to use in the production software.

Fortunately, Weka provides an ‘Experimenter’ mode which allows

the user to select various machine learning algorithms to be trained

and tested through cross-validation11. It then outputs results for

each algorithm (such as the average percentage of correctly

classified instances) and uses statistical tests to compare the

algorithms’ performance.

3.3 Training Data
As with any supervised machine learning algorithm, it is important

to ensure that the training data is of a high quality and that it

provides a representative sample of the inputs that are likely to be

used in the future.

3.3.1 Gathering Training Data
In order to ensure that the training data would be effective in

classifying unseen data, diverse data from a variety of sources was

gathered. It was hypothesized that different repository software, as

well as different metadata standards, would tend to each have their

own distinct bias in how metadata is produced as different metadata

standards may require different (or differently formatted) values

(for example, different date formats). This would prove useful in

gathering representative and diverse data. It was also important that

each Dublin Core field was represented by the training data. Thus,

OpenDOAR12 and ROAR13 were used to find a number of

repositories from which the training data could be harvested

through OAI-PMH14. It is also possible to filter the repositories by

software (e.g. DSpace, Fedora15, EPrints16 etc.). Repositories from

specific software were then selected in proportion to the ubiquity

of that repository software and care was taken to ensure that the

selected repositories contained high quality metadata. The metadata

that was harvested from these repositories included a number of

different metadata formats such as Dublin Core and ETD-MS17. A

10 http://www.cs.waikato.ac.nz/ml/weka/
11 For an unofficial list and description of the classifiers, see

http://wiki.pentaho.com/display/DATAMINING/Classifiers
12 Directory of Open Access Repositories -

http://www.opendoar.org/
13 Registry of Open Access Repositories - http://roar.eprints.org/

total of 32 813 training instances were gathered from 10 different

sources. The distribution of these training instances can be found in

Table 1.

Table 1: Distribution of Dublin Core fields for each test set

Dublin Core Field Training Data NRF Test Set

Contributor 206 1796

Coverage 103 0

Creator 11670 13380

Date 2199 16667

Description 2133 29524

Format 1454 0

Identifier 2434 0

Language 1246 13381

Publisher 854 0

Relation 80 0

Rights 1015 0

Source 629 0

Subject 6479 21729

Title 1681 13516

Type 630 0

Total 32813 109993

3.3.2 Filtering and Classifying the Training Data
The integrity of the training data was analysed and any ‘outliers’,

such as incorrectly labelled data, were removed. One potential issue

was that data from specific sources may over-represent a specific

Dublin Core field and bias the machine learning algorithm towards

that training set (overfitting). Such problems are however more

prevalent in algorithms such as Artificial Neural Networks as

opposed to decision tree based algorithms (by the nature of these

algorithms) and this can often be avoided by fine tuning the

algorithms’ parameters. For example, Sebastiani [28] suggests that

trees be ‘pruned’ to avoid overfitting.

The data was then labelled and classified into the 15 primary Dublin

Core fields. The qualifiers were purposefully ignored, as it would

lead to further complexities in classifying input data and would not

likely yield accurate results.

3.3.3 Feature Extraction
Once the training data had been effectively classified, it was

necessary to create a ‘feature vector’ – a numerical list of attributes

that represent the training example. These feature vectors could

then be used by Weka as inputs to a classification system.

Feature extraction involves representing the data that needs to be

classified as a list of numerical attributes. This is done because

machine learning algorithms are not aware of the meaning of a

word and hence we need to represent the string numerically and in

a manner that can be interpreted and used by the algorithm. The
following 8 features/attributes were used for classification:

14 A protocol that is used to collect the metadata descriptions of

records in an archive via HTTP requests.
15 https://getfedora.org/
16 http://www.eprints.org/
17 Electronic Thesis and Dissertation Metadata Standard -

http://www.ndltd.org/standards/metadata

 Number of characters.

 Number of words.

 Number of month names appearing in the string.

 Number of person names appearing in the string.

 Percentage of digits.

 Percentage of letters.

 Percentage of non-alphanumeric characters (excluding

whitespace).

 Percentage of capital letters.

The number of person names was calculated by looking if a word

appeared in a list of 50 000 of the most popular names from a US

census. This, along with the number of month names appearing in

the string, would help with the classification of creators and dates

respectively.

3.4 Selected Machine Learning Algorithms
Weka provides a number of different machine learning algorithms

that would be applicable. Five algorithms were selected for

evaluation based on popularity and past performance in similar

tasks and the default Weka parameters for these algorithms were

used for testing and training. These algorithms are discussed in

more detail in the following sections.

