
Accelerating the Noise Removal Process for Astronomical
Source Finding

Yaseen Hamdulay
University of Cape Town

yaseen@hamdulay.co.za

ABSTRACT
Next generation radio telescopes, such as the Meer Karoo
Array Telescope, will perform the largest surveys of the sky
ever completed. The results of which will allow us to gain
a better understanding of how galaxies form. Source finders
process the data from these surveys in order to identify pre-
viously unknown galaxies. Our current source finders are
too slow and will be unable to cope with the size of up-
coming surveys from next generation telescopes. We use
General Purpose Graphics Processor Units to accelerate the
source finding process in Duchamp in order to handle larger
surveys. This resulted in a 11 times speedup proving the vi-
ability of this technique.

Keywords
Astronomy, GPU, Signal Processing, Source Finding

1. INTRODUCTION
Radio astronomy is the study of the universe in the ra-

dio spectrum of light. Identifying galaxies from background
noise is a crucial process in radio astronomy. This process
is called source finding and can improve our understanding
of galaxy evolution over time [7]. Source finding is done by
astronomers by hand. This is a tedious and slow process
that has been augmented by automated source finders.

Background noise emitted by man-made objects such as
cellphones and satellites as well as natural sources like the
cosmic microwave background radiation dominate observa-
tions in the radio spectrum. Galaxies sparsely populate the
universe making them difficult to differentiate from back-
ground noise. This noise needs to be removed from observa-
tions before attempting to identify sources. All automated
source finders perform a noise removal step.

These galactic surveys produce three-dimensional outputs
called data cubes that are typically stored in Flexible Image
Transport System (FITS) files. FITS was designed by the
International Astronomy Union for storing and transferring
astronomy image data.

Modern radio telescopes such as the Karoo Array Tele-
scope (KAT) are more detailed and cover a larger volume
of the sky than any existing telescope. Existing automated
source finders are currently unable to process such large ob-
servations. They either run too slowly or limit the size of
input observations to the size of memory. Source finders
need to be improved for these use cases.

duchamp is an automated source finder created at the
Australia National Telescope Facility that suffers from the

these problems.
A general technique to decrease the execution time of al-

gorithms is by splitting the problem into several parts and
executing a few at a time simultaneously. Modern desktop
CPUs can run up to eight threads of execution in parallel
while graphics processing units (GPUs) can execute up to
several thousand simultaneously.

We propose using the computational power of GPUs to
speed up duchamp.

CUDA is a proprietary API that exposes general purpose
computing on NVidia GPUs. GPUs are massively parallel
and provide high levels of arithmetic throughput in compar-
ison to the CPU. The high performance of a GPU comes at
the cost of high programming complexity [5].

OpenMP is a multi-platform API to write multi-threaded
CPU code in the C family of languages [4]. It manages
individual threads internally and exports a simple API for
loop-level concurrency. The pthreads API is more common,
powerful and gives the user more control but with a higher
level of programming complexity.

In this paper we present performance improvements to
the duchamp source finder. We investigate performance
bottlenecks in the source finder by running a profiler.

We first investigate bottlenecks in the source finder, find
algorithmic improvements and then use parallelism to speed
it up.

2. BACKGROUND
Observations from radio telescopes have two spatial and

one frequency spectrum dimension.
We define the recession velocity of a galaxy as the velocity

at which it is moving away from earth. The emission spectra
of a galaxy is the range of frequencies emitted from it and
their corresponding intensities. When an object moves away
at high speeds its light gets “red shifted” which means that
its frequency decreases or equivalently that its wavelength
increases. We are able to calculate a galaxies recession ve-
locity as a function of the difference between the emitted
frequency and the frequency of the emission at rest.

v ≈ c · femit − fobserved
fobserved

Where v is the recessional velocity, c is the speed of light,
femit is the frequency of light emitted and fobserved is the
frequency of light that has been observed. Due to the ex-
pansion of the universe objects that are further away have
a greater recessional velocity than those that are closer by a

constant multiple.

v = H0 · d

Where H0 is Hubble’s constant and d is the distance from
earth.

d ≈ c

H0
· femit

fobserved
− c

H0

Rearranging this we find that d is a linear function of the
observed frequency. The spectral dimension is then effec-
tively a proxy for distance. We are then able to treat the
spectral dimension as another spatial dimension.

