
Accelerating automated extraction of radio astronomical sources
from observation data with GPU accelerators

by Jarred de Beer

1. ABSTRACT
Large scale radio astronomy surveys, such as the Australian Square Kilometre Ar-
ray Pathfinder (ASKAP) and Meer Karoo Array Telescope (MeerKAT), will generate
petabytes of data that will need to be consumed at a rate equal to or faster than what
is produced. This rate prohibits the traditional, manual approach to analysing data
for HI emissions and new automated solutions need to be developed. Efforts have been
made in developing software packages to generalise the source finding process, such
as SoFiA, and frameworks for parallelizing source finding algorithms, such as SSoFF.
While these packages have been successful in speeding up the source finding process,
they are still CPU bound, and an opportunity exists to further accelerate these algo-
rithms by porting them onto the GPU. General purpose GPU processing, in particu-
lar cases, has proven itself to be orders of magnitude faster and more power efficient
than CPU implementations. An attempt at porting the Gaussian source finder onto the
GPU, called the Parallel Gaussian source finder, has achieved speedups of 10x that of
a four-threaded CPU implementation. In this document we compare existing software
packages and source finding algorithms which have been implemented on the CPU and
results from implementing the Parallel Gaussian source finder, K-Means and matrix
transposition on the GPU.

2. INTRODUCTION
Radio astronomy surveys such as ASKAP and MeerKAT, are in development. ’Meer’ in
the codename MeerKAT is Afrikaans for ’more’ and indicates that more telescopes will
be used than have been attempted in the past. These surveys will generate Petabytes
of data needing to be consumed at a rate which matches its production. The MeerKAT
telescopes are located in a radio-quiet reserve in the Karoo, and will be powered by
an RFI-silent (Radio Frequency Interference) grid with backup power [Jonas 2009].
Efficient use of power is necessary in order for the project to scale and data processing
should strive to be energy efficient. Traditionally, detection of HI spectral emissions
in radio surveys has been conducted manually, but this is no longer possible with the
increased size of the ASKAP and MeerKAT surveys and automated solutions need to
be developed.

HI spectral emissions are detected from large bodies of HI particles scattered
throughout the universe which form spiral galaxies and other celestial bodies. These
studies help scientists to understand the cosmic neutral gas density of the universe
and its evolution, as well as galaxy evolution, over time [Holwerda and Blyth 2010].

The data is usually stored in the 3D Flexible Image Transport System (FITS), how-
ever [Badenhorst 2014] notes that the FITS format is reaching data size limits and
may be problematic in the future, but is sufficient for the ASKAP and MeerKAT sur-
veys which should generate spectral datacube sizes of up to 2.5 Terabytes. The 3D data
is represented by two spatial dimensions which map to coordinates in the sky and one
spectral dimension which maps to the spectral frequency of HI detections.

The data contains a considerable amount of RFI noise which makes the automated
detection of these source emissions difficult, and various algorithms have been devel-
oped to achieve high levels of completeness and reliability [Popping et al. 2012]. In
addition, software packages such as SoFiA [Serra et al. 2015] have been developed to

Literature review, Vol. , No. , Article , Publication date: April 2015.



:2

Fig. 1. Acceleration of the parallel Gaussian source finder. The diagram on the left are the results shown in
Fig.6 from [Westerlund and Harris 2014] showing the successful speedup from multiple compute nodes with
the CPU implementation. The figure to the right are results taken from Fig.12 of [Westerlund and Harris
2015] which compares the speedup of PGSF on the GPU and the CPU

allow the user to choose which source finding algorithm to run on their dataset and
SSoFF [Westerlund and Harris 2014], has been developed to parallelize and speed up
its processing.

Most of the software packages and algorithms have been written for the CPU, and
efforts to parallelize source finding algorithms, such as in the parallel implementa-
tion of the Gaussian source finder (PGSF) with SSoFF, have been successful. However,
additional effort has been made to implement PGSF on the GPU, and results show
significant speedups over CPU implementations, see fig1. Similar results of GPU and
CPU comparisons have been seen in other studies, such as in [Huang et al. 2009] which
obtained 25x speedups in processing time and 9x less energy consumption on the GPU
than multi-threaded CPU implementations.

The favorable performance and energy consumption of GPU processing makes it an
attractive technology for use in radio astronomy surveys. In this document we com-
pare the various software packages and source finding algorithms and consider efforts
in implementing such algorithms on the GPU. Our intention is to later identify an al-
gorithm to be implemented in CUDA (Compute Unified Device Architecture) for GPU
processing on Nvidia graphics cards.

3. SOFTWARE PACKAGES
In this section two CPU bound software packages are discussed, Sofia [Serra et al.
2015] and the Scalable Source Finding Framework (SSoFF) [Westerlund and Harris
2014]. SoFiA has been written for general purpose source finding and allows the user
to choose the most appropriate source finding algorithm to use on their data. SSoFF is
a framework which can be used to distribute the workload of source finding algorithms
among a grid based cluster of machines. Separate effort is required to implement each
source finding algorithm using SSoFF.

We also note the existence of the Source Finder Accuracy Evaluator (SFAE) [West-
erlund et al. 2012] which provides an automated and deterministic method for deter-
mining the accuracy of a source finder, and can be used independently of the source
finders implementation.

3.1. SoFiA
SoFiA has been developed in preparation for various HI surveys which are going to
be carried out at ASKAP. These surveys are: WALLABY, a wide survey covering 3/4

Literature review, Vol. , No. , Article , Publication date: April 2015.



:3

of the sky at z-0.25; DINGO, a deep survey reaching z-0.4; and APERTIF [Serra et al.
2015]. SoFiA has been designed to be modular and allows algorithms to be switched
out as needed to accommodate the different ranges of datasets which these surveys
will produce.