3.4.1 Naïve Bayes
The naïve Bayes model is one of the oldest, simplest and most

common Bayesian based models [27]. It aims to predict a class

variable (𝐶) from a set of attributes (𝑥1, … , 𝑥𝑛), by applying Bayes’

theorem. The model is ‘naïve’ because it assumes that the attributes

are conditionally independent of each other, given the class. By

applying Bayes’ theorem, we find that:

𝑃(𝐶|𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝐶)∏𝑃(𝑥𝑖|𝐶)

𝑛

𝑖=1

Thus, a deterministic prediction can be obtained by choosing the

class with the highest relative probability [27].

3.4.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) attempt to mimic the behaviour

and structure of the brain by linking a set of artificial neurons via

directed and weighted links [27]. The input attributes are fed

through this network (the hidden layers), producing an output.

Supervised learning occurs through a process called ‘back-

propagation’ whereby training examples are fed through the

network, with the error at the output layer being back-propagated

through the hidden layers, and the weights being updated

accordingly.

3.4.3 Logistic Regression
Unlike linear regression in which the dependant variable is

categorical, logistic regression uses the same basic formula, but is

modified to regress the probability of a categorical outcome [27].

Logistic regression is normally applied to a binary output but has

been effectively extended to cases in which there are two or more

possible discrete outcomes, as is the case here [13].

3.4.4 C4.5 Decision Trees
C4.5 is a popular and effective algorithm for generating decision

trees. It was introduced in 1993 and has gained considerable

popularity since ranking first in a paper presenting the top 10 data

mining algorithms as identified by the 2006 IEEE International

Conference on Data Mining [24, 41]. C4.5 builds a decision tree

from a set of training data by using a divide and conquer technique

based on splitting the tree by a test. Possible tests are ranked by the

information gain (which minimises the total entropy of the subsets)

and the default gain ratio (the ratio of information gain to the

information provided by the test outcomes) [41]. Due to the

popularity of this algorithm, it was chosen as the base algorithm

against which the other four would be compared.

3.4.5 Random Forests
Random Forests are an ensemble learning method for classification

that operates by constructing multiple decision trees during

training. Each decision tree in the ‘forest’ is constructed on a

random subsample of the training data and feature set [5]. Random

forests are a popular tree-based classification technique as they

correct for decision trees’ habit of overfitting [12].

3.5 Testing of Machine Learning Algorithms
In order to test how well the selected algorithms would perform in

the final system, it was necessary to carry out various tests on them.

This is described further in the following sections.

3.5.1 K-Fold Cross-Validation
K-fold cross-validation is a statistical technique that involves

dividing the training data into k randomly partitioned subsamples.

A single subsample is retained for testing, and the remaining k-1

subsamples are used for training the algorithm. This process is

repeated k times (the folds), where each subsample is used exactly

once as the validation data. The results for each fold are then

averaged. The default Weka parameter of 10 folds was used, as this

value has experimental support as provided by Kohavi [15]. Cross-

validation allows for algorithms to be effectively tested and

compared based on how they are likely to perform for unseen data.

Cross-validation was done using the training data as discussed in

section 3.3.1. This was done for 10 iterations, and the average

results of these iterations was used.

3.5.2 Unseen Test Set
While cross-validation provides a fairly accurate means to analyse

how well a classifier will perform, it was also necessary to test the

classifier using data from a completely new and unseen source. This

would provide an indication as to how well the classifier is able to

perform for unseen, real world data. To perform this test, data from

the current NRF database was gathered. This data was first

manually classified into the ‘correct’ Dublin Core metadata fields,

and then the percentage of correctly classified instances was

calculated for each algorithm. The dataset consisted of a total of

109 993 records, the distribution of which can be found in Table 1.

4. PERFOMANCE OF MACHINE

LEARNING ALGORITHMS
This section details the results and performance of the various

machine learning algorithms that were evaluated.

4.1 Cross-Validation Results
The metric used to assess the performance of the various algorithms

was to compare the average percentage of correctly classified

instances, based on the 10 fold, 10 iteration cross-validation as

discussed in section 3.5.1. The sorted average percentage of

correctly classified instances, along with their corresponding

standard deviations, are shown in Table 2.

Weka allows the user to choose a ‘base algorithm’ to which the

other algorithms can be statistically compared. Due its popularity,

J48 was chosen as the base algorithm to compare the other four

algorithms against. The comparisons were done using a two-tailed,

paired t-test with a significance level of 5%.

In Table 2, a plus sign indicates that an algorithm had statistically

better performance compared to J48, and a negative sign indicates

statistically worse performance.

From the results of this experiment, it appears that Random Forest

and J48 perform significantly better than the other chosen

algorithms in both accuracy and variance.

4.2 Unseen Data Classification Results
After the cross-validation was performed, the trained algorithms

were tested using unseen data as described in section 3.5.2. The

results of this evaluation are provided in Table 3 and are sorted by

the percentage of correctly classified instances.