Completeness and reliability are metrics that are com-
monly used to compare the performance of different auto-
mated source finders [10]. Completeness is defined as the
ratio of sources found by a source finder in a given data
cube to the number of sources that exist within the bounds
of the data cube [10]. High completeness implies that a
source finder would detect most of the sources that actually
exist within a data cube. It is possible for a source finder
to mistakenly identify what is in reality noise as a source.
Reliability is the ratio of true positive source detections to
the number of total detections [10]. Low reliability implies
that most of the sources detected do not actually exist.

A source finder has to make a trade-off between its com-
pleteness and reliability. Consider the noise removal thresh-
old. As it decreases what was previously considered noise is
now signal and potentially detected as a source, so reliability
decreases. Sources that were previously considered noise are
now detected and completeness rises. The reverse occurs if
we increase the noise removal threshold.

A source finders completeness and reliability is measured
using a data cube where all sources contained within it are
known. The results of the source finder are compared to
the known results and the completeness and reliability are
calculated. A data cube with known sources can be created
by manually counting the true sources of an existing data
cube or by generating a synthetic data cube.

Not all algorithms or programs parallelise well. There are
algorithms that achieve a small speedup compared to the
number of threads it is run on. This may be due to many
factors such as data dependencies or lock contention. Am-
dahl’s law provides an upper bound on the speedup we are
able to achieve when only some subsections of a program are
able to be parallelised [6]. Let P ∈ [0, 1] be the portion of
the program that can be parallelised. 1−P is then the por-
tion that cannot be parallelised. Amdahl’s law say that the
maximum speedup that can be achieved with N processors
is:

S(N) =
1

(1− P) + P
N

This tells us that the speedup will be at most the number
of processors but probably smaller.

An analysis of duchamp found that 65-95% of the source
finding process is spent in the noise removal phase [1]. We
focus our acceleration attemp on the 3D A’ Trous wavelet re-
construction algorithm for noise reduction within duchamp.
It takes a data cube, an intensity threshold and a filter ker-
nel as input and outputs a noise reduced data cube. The
intensity threshold is chosen as some multiple of the me-
dian average deviation from the median (MADFM) which is
approximately equal to a constant multiple of the standard
deviation.

The A’ Trous algorithm is described in Algorithm 1. duchamp
runs A’ Trous many times until the average noise level is be-
low a user defined limit.

Algorithm 1 Removing noise from a Data cube

Precondition: input is the noisy data cube with dimension
(x, y, z)

Precondition: filter is the wavelet we reduce by
1: function A’ Trous(input)
2: initial median ← median(input)
3: output ← zero matrix with dimension (x, y, z)
4: coefficients ← output - coefficients
5: for scale = 1 do scale< log2(min(x, y, z))
6: threshold ← median(wavelets) ·initial median ·

sigmaFactor[i]
7: wavelet ← coefficients - (filter*coefficients) .

Where * is the convolution operator
8: coefficients← coefficients - wavelet thresholdOut-

put(output, wavelet, threshold)
9: filter ← double filter size

10: end for
11: output ← output + coefficients
12: end function

Precondition: output data cube
Precondition: input data cube to be thresholded
Precondition: threshold real number

function thresholdOutput(output, input, thresh-
old)

2: for i=0 doi<dimension of input data cube
if abs(input[i]) ≥ threshold then

4: output[i] ← output[i] + input[i]
end if

6: end for
end function

The Graphics Processor Unit was developed for gaming
due to the limitations of CPU’s for high throughput graph-
ics processing. It has since been generalised to perform
general purpose high throughput computation on what is
now known as a General Purpose Graphics Processing Unit
(GPGPU). The GPU falls into the Single Instruction Mul-
tiple Data (SIMD) category of parallel computing. Algo-
rithms that perform the same operation on many data points
parallelise well on SIMD hardware. GPUs have thousands
more floating-point units and memory bandwidth than a
high-end CPU. For example the Tesla K80 has a maximum
memory bandwidth of 480 GB/sec while the latest Intel
Haswell CPU architecture has a maximum reported band-
width of 102 GB/sec. It can perform these tasks orders of
magnitude faster and at lower power than a CPU. Unfortu-
nately this is only possible for suitable algorithms.