While Random Forest performed better than J48 in the cross-

validation experiment, it classified close to 10% fewer items

correctly on the unseen test set. The two tree based algorithms still

outperformed the other algorithms.

A confusion matrix was generated for the unseen data test. This

matrix is useful in showing how items were incorrectly classified

and is shown in Figure 2. The shaded cells along the diagonal

represent the count of fields that were correctly classified, and

hence we would expect this to be the greatest value in a given row.

Some rows contain no values, indicating that this Dublin Core field

was not present in the test data set.

The incorrectly classified instances can often be explained by

similarities between the correct and incorrect metadata

classification field. For example, the majority of ‘contributors’

were incorrectly classified as ‘creators’, which could easily be

explained by looking at the training data. These fields both contain

person names, however ‘creator’ was far more ubiquitous across

the training data sets. ‘Description’ was often incorrectly classified

as ‘subject’, and ‘subject’ as ‘title’. This is to be expected as these

fields often have very similar characteristics in terms of features.

Both ‘subject’ and ‘description’ were often incorrectly classified as

‘language’. This is likely as a result of there not being a sufficient

feature to distinguish languages. Such a feature could be added, for

example by seeing if a word appears in a list of languages and

common language abbreviations.

18 http://conferences.sun.ac.za/ifla-it-2015

5. SYSTEM DEVELOPMENT,

IMPLEMENTATION AND UI DESIGN
While this project aimed to take a fairly experimental approach to

development and analysis, the system being developed needed to

provide a front-end, Web-based, UI to access the features so that

organisations such as the NRF could use it. As such, it was

important to ensure that the system was developed to be of suitable

quality for a production release.

5.1 Requirements Gathering
In order to ensure that this project meets the needs of the NRF and

the community, it was necessary to gather information on the

requirements and expectations of the project, as well as the use

cases and need for such software. This was conducted through a

variety of means.

5.1.1 Communication with the NRF
E-mail was used as the primary means of communicating with the

NRF. Various questions about the software requirements and use

cases were asked and answered via e-mail and this proved to be a

useful and efficient means to help determine requirements. During

the inception of this project, we travelled to the NRF in

Johannesburg so that we could view the current system and its

issues, as well as investigate the use cases of the NRF. The

information gathered through these communications were vital to

the scoping and development of this project. These

communications highlighted the need for a usable and effective

interface, as well as the current problems faced at the NRF

(inconsistent metadata, outdated technologies, and difficulties in

managing and providing the information to those who need it).

5.1.2 Initial Requirements Survey
From the onset of this project, we wanted to produce software that

would not only serve the needs of the NRF, but also the institutional

repository community as a whole. Hence it was necessary to seek

advice and input from the current DSpace community. This was

achieved through the distribution of a survey to a number of

DSpace mailing lists. This project was also presented at a satellite

meeting (Transforming Libraries with Open Digital

Technologies18) of the 81st IFLA World Library and Information

Conference19, where input was gathered from the attendants, and a

link to the survey was distributed. The survey had 13 respondents

and the raw results of the survey can be found in the appendix. The

notable results of this survey are that 7 out of the 13 respondents

indicated that they have difficulty mapping legacy fields to the

appropriate DSpace Dublin Core metadata fields, as well as

choosing the appropriate metadata mapping, when importing data.

These were the two most prominent issues faced by repository users

and hence this software would be well suited to them.

5.1.3 Communication with Project Supervisor
Throughout the course of this project, the project supervisor was

consulted through e-mails and during regular project meetings. This

proved useful in ensuring the project progressed in an efficient and

effective manner, and was being developed to meet the

requirements of the community. All meetings were documented in

a notebook.

19 http://conference.ifla.org/ifla81

Table 2: Cross-validation results

Algorithm
Percentage

Correct

Standard

Deviation

Random Forest
+ 94.28 0.38

J48 (C4.5 decision tree) 93.65 0.37

Logistic Regression - 79.04 0.62

Artificial Neural Network - 76.59 0.91

Naïve Bayes - 54.92 0.71

Table 3: Unseen NRF data set results

Algorithm Percentage Correct

J48 (C4.5 decision tree) 79.54

Random Forest 68.08

Logistic Regression 57.69

Artificial Neural Network 55.59

Naïve Bayes 33.91

Classified as → A B C D E F G H I J K L M N O

A = contributor 0 0 1777 0 3 0 0 0 0 0 0 0 16 0 0

B = coverage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C = creator 12 0 12639 0 8 1 0 1 45 0 48 2 619 0 5

D = date 0 0 0 16667 0 0 0 0 0 0 0 0 0 0 0

E = description 1 0 1760 0 16295 3 0 2607 21 0 100 45 8678 8 6

F = format 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G = identifier 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H = language 0 0 0 0 0 0 0 13137 0 0 1 0 241 0 2

I = publisher 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J = relation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K = rights 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L = source 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M = subject 1 0 232 0 155 14 6 1049 32 0 2 16 17002 3170 50

N = title 2 67 108 0 123 3 10 1 135 10 77 4 1226 11745 5

O = type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2: Confusion matrix for NRF data set where highlighted cells indicate correctly classified fields

5.2 Development Framework and

Methodology
Throughout this project, the currently accepted software

development methodologies and frameworks were used. This

section covers some of the methodologies and frameworks used

during development.