NVidia released the Compute Unified Device Architecture
(CUDA) API in 2007 to simplify general purpose comput-
ing on their GPUs. Prior to the release of CUDA, graphics
programming shader APIs were repurposed into performing
general computing. Despite CUDA’s simplifying approach
to GPGPU programming it is still fraught with complex-
ity. Synchronization between the GPUs hundreds of cores,
moving data through the memory hierarchy and chunking
complicate CUDA coding.

GPGPU code has the potential to run faster due to its
high level of parallelism. It achieves this by having hundreds

to thousands of threads running concurrently. A block is
a group of threads run concurrently by a single streaming
multiprocessor of which there can be many within the GPU.

CUDA enabled GPUs have several layers of memory that
trade off size with memory access latency. The type of mem-
ory used by a CUDA program greatly influences its perfor-
mance. Global memory is the slowest and largest section of
memory. It is the only memory that persists after the GPU
program has completed and has to be used to store input
and the results of computation. Shared memory is accessible
between all threads within a block and is many times faster
than global memory as it is on the streaming multiprocessor.
Registers are the fastest and most limited piece of memory
but are not random access and can therefore not be used to
store arrays of data.

When optimising GPU code we try to move as much of
the memory accesses onto registers and shared memory. The
number of threads per block and the number of blocks run
concurrently on a single GPU is limited by the amount of
resources the GPU has available. Decreasing the number of
registers or shared memory used by a thread allows more
to be run concurrently. Occupancy is the ratio of active
threads to maximum number of threads the GPU supports.
Maximising occupancy is an important optimization step as
higher occupancy generally means better performance. Oc-
cupancy is affected by block size, register count and shared
memory usage.

Westerlund et al found that using GPUs sped up their
source finder by 3.2x over their multi-core multi-threaded
source finder [12].

Noise on the radio spectrum is of high-frequency. Re-
moving the high frequency parts of the data cube removes
most of the noise at the expense of some detail. We do
this by transforming our data cube from the time domain
into the frequency domain, removing the high frequency el-
ements and reconstructing back into the time domain. This
is known as a high-pass filter in electronics and image pro-
cessing. The wavelet transform is an instance of a time to
frequency domain transformation. Fourier transforms are
not suited to noise removal on data cubes as removing or re-
ducing coefficients leaves artifacts or ripples throughout the
data cube. Wavelet transforms do not have this problem as
each wavelet has a local effect.

The A’ Trous algorithm performs a discrete wavelet trans-
form on the input signal, in this case a data cube.

A common way to apply a linear filter to a signal is to
convolve the signal with the filter. Convolution, commonly
denoted as ∗, is defined as

(f ∗ g)(t)
def
=

∫ ∞
−∞

f(τ) g(t− τ) dτ

where f, g are continuous functions. Since our observations
are broken into discrete voxels, the three-dimensional equiv-
alent of a pixel with approximate floating-point intensities
we use discrete convolution.

(f ∗ g)[n]
def
=

∞∑
m=−∞

f [m] g[n−m]

Let f be a filter (represented as a matrix) and g the signal
(in this case our data cube) that we are filtering. A filter, f ,
is called separable if it can be broken into parts f1, f2 such

that f = f1 ∗ f2. Applying the filter to the signal we have

g ∗ f = g ∗ (f1 ∗ f2)

By the associativity property of convolution we can rewrite
it as

g ∗ f = (g ∗ f1) ∗ f2
That is to say that convolving the signal with the filter is
the same as convolving it with its separable parts in order.

There is a computational advantage to convolving the sep-
arable parts instead of the entire filter. Let the dimension
of f be

|f | = P ×Q, |f1| = P, |f2| = Q, |g| = M ×N

where f and g are represented by matrices. The number of
operations required to convolve g ∗ f is Θ(PQMN). How-
ever, if we instead convolve the separable parts individually
we would first convolve g ∗ f1 = p which takes Θ(PQM)
operations. And then subsequently convolve this partial re-
sult p with p ∗ f2 which takes Θ(PQN) operations. In to-
tal we take PQM + PQN = PQ(M + N) operations and
PQ(M +N) ≪ PQMN operations.