5.2.1 Programming Language and Framework
Development of the metadata mapper was done using Java Servlets

as the development platform. The application provides a front-end

user interface through Java Server Pages (JSPs). In order to keep

the interface uniform, the core Bootstrap theme20 (which is used by

DSpace) was used. JavaScript, along with JSTL21, was also used to

facilitate the loading of dynamic content and for communication

with the server. Java was chosen as the development language as it

would allow for easy integration with DSpace, which is Java based.

Furthermore, Java is well supported and provides a vast number of

external libraries that can be leveraged. As this project is developed

using Java Servlets, it can easily be set up to run on any compatible

server by deploying the WAR file, and is hence highly portable.

Maven22 was used as a build manager for the project and

Bitbucket23 was used for version control and bug tracking.

5.2.2 Java Libraries
Where possible, open source Java libraries were used, rather than

having to re-implement functionality. The two notable libraries

used were Weka24 (for machine learning), and OpenCSV25 (for

parsing the CSV input files).

5.2.3 Integration with DSpace
The metadata mapper was successfully integrated with Darryl

Meyer’s complementary project that aimed to facilitate batch

ingestion into DSpace. Through this ingestion manager, the records

that were mapped using the metadata mapper could be uploaded

into a DSpace repository.

5.3 Software Development Methodology
In the development of this project, an iterative and Agile software

development approach was used. This is discussed in more detail

in the following sections.

20 http://getbootstrap.com/examples/theme/
21 JSP Standard Tag Library - https://jstl.java.net/
22 https://maven.apache.org/

5.3.1 Agile Development Methodology
There is widespread acceptance among the software development

community that an Agile development approach tends to be highly

effective for projects where it is likely that the scope and

requirements would change as the project progresses. It was

expected that as additional feedback and use cases were received,

whether through the NRF or other sources, the scope of this project

would change. The Agile methodology allowed for easy adaption

to changing requirements and ensured that the software being

developed would meet the requirements.

5.3.2 Iterative Development and User Centred

Design
In addition to ensuring that there was agility in development, the

software was produced through an iterative design process. Here,

the product was developed through a continuous process of

iteratively building onto the software. There were a number of

distinct iterations. The first iteration involved a feasibility

demonstration that aimed to show the feasibility of the project

functionality before major development and a potential design was

sketched out. A paper prototype was then conducted with expert

users. The aim of this paper prototype was to gather feedback on a

potential user interface (UI). Thereafter, an updated UI was

developed based on the results of the paper prototype, along with

backend functionality. This was then tested through user

evaluation, which focused on the design of the interface. The results

of this evaluation were considered and incorporated and involved a

few minor design changes. Thereafter, minor changes to the design

and functionality were implemented as needed.

5.3.2.1 Initial Paper Prototype
A paper prototype was conducted with four postgraduate computer

science students in order to gather early feedback from users on the

design and functionality of the system. An initial design was drawn

up, and feedback and input were requested on this design. The

results of this feedback, as well as the initial design sketch, are

provided in the appendix. While there were no major changes

requested, concerns were raised over the wording used in various

areas, as well as the usability of the current design. It was suggested

23 https://bitbucket.org/
24 See section 3.2.
25 http://opencsv.sourceforge.net/

that various sections be explained in more detail, and that tooltips

be used to assists users.

5.3.2.2 User Evaluation
Once the design was implemented and a working prototype was

developed, five postgraduate computer science students were used

to evaluate the software and give feedback. This evaluation was

conducted by first providing the users with some background

information about DSpace and the tools being developed, and then

requesting that they perform certain tasks (with assistance if

needed). Problem areas were then identified based on how users

used the system, as well as their feedback. The results of this

evaluation were positive, however some minor design changes

were requested in order to improve the usability of the system.

5.3.2.3 Usability and User Acceptance Testing
Once the software was finalised, the system was evaluated through

usability testing and the NRF was asked to evaluate whether or not

the software had met their initial requirements. This is discussed in

more detail in section 6.