Extending this to three dimensions we can see that the
speedup of an N ×N ×N filter would be N3/(N +N +N).
For a filter of width five, we have a theoretical 125/15 = 8
times speedup.

Duchamp is a three dimensional source finder written by
Matthew Whiting at the Australia Telescope National Fa-
cility. The Duchamp source finding strategy is the most
reliable and complete of all source finding strategies that
were tested by Popping et al [10]. This makes it an ideal
candidate for acceleration, as it would be the most useful
for use by future large hydrogen surveys.

Duchamp currently runs in a single thread on a single
CPU core. There have been multiple attempts to run parts
of the Duchamp pipeline over multiple CPU cores [1]. Baden-
horst et al successfully sped up the A’ Trous noise removal
algorithm, which was the greatest contributor to the execu-
tion time, by 13x with eight threads on a quad-core CPU.
This speed up came with a 6x memory usage penalty. They
found that with the speed up in the noise removal the exe-
cution time is now dominated by the statistics section of the
pipeline. Finally, they note that GPU acceleration has the
potential to dramatically increase performance.

Selavy [13] is a distributed version of Duchamp that runs
across multiple CPU cores across multiple hosts using the
Messaging Passing Interface to communicate between hosts.
It too accelerated the noise removal algorithm with a small
loss in precision due to using approximate statistics methods
and converting from computation with doubles to floats. It
was designed to run on a cluster of nodes each with several
CPU cores where the entire data cube is unable to fit onto
a single node.

Duchamp has a configurable pipeline (see Figure 1), we
provide an overview of the important parts below.

1. Noise Removal smooths the data cube via convolu-
tion with a kernel or wavelet reconstruction.

2. Searching considers the plane formed by fixing each
channel (the spectral or frequency dimension of the
data cube) individually and runs the two-dimensional
Lutz algorithm over this plane [9]. The Lutz algorithm
scans each horizontal row and merges objects within

Figure 1: The Duchamp source finder configurable pipeline.
Dashed borders contain optional steps.

a small distance threshold. Each objects position and
flux values are calculated and added to the list of de-
tected sources [14].

3. Merging joins sources that are within a small distance
from each other in all three dimensions.

4. Parameterisation calculates important astronomical
values such as integrated flux, ascension and declina-
tion for each source.

The majority of existing source finders use intensity thresh-
olding. An intensity thresholding source finder identifies a
voxel, the smallest subdivision of a data cube, as part of a
source if it exceeds a preset and often user-defined thresh-
old. Sources that have an intensity close to the noise level
are often overlooked by this type of source finder. Since
the observable energy for a given telescope surface is fixed
as we increase the telescope resolution the observed energy
for a single voxel decreases and so does the ability to iden-
tify sources. This could cause large or distant sources to be
missed. The Characterised Noise H1 (CNHI) source finder
attempts to remove this limitation with its innovative con-
ceptual framework [8].

CNHI makes the assumption that data cubes are domi-
nated by noise and sources span at least three voxels. CNHI
applies the Kuiper statistical test to distinguish a test region
from noise. The Kuiper test is used to tell whether a set of
samples come from a certain distribution. CNHI selects all
possible regions as a test region and applies the Kuiper test
against the remaining region which is assumed to be noise
[11]. If the Kuiper test passes that means the test region
is distributed the same as noise and is therefore noise. If it
fails it is marked as a source.

After source regions are identified adjacent regions are
merged using the Lutz one-pass algorithm. Sources that are
smaller than a given number of voxels are removed.

Despite CNHI’s innovative conceptual framework the per-
formance of CHNI is poor across all resolutions. CNHI has
many false positives, low reliability and low completeness
[10]. It was therefore not considered for acceleration.

3. DESIGN

3.1 Aims
We aim to accelerate Duchamp’s noise removal with al-

gorithmic improvements and parallelism to reduce the ex-
ecution time of the source finder with large data volumes
expected from next generation radio telescopes. We aim for
a simple design that is simple to reintegrate into Duchamp.

3.2 Approach
Duchamp’s current implementation is single threaded and

uses an inefficient version of A’ Trous reconstruction.
We accelerate the A’ Trous wavelet reconstruction noise

removal algorithm with algorithmic improvements and par-
allelism. CUDA and OpenMP will be used to parallelise our
implementations on the GPU and CPU respectively.

All improvements will be performed on our own code base
separate from Duchamp to simplify testing and develop-
ment. We implement only the code related to reading and
writing FITS files and noise reduction.

Our accelerated version of the A’ Trous reconstruction is
implemented in several phases with a working implementa-
tion at the end of every phase. This reduces the risk of failure
due to high levels of complexity. We verified the correctness
of each implementation at the end of each phase.

3.3 Constraints
The proprietary CUDA API requires us to use NVidia

GPUs in order to run the accelerated Duchamp pipeline.
We will not distribute execution over multiple hosts or run
data cubes bigger RAM available on a single host due to time
constraints. Duchamp and CUDA are written in C++ and
our implementation will be written in C++ as well.

Any optimisations that reduce the accuracy of our results
will not be attempted to conform to the output of duchamp.
Maintaining backwards compatibility is important to allow
our changes to be integrated to duchamp in the future.

3.4 Evaluation

3.4.1 Validation
We will evaluate the correctness of our implementations

using synthetic data cubes created by Dr Ed Nelson of the
UCT Astrophysics department. Testing with synthetic data
cubes is advantageous due to the fact that exact source in-
formation is available and can be used to accurately measure
completeness and reliability. Correctness is simply whether
the accelerated algorithm produces equivalent outputs to the
original Duchamp implementation. A small error is allowed
for each value in the data cube due to floating-point approx-
imations.

To check correctness we run both the original and ac-
celerated implementations with the same inputs and log the
outputs of each. The outputs are then compared for floating-
point equality and the floating-point error between the two
implementations is logged.

3.4.2 Execution time
On completion of each phase the execution time of our

accelerated implementation is measured.
The size of the input data cube and the filter size are the

only factors that affect the execution time.
To determine the relationship between the size of the in-

put data cube and execution time we test with data cubes
of various sizes. We create data cubes of various sizes by
taking subsections of an existing large data cube. Each im-
plementation is run on all test data cubes three times and
the results are averaged over all three executions. This is
done to minimize the affect of background processes on per-
formance.

Our measured execution time is compared to the original
duchamp implementation and we measure the speedup.

We benchmarked the result of each phase with data cubes
of various sizes. The benchmarks were run on a desktop
with an Intel i7-4790 clocked at 3.6GHz, 8GB of RAM and
a NVidia GTX 970 graphics card as well as the Hex com-
puting cluster run by ICTS. The Hex cluster has ten NVidia
Tesla M2090 GPU’s that are designed for general purpose
computing and a CPU compute cluster with 18 hosts each
with 64 cores and 128 GB RAM. We use the CPU compute
cluster for testing our OpenMP implementation. We ran the
OpenMP accelerated implementation on a varying number
of cores to determine its relationship with execution time.

3.5 Software Development Methodology
An Agile methodology was used over the course of this

project. Our tasks are divided into small phases. Each
sprint completes at least one phase including running all
correctness checking. The agile methodology is appropri-
ate for this project as it allows us to ensure a continuously
working product and prevents us from having a monolithic
”acceleration” step to our project.

NVidia has released a guide on what they consider the
best work-flow to accelerate your code with GPUs [3]. They
suggest a four stage acceleration cycle as follows:

1. Assess the program, find bottlenecks and small sec-
tions of code that dominate execution time by profil-
ing. Use Amdahl’s and Gustafson’s law make a predic-
tion of the theoretical speedup that can be attained by
paralellising this bottleneck and use this information
to decide the best section to accelerate.

2. Parallelise the bottleneck found in the previous step.
The code may be paralellised using OpenMP or CUDA.
This may require some factorising if the code is not
written in a way that easily allows paralellism.