5.3.3 Testing, Documentation and Maintainability
In order to ensure that the software produced was ready for release

into a production environment, it was necessary to ensure that it

was thoroughly tested and that it is easy to maintain should it be

released. Testing was conducted continuously, whereby each new

software iteration would involve basic unit testing by simple print

statements and debugging.

The code was thoroughly documented to allow for it to be easily

maintained, should it be released in an open source environment, or

should support for the product continue after it is released. The

documentation for the code is provided in the appendix.

Furthermore, the code was developed with the intention of it being

easy to modify and upgrade in the future.

26 http://www.postgresql.org/

5.4 Algorithms and Data Structures
This section provides a brief and very high level overview of some

of the main algorithms and data structures used.

5.4.1 Classification of Inputs
In order to classify new inputs, Weka produces a model based on

the trained machine learning algorithm which can then be used.

When the user uploads a CSV input file via the interface shown in

Figure 3, this file is parsed by iteratively classifying each entry. The

entries are fed into the model and classified. A hash map is then

used to keep track of the classifications for each field/column. This

allows for a score to be shown for each field. For example, if 70%

of the entries for a particular field were classified as ‘title’ and 30%

as ‘description’, we can rank the predictions accordingly.

Thereafter, the Dublin Core fields are shown in alphabetical order.

Figure 4 shows a page that contains the results of an automatic

metadata mapping. Here the algorithm was able to correctly

classify all three fields, with the user only having to specify the

secondary field of the Dublin Core ‘date’ field. Here, 84% of the

entries in the field ‘Paper title’ were correctly classified as ‘title’.

As the input file is parsed iteratively, there should be no issues with

processing very large input files and the program has successfully

parsed input files with over 10 000 records.

5.4.2 Saving and Loading Mappings
A typical use case of the NRF is that an institution will submit data

to them on a regular basis, which would need to be uploaded into

DSpace. It is a fairly safe assumption that data from the same

institution will likely use the same CSV format and hence the

metadata mappings can be reused. This is achieved by allowing the

user to save a mapping into a PostgreSQL26 database running on

the server. The user can save the mapping as a custom name, and

then load this mapping in the future. This stored mapping can then

be applied to the new data, negating the need for the user to have to

manually check and update the mappings.

Figure 4: Results page that allows the user to review and

correct a metadata mapping.

Figure 3: UI of submission page for CSV file.

6. SOFTWARE USABILITY AND

ACCEPTANCE
In this section, the results of usability testing, as well as the

feedback received on the final system, are discussed.

6.1 System Usability Testing
As the system being developed required a front-end design to

interact with the system, it was imperative that the UI was easy to

use and intuitive. In order to test the tool’s usability, a standard

usability test was used, the System Usability Scale (SUS) [7]. The

test was conducted on a near final version of the software and the

users were requested to complete a set of tasks based on a template

provided by Snyder [32]. SUS consists of 10 questions, where

responses are constrained to a Likert scale that ranges from

‘strongly disagree’ to ‘strongly agree’. The raw data from the

usability test on 12 participants, as well as the mode response for

each question is provided in the appendix. The 10 questions

alternate between positively and negatively phrased questions and

hence the results are divided amongst Figure 5 and Figure 6. Each

figure shows the cumulative distribution of the responses for each

question. Note that the colour scale has been inverted in Figure 6

so that light shading indicates a positive response and vice versa.

The 10 SUS questions are given below:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person

to be able to use this system.

5. I found the various functions in this system were well

integrated.

6. I thought there was too much inconsistency in this

system.

7. I would imagine that most people would learn to use this

system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going
with this system.

SUS was developed to try to represent the overall usability of a

system through a single number, ranging from 0 to 100, with 100

being a ‘perfect’ score. The raw data, as well as the mode responses,

do not appear to indicate any particular usability issues. The overall

SUS score achieved was just above 84. While it may be considered

ineffective to render usability down to a single metric, there has

been much research on SUS and interpreting scores and their

accuracy. Bangor et al. [2] added an 11th question to nearly 1000

SUS surveys that required respondents to rank the system on a

seven-point adjective-anchored Likert scale. They achieved a

statistically significant and strong correlation between SUS scores

and the adjective based scale. The authors also map a SUS score

onto a letter grade scale and into acceptability ranges as shown in

Figure 7.

Based on this scale, the usability of the product developed can be

classified as ‘excellent’ and would be of an acceptable standard for

a production environment.

6.2 General Feedback
Through the course of the development of this project, feedback

was collected and gathered from a variety of sources. The overall

feedback on this project was positive, with all criticism being

constructive and leading to consistent improvements and updates to

the design of the product. General comments from the participants

were positive, with praise being given to the final UI theme and

design. Furthermore, participants also indicated that they felt that

the use of machine learning in this tool added an element of

‘excitement’ to using the tool. From comments left by users of the

final system, it was clear that the intial issues of poor wording and

usability were effectively adressed, as no concerns were raised

about wording and users were able to easily navigate the software

without assistance.

6.3 Acceptance of the Tool by the NRF
User acceptance testing involved investigating whether or not the

initial requirements, as provided by the NRF, were met by the tools

that were produced through this project. In order to determine

whether or not the tools produced fulfilled the use cases of the NRF,

a questionnaire was prepared for the NRF, and the tools were made

accessible by hosting them on a Web server. Instructions were then

provided (see appendix) to assist the NRF in completing some tasks

that would help showcase the metadata mapper. The NRF was also

asked to complete a SUS questionnaire. The raw results of this are

provided in the appendix.

Figure 6: Cumulative distribution of SUS results for

negatively phrased questions.
Figure 5: Cumulative distribution of SUS results for positively

phrased questions.

Figure 7: Interpreting SUS scores by comparing them to an

adjective-based scale [2].

The NRF indicated that the metadata mapper met their

requirements and that they were pleased with the results. They did

however indicate that it would be useful if custom Dublin Core

fields could be used, instead of being limited to the standard

DSpace Dublin Core fields. The NRF usability survey results were

positive, with the only concern being that they felt they had to learn

a lot of things before using this system. The overall NRF SUS score

achieved was 90.

7. ETHICAL, PROFESSIONAL, AND

LEGAL ISSUES
As this tool will be used to migrate and import data, it was

important to ensure that data is not intentionally, or unintentionally,

modified, deleted or added to the repository. Furthermore, the

outputs of this project may be released to the community and, as

such, there was a professional responsibility to ensure that the

output is of a high standard.

All user testing was conducted through simple surveys and usability

testing, which did not raise any ethical issues.

8. CONCLUSIONS
In this section, some of the conclusions that have emerged through

the development and outcomes of this project are discussed.

8.1 The Metadata Mapper is Effective but can

be Improved
This project aimed to develop a tool that would help to transition

DSpace into a RIMS. It was also important to be mindful of the

requirements and use cases of the NRF. From the experimental

results, and usability and user acceptance tests, it was clear that this

tool did satisfy the initial aims of the project. The user interface was

widely accepted and the experimental results indicated that there

were algorithms that were capable of producing accurate

classifications that would help make the metadata mapping process

simpler and quicker.

The NRF did however indicate that the tool currently lacks the

ability to use custom metadata fields. Furthermore, while every

effort was taken to ensure that the tool developed was of suitable

quality for a production environment, it would be ideal if additional

testing could take place to ensure that the tool is as robust and bug

free as possible. Another feature which is lacking is the ability to

remove saved mappings from the database through the Web-based

interface. These issues are addressed in section 9.

8.2 Decision Trees are Highly Effective at

Classifying Textual Based Data
From the results of the experiments, it was interesting to note that

both tree based algorithms performed considerably better than the

other algorithms. It is clear that they provide an effective means of

classifying textual data. Furthermore, these algorithms were

amongst the quickest to train and test on, and proved to be highly

suitable candidates to be used in this software.

8.3 This Tool Could be Integrated with the

NRF’s DSpace Repository
Should only the default DSpace Dublin Core fields be used, this

tool is currently of suitable quality to be used by the NRF as a

means of adding data to the DSpace repository on a continuous

basis. It would be ideal if support for the metadata mapper

continues so that any bugs identified by the NRF could be patched.

Furthermore, the NRF may become aware of certain features that

would make a good addition to this tool. These features could then

be incorporated and may prove useful to other organisations that

would be interested in the automatic and manual metadata mapper.

8.4 The Metadata Mapper is Easy to Use and

Effective
The results of the usability testing, as well as the user acceptance

testing, indicate that the outcome of this project is an easy to use

tool, with an effective and usable UI that provides a good user-

experience. Through testing and comparison to the current system

of performing batch ingestion into DSpace, it is clear that this tool

provides an effective means to add data into a DSpace repository

and can prove to be a useful tool for helping to migrate data from a

legacy system into an institutional repository.

8.5 The Metadata Mapper Helps Transform

DSpace into a RIMS
While this tool alone cannot constitute the transformation of

DSpace into a RIMS, it can prove to be a useful addition to DSpace

for institutions (such as the NRF) that act as an aggregator of

research products for a variety of institutions. This is achieved

through the ability to easily map metadata fields and save and reuse

these mappings.

9. FUTURE WORK
In this section, some of the potential areas for future work in this

field and on this tool are discussed. Due to the limited time

available to complete this project, there were certain features that

were purposefully not included. Furthermore, as this project

progressed, certain areas in which future work could focus became

apparent.