3. Optimise the code as much as possible.

4. Deploy and analyse the results. If this was production
software we would deploy to consumers at this stage.

4. IMPLEMENTATION
In this section we present the details of our accelerated

implementations.
We use the cfitsio library to read and write FITS files and

the CUDA toolkit version 7.5 for our GPU code. To simplify
the evaluation the accelerated A’ Trous algorithm is imple-
mented independently from DUCHAMP. Our application
accepts a three-dimensional telescope observation in a FITS
file as input and outputs the noise reduced cube.

4.1 Phase 1: Naive Single Threaded
This phase is a reimplementation of the single threaded

A’ Trous algorithm in DUCHAMP.
Our rewrite is easier to understand than the original Duchamp

implementation as we factored out many common methods
and refactored common sections. The original version is
written in one monolithic function, we split it up into easier
to understand methods.

Identifying the next acceleration step follows from profil-
ing our implementation as per the assess step of the APOD
process. Finding where our program is the slowest helps us
identify what part to accelerate. A profiler is used to find
slow parts of the program. Figure 3 a show us the profiling
information of this implementation. It can be seen that 91%
of total execution time is spent in convolving data cubes and
that this is the logical section to accelerate.

4.2 Phase 2: OpenMP
We accelerated our naive A’ Trous algorithm with OpenMP

on all the threads available to the CPU.
This was done by applying parallel directives around the

convolution loop (step 7 of Algorithm 1). These directives
let subsections of the data cube be convolved in parallel.
This is possible since convolution does not have any inter-
mediate data dependencies.

4.3 Phase 3
This phase ported convolution to the GPU. The partially

de-noised data cube is copied to the GPU before convolu-
tion and back to the host after the convolution for further
processing. In later phases we can avoid this copy by only
modifying the data cube on the GPU.

Each thread on the GPU calculates the partial convolu-
tion of a single voxel with a single filter element. A block
of threads calculates the complete convolution of a single
voxel in the data cube. The partial results within a block
are added using parallel reduction in O(logN) addition op-
erations. The input and output matrices are stored in global
memory and the filter in constant memory. Constant mem-
ory is a type of read-only global memory that caches lookups
within the streaming multiprocessor for faster subsequent
accesses.

4.4 Phase 4
This phase incorporates the benefits of separable filtering

into the single threaded naive implementation. The three-
dimensional filter is broken up into three one-dimensional
filters and applied individually. Additional memory is re-
quired to store the intermediate results until all filters are
applied.

4.5 Phase 5
We then port the separable implementation to the GPU.

Each thread within a block calculates the result for a single
voxel instead of splitting the computation over an entire
block as done previously. Three kernels are execution, one
for each one-dimensional filter.

C++ templates are used to specialise kernels for each filter
used in the convolution. Using templates prevents branch
divergence and unnecessary comparisons when the filter di-
mension is known at compile time.

5. RESULTS AND DISCUSSION
Benchmarking shows that the separable GPU implemen-

tation (shown in Figure 2 a) is the fastest over all data cube
sizes. Our reimplementation of the single-threaded algo-
rithm (labeled “simple” on the graph) does not perform as
well as the original Duchamp implementation. Not much
effort was put into optimising this version and this is to be
expected.

Profiling the simple implementation shows that 91% of
the execution time is spent performing convolution. This is
consistent with the analysis by Badenhorst et al.

The speedup graph on Figure 2 b shows the speedup
of each implementation compared to Duchamp’s execution
time. Each implementation shows a horizontal speedup for
medium to large data cubes. This tells us that the speedup
does not change based on data cube size with the exception
of small data cubes. The increasing speedup for small data
cubes can be attributed to constant time startup times that
dominate when noise removal takes a short amount of time.

The single-threaded separable algorithm performed bet-
ter than OpenMP acceleration running on four cores. The
speedup relative to our simple implementation (on which
the separable implementation is based) is 4.1x. The theo-
retical speedup of 8x discussed earlier is of the convolution
algorithm in isolation. Our measured speedup is of the A’
Trous algorithm in its entirety not just the convolution al-
gorithm. Badenhorst et al had a speedup of 3.7x for their

(a) Comparison of execution time of implementations with varying
data cube size

(b) Comparison of speedup of implementations

Figure 2: Duchamp is the unmodified original program.
”Convolution” is the first GPU accelerated convolution al-
gorithm. Separable is the single-threaded separable convo-
lution. ”Separable GPU” is the GPU accelerated separable
implementation.