An interesting future study would be to perform a feature analysis

whereby various additional features could be incorporated as inputs

into various machine learning algorithms. This study could then

investigate which feature set performs best and whether or not it is

able to provide better classification results than what has currently

been achieved. It would also be interesting to evaluate other

potential machine learning algorithms, as well as to tweak and

optimise the parameters used in the algorithms discussed in this

paper. A future expansion of this project could allow for the user to

specify custom metadata fields. The user should also be able to

delete, view and modify saved mappings, which is currently not

possible.

Should the above improvements be implemented, it would further

encourage institutions to adopt this tool as a means of adding RIMS

features to DSpace and in so doing, benefit the research

management community.

10. ACKNOWLEDGEMENTS
I would like to thank my project partner, Darryl Meyer, for his

commitment and help, as well as Lazarus Matizirofa (from the

NRF) for providing valuable input and feedback throughout the

course of this project. Finally, my sincere thanks and appreciation

are extended to my project supervisor, Associate Professor Hussein

Suleman, for his constant guidance, support, encouragement and

sound advice.

11. REFERENCES
[1] W. Y. Arms. 1995. Key Concepts in the Architecture of the

Digital Library. D-lib Magazine, 1, 1.

[2] A. Bangor, P. Kortum and J. Miller. 2009. Determining what

individual SUS scores mean: Adding an adjective rating

scale. Journal of usability studies, 4, 3, 114-123.

[3] J. Berlin and A. Motro. 2002. Database schema matching

using machine learning with feature selection. In

Proceedings of the 14th International Conference on

Advanced Information Systems Engineering (CAiSE 2002),

Toronto, Canada, Springer, 452-466.

[4] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade, R.

Richardson and D. O'Sullivan. 1997. An overview of legacy

information system migration. In Proceedings of the Fourth

Asia-Pacific Software Engineering and International

Computer Science Conference (APSEC '97 / ICSC '97), Clear

Water Bay, Hong Kong, IEEE Computer Society,

Washington, DC, USA, 529-530.

[5] L. Breiman. 2001. Random Forests. Machine Learning, 45,

1, 5-32.

[6] M. L. Brodie and M. Stonebraker. 1995. Migrating legacy

systems: gateways, interfaces & the incremental approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[7] J. Brooke. 1996. SUS: A "quick and dirty usability" scale. In

Usability evaluation in industry, I. L. McClelland (Ed.).

Taylor and Francis, London, UK, 189-194.

[8] R. Brownlee. 2009. Research data and repository metadata:

policy and technical issues at the University of Sydney

Library. Cataloging & Classification Quarterly, 47, 3/4, 370-

379.

[9] A. Doan, P. Domingos and A. Y. Halevy. 2001. Reconciling

schemas of disparate data sources: A machine-learning

approach. In Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data (SIGMOD

'01), Santa Barbara, California, USA, ACM, 509-520.

[10] A. Doan, P. Domingos and A. Y. Halevy. 2000. Learning

Source Description for Data Integration. In Proceedings of

the Third International Workshop on the Web and

Databases, Dallas, TX, USA, ACM SIGMOD, 81-86.

[11] B. Haslhofer and W. Klas. 2010. A Survey of Techniques for

Achieving Metadata Interoperability. ACM Computing

Surveys, 42, 2.

[12] T. Hastie, R. Tibshirani and J. Friedman. 2005. Random

Forests. In The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Anonymous (Ed.).

Springer, New York, NY, USA, 587-604.

[13] D. W. Hosmer Jr, S. Lemeshow and R. X. Sturdivant. 2013.

Applied Logistic Regression. John Wiley & Sons, Hoboken,

NJ, USA.

[14] R. Kahn and R. Wilensky. 2006. A framework for distributed

digital object services. International Journal on Digital

Libraries, 6, 2, 115-123.

[15] R. Kohavi. 1995. A study of cross-validation and bootstrap

for accuracy estimation and model selection. In International

Joint Conference on AI (IJCAI-95), Montreal, Quebec,

Morgan Kaufmann, Los Altos, CA, 1137-1145.

[16] W. Li and C. Clifton. 2000. SEMINT: A tool for identifying

attribute correspondences in heterogeneous databases using

neural networks. Data & Knowledge Engineering, 33, 1, 49-

84.

[17] W. Li, C. Clifton and S. Liu. 2000. Database integration

using neural networks: Implementation and experiences.

Knowledge and Information Systems, 2, 1, 73-96.

[18] W. Li and C. Clifton. 1994. Semantic Integration in

Heterogeneous Databases Using Neural Networks. In

Proceedings of the 20th International Conference on Very

Large Data Bases (VLDB '94), Santiago de Chile, Chile,

Morgan Kaufmann Publishers Inc., 12-15.