(a) Profiling information of simple naive implementation of various
subroutines as a percentage of total execution time. It is clear that
convolution dominates the execution time.

(b) Profiling information of separable GPU implementation of var-
ious subroutines as a percentage of total execution time. The ma-
jority of execution is spent thresholding the data cube with various
manipulations of the data cube coming a close second.

Figure 3: Profiling information

original separable implementation. They went on to opti-
mise the separable implementation further by transposing
the data cube to improve memory accesses and use vector
CPU instructions to achieve a 4.5x speedup.

This shows that parallelism is not always the best first step
for acceleration. Algorithmic optimisation improves execu-
tion time without requiring specialised or more expensive
hardware. This is beneficial to existing users of Duchamp
as they do not need to purchase hardware and can simply
update in order to benefit from this speedup. Integrating
this change into Duchamp would be rather simple as all
changes are contained within a single module and would not
require software architectural changes.

The OpenMP benchmark was run on a desktop machine
as well as the Hex computing cluster. The desktop machine
has four physical cores each with Hyper-Threading enabled.
Hyper-Threading lets a single physical core appear as two
logical cores [2]. Figure 4 c plots the speedup of the im-
plementation versus the number of threads running on the
desktop. Speedup grows with the number of cores until we
reach the number of physical cores available. Increasing the
number of cores still gives us an increase in speedup but at
a much lower rate. Adding four more virtual core only gives
us a speedup from 3.5x to 4.5x.

Running on the Hex computing cluster (Figure 4 a and
b) showed that increasing the number of cores gives a linear
increase in speedup. The speedup is less than the number
of cores it is run on and appears to grow linearly.

The initial GPU port of the convolution algorithm split
the calculation of calculating a single voxels result over a
block of threads. It was quickly determined by profiling
that this was not making efficient use of the available com-
puting resources. We made each thread compute a single
voxels result instead of only a part of it. This improved
the speedup from 3x to 11x by a simple reallocation of
work. The speedup of each separable GPU implementation
is shown in Figure 2 b as separable gpu and separable gpu2
respectively.

Porting the separable implementation the GPU gave a
5.8x speedup over the single-threaded version and 11x over-
all against the benchmark. Profiling this accelerated imple-
mentation shows that convolution no longer dominates the
execution time of the algorithm and only contributes to 14%
of total execution time (see Figure 3 b). 54% of execution
time is now spent in the thresholding operation. Further
acceleration of convolution would now show diminishing re-
turns.

Thresholding involves removing all values of a matrix that
are above some multiple of the median of the matrix. Find-
ing the median is performed with the average case linear
time QuickSelect algorithm. Parallel merge sort has a time
complexity of O(logN) with N parallel cores which is bet-
ter than the complexity of QuickSelect. Replacing QuickS-
elect with parallel merge sort on the GPU was more than
twice as slow as the highly optimized QuickSelect from the
C++ standard template library. Accelerating the threshold-
ing proved to be difficult. Selavy suffered from this problem
and solved it by calculating the median of a subset of the
data which can be done faster at the expense of precision.
We are constrained to having output equivalent to that of
duchamp and was unable to perform this optimisation.

The various matrix addition and multiplication operations
are the next largest contributers to execution time. Porting

(a) Speedup of OpenMP implementation versus number of threads.
This experiment ran on the Hex computing cluster.

(b) Execution time of OpenMP implementation versus number of
threads. This experiment ran on the Hex computing cluster.

(c) Speedup of OpenMP implementation versus number of threads.
This experiment ran on a desktop PC with hyper-threading. The
effects of hyper-threading can be seen by the decrease in the rate of
speedup after reaching four threads.

Figure 4: OpenMP experiments.

this to the GPU further slowed down execution time and
this was reverted. This was due to the overhead of copying
to and from GPU memory.

We measured the accuracy of our implementations by cal-
culating the absolute difference between our implementa-
tions results and duchamp. We found that the average ab-
solute difference was 2 · 10−6. This is small enough that it
does not affect the remaining

6. CONCLUSIONS
In this paper we presented a series of performance im-

provements to the Duchamp source finder. The algorithmic
and hardware changes are orthogonal and can be applied in-
dependently of each other. In the case that GPU hardware
is not available the algorithmic improvements still apply.

Separable filtering is an algorithmic improvement that im-
proved our execution time by 4.1x.

We found that the execution time of wavelet reconstruc-
tion noise removal is largely dominated by massively paralel-
lisable convolution operations. The next largest contributor
to execution time are statistics operations which we did not
benefit from GPU acceleration.

We conclude that GPU acceleration is a viable and useful
way to speed up the Duchamp source finder. The speedup
achieved by OpenMP on ten cores is 7.8x which is com-
parable to that of our GPU accelerated implementation.
OpenMP and the use of separable filtering is a lower cost
way to achieve very good speedups without purchasing ad-
ditional GPU hardware.

Further improvements to noise reduction would require us
to reduce the accuracy of our thresholding operation.

Overall we achieved a speedup of 11x over the Duchamp
benchmark.

7. FUTURE WORK
This implementation limited the size of the data cube to

the size of GPU memory. This can be subverted in future
implementations by streaming the data cube into the GPU,
processing and then streaming it off. Hopefully this can
provide a way to deal with arbitrarily large data cubes.

The strides in separable filtering prevent it from using the
cache effectively. There are optimisations that first rotate
the input before applying a filter that has been shown to
improve performance.

Duchamp’s source merging phase compares every detected
source with every other source. This can be improved by a
constant factor using space partitioning techniques.

Duchamp has a long serial pipeline and improvements
need to be made at every stage to completely improve per-
formance.

8. REFERENCES
[1] Badenhorst. Acceleration of the noise suppression

component of the duchamp source-finder.

[2] Chen, Y.-K., Tian, X., Ge, S., and Girkar, M.
Towards efficient multi-level threading of h. 264
encoder on intel hyper-threading architectures. In
Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International (2004), IEEE, p. 63.

[3] Cuda, C. Best practices guide. Nvidia Corporation
(2012).

[4] Dagum, L., and Enon, R. Openmp: an industry
standard api for shared-memory programming.
Computational Science & Engineering, IEEE 5, 1
(1998), 46–55.

[5] Hassan, A., Fluke, C. J., and Barnes, D. G.
Unleashing the power of distributed cpu/gpu
architectures: Massive astronomical data analysis and
visualization case study. arXiv preprint
arXiv:1111.6661 (2011).

[6] Hill, M. D., and Marty, M. R. Amdahl’s law in
the multicore era. Computer, 7 (2008), 33–38.

[7] Holwerda, B. W., and Blyth, S.-L. Trumpeting
the vuvuzela: Ultradeep hi observations with meerkat.
arXiv preprint arXiv:1007.4101 (2010).

[8] Jurek, R. The characterised noise hi source finder:
Detecting hi galaxies using a novel implementation of
matched filtering. Publications of the Astronomical
Society of Australia 29, 3 (2012), 251–261.

[9] Lutz, R. An algorithm for the real time analysis of
digitised images. The Computer Journal 23, 3 (1980),
262–269.

[10] Popping, A., Jurek, R., Westmeier, T., Serra,
P., Flöer, L., Meyer, M., and Koribalski, B.
Comparison of potential askap hi survey source
finders. Publications of the Astronomical Society of
Australia 29, 03 (2012), 318–339.

[11] Walsh, A. J., Purcell, C., Longmore, S.,
Jordan, C. H., and Lowe, V. Maser source-finding
methods in hops. Publications of the Astronomical
Society of Australia 29, 03 (2012), 262–268.

[12] Westerlund, S., and Harris, C. Performance
analysis of gpu-accelerated filter-based source finding
for hi spectral line image data. Experimental
Astronomy 39, 1 (2015), 95–117.

[13] Whiting, M., and Humphreys, B. Source-finding
for the australian square kilometre array pathfinder.
Publications of the Astronomical Society of Australia
29, 3 (2012), 371–381.

[14] Whiting, M. T. duchamp: a 3d source finder for
spectral-line data. Monthly Notices of the Royal
Astronomical Society 421, 4 (2012), 3242–3256.