[19] J. Madhavan, P. A. Bernstein and E. Rahm. 2001. Generic

schema matching with Cupid. In Proceedings of the 27th

International Conference on Very Large Data Bases (VLDB

'01), Rome, Italy, Morgan Kaufmann, San Francisco, CA,

USA, 49-58.

[20] R. J. Miller, L. M. Haas and M. A. Hernández. 2000. Schema

Mapping as Query Discovery. In Proceedings of the 26th

International Conference on Very Large Data Bases (VLDB

'00), Cairo, Egypt, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 77-88.

[21] R. Mishra, S. Vijayanand, P. P. Noufal and G. Shukla. 2007.

Development of ETD Repository at IITK Library using

DSpace. In International Conference on Semantic Web and

Digital Libraries (ICSD-2007), Bangalore, India, Indian

Statistical Institute, 249-259.

[22] T. Mundle. 2007. Digital retrospective conversion of theses

and dissertations: an in house project. In 8th International

symposium on electronic theses and dissertations (ETD

2005), Sydney, Australia, NDLTD.

[23] A. M. Ouksel and A. Sheth. 1999. Semantic interoperability

in global information systems. ACM Sigmod Record, 28, 1,

5-12.

[24] J. R. Quinlan. 1993. C4. 5: programs for machine learning.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[25] E. Rahm and P. A. Bernstein. 2001. A survey of approaches

to automatic schema matching. The VLDB Journal, 10, 4,

334-350.

[26] T. Ribaric. 2009. Automatic Preparation of ETD Material

from the Internet Archive for the DSpace Repository

Platform. Code4Lib Journal 8.

[27] S. Russell and P. Norvig. 2009. Artificial Intelligence: A

Modern Approach. Prentice Hall Press, Upper Saddle River,

NJ, USA.

[28] F. Sebastiani. 2002. Machine learning in automated text

categorization. ACM computing surveys (CSUR), 34, 1, 1-47.

[29] A. P. Sheth and J. A. Larson. 1990. Federated database

systems for managing distributed, heterogeneous, and

autonomous databases. ACM Computing Surveys (CSUR),

22, 3, 183-236.

[30] P. Shvaiko and J. Euzenat. 2005. A survey of schema-based

matching approaches. In Journal on Data Semantics IV,

Anonymous (Ed.). Springer, 146-171.

[31] M. Smith, M. Barton, M. Bass, M. Branschofsky, G.

McClellan, D. Stuve, R. Tansley and J. H. Walker. 2003.

DSpace: An open source dynamic digital repository. D-Lib

Magazine, 9, 1.

[32] C. Snyder. 2003. Paper prototyping: The fast and easy way to

design and refine user interfaces. Morgan Kaufmann, San

Francisco, CA.

[33] R. Tansley, M. Bass, D. Stuve, M. Branschofsky, D.

Chudnov, G. McClellan and M. Smith. 2003. The DSpace

institutional digital repository system: current functionality.

In Proceedings of the 3rd ACM/IEEE-CS joint conference on

Digital libraries (JCDL'03), Houston, TX, USA, IEEE

Computer Society, Washington, DC, USA, 87-97.

[34] K. M. Ting and I. H. Witten. 1999. Issues in stacked

generalization. Journal of Artificial Intelligence Research,

10, 271-289.

[35] P. R. S. Visser, D. M. Jones, T. J. M. Bench-Capon and M. J.

R. Shave. 1997. An analysis of ontology mismatches;

heterogeneity versus interoperability. In AAAI 1997 Spring

Symposium on Ontological Engineering, Stanford CA., USA,

AAAI, 164-172.

[36] H. Wache. 2003. Semantische mediation für heterogene

informationsquellen. KI, 17, 4, 56.

[37] M. P. Walsh. 2010. Batch Loading Collections into DSpace:

Using Perl Scripts for Automation and Quality Control.

Information Technology and Libraries, 29, 3, 117-127.

[38] I. H. Witten, D. Bainbridge, R. Tansley, C. Huang, K. Don

and N. Z. Hamilton. 2005. A Bridge between Greenstone and

DSpace. D-Lib Magazine, 11, 9.

[39] D. H. Wolpert. 1992. Stacked generalization. Neural

Networks, 5, 2, 241-259.

[40] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D.

O’Sullivan and R. Richardson. 1997. Legacy system

migration: A legacy data migration engine. In Proceedings of

the 17th International Database Conference (DATASEM’97),

Brno, Czech Republic, 129-138.

[41] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H.

Motoda, G. J. McLachlan, A. Ng, B. Liu and S. Y. Philip.

2008. Top 10 algorithms in data mining. Knowledge and

Information Systems, 14, 1, 1-37.