Key advantages as noted in [Serra et al. 2015] is that SoFiA can search for emis-
sions on multiple scales while also considering variations in noise level. The package
is publicly available and can be downloaded on Github.

The pipeline employed by SoFiA is illustrated in a flowchart which we describe here
as consisting of four stages. In the first stage data is input and modified according
to flags or weights. In the second stage filters are applied to reduce noise, preparing
the data for the third stage, source detection, which employs various source detection
algorithms. In the fourth stage the sources are merged and parameterised, and in the
fifth stage the results are output.

At the time of writing, SoFiA has implemented two filtering and three source finding
algorithms which can be chosen by the user. The two filtering algorithms implemented
are a convolution with a 3D kernel, and 2D-1D wavelet de-noising [Flöer and Winkel
2012]. Source finding algorithms include Simple threshold, Smooth and Clip (S+C),
and Characterised noise HI (CNHI). We detail these algorithms in the following sec-
tion, while a summary can also be found in [Koribalski 2012].

A merging process needs to be run on the detected sources so that those clustered
close enough together will be considered as a single source. SoFiA does not take into
account the size of sources and merging needs to be parameterised by the user. It is
noted that source finders do exist which take into account individual sizes of sources,
namely Clumpfield [Williams et al. 1994] and BLOBCAT [Hales et al. 2012].

All of the source finding algorithms return a binary mask containing the detected
sources. This binary mask is then used in identifying sources, and for this purpose
SoFiA uses the Lutz one pass algorithm [Lutz 1980] by [Jurek 2012], implemented in
C++.

3.2. Scalable Source Finding Framework (SSoFF)
SSoFF [Westerlund and Harris 2014] is used to build distributed source finding algo-
rithms which can be used in an HPC environment. The framework makes use of MPI,
MPI-IO and OpenMP libraries to handle communication between processes and ma-
chines. The framework takes advantage of the fact that the datacubes can be broken
down into smaller sub cubes and processed in parallel by source finding algorithms,
with minimal dependencies.

Many of the algorithms apply statistical methods which sample neighbouring voxels,
meaning that voxels near the edges of a cube will need to access the neighbouring
cube. To avoid this dependency the voxels need to be duplicated and included with
the neighbouring cube. This duplicated data is known as Halo data and we need to
ensure that the amount of halo data relative to sub cube size is minimised for optimal
use of network transfer and memory storage. The minimum amount of halo data is
dependent on the radius of sampling performed by the algorithms.

SSoFF distributes the sub cubes, with their halo data, to a 3D grid of processes. This
type of grid based parallelism with shared data is very similar to the grid based multi-
threaded nature of graphics processing used in GPU programming. SSoFF does not
appear to make use of GPU processing, but instead uses OpenMP for multithreaded
CPU processing. [Westerlund and Harris 2014] notes that significant effort is needed
to implement each individual source finding algorithm, and this would be the same
with a CUDA implementation.

SSoFF also provides functionality for multi-threaded selection and merging tasks.
Both of these make use of a flood fill algorithm, which is performed in a procedure of

Literature review, Vol. , No. , Article , Publication date: April 2015.



:4

steps to accommodate multiple processes which may each contain a piece of the same
split source.

3.3. Source Finder Accuracy Evaluator (SFAE)
SSoFF was used to implement the Parallel Gaussian Source Finder (PGSF) and the
catalogues which were detected from the test data were matched against sources in
the Source Finder Accuracy Evaluator, which has been mentioned here because of its
possible usefulness in verifying the accuracy of source finding algorithms.

4. SOURCE FINDING ALGORITHMS
In this section we list various aspects of existing source finding algorithms. We note
how the performance of a source finding algorithm is determined and how they com-
pare to one another.

There are two types of algorithms mentioned in [Jurek 2012], one type of algorithm
is based on intensity thresholding, such as DUCHAMP, in which filtering is performed
on each voxel by comparing its value against an absolute threshold. Another type of al-
gorithm, such as CNHI, assumes that sources are more likely to have contiguous voxel
values along the spectral dimension. [Jurek 2012] also notes an inherent limitation to
intensity thresholding algorithms where sources become harder to detect in datasets
with a higher resolution. This is due to a decreased contribution of total flux at each
voxel because the source is distributed into a larger number of voxels in the higher
resolution dataset. Despite this supposed limitation [Popping et al. 2012] reports that
DUCHAMP achieved reliability ratings of 99.7% and 72.2% for point source datasets
and 60.8% and 69.9% for model galaxies datasets, which is a lot better than CNHI’s
reliability results of 8.3% and 34.7% for point source and 4.1% and 40.1% for model
galaxies datasets. We are not aware from the comparisons in [Popping et al. 2012]
what role this limitation has on the results.

[Popping et al. 2012] describes completeness and reliability as two measures of per-
formance in a source finding algorithm. Completeness is defined as the number of
detected sources divided by the total number of sources in a datacube. Reliability is
defined as the number of true detections divided by the total number of detections.
The higher the completeness and reliability ratings are, the lower the rate of false de-
tections. Reliability can potentially be misleading as it can be influenced by the size of
the datacube. For example, if the size of a datacube is doubled but the number of true
sources remain constant, then the false positive rate will increase because of the addi-
tional noise, decreasing the reliability value. The completeness value, however, would
not change.

The better the signal-to-noise ratio in the dataset, the better reliability and com-
pleteness the source finding algorithms will have. For this reason most source find-
ers, and even the SoFiA package, have a preprocessing step which smooths the noise.
[Badenhorst 2014] notes that this decreases the number of false detections and also
the number of missed sources.

4.1. DUCHAMP source finder
DUCHAMP [Whiting 2012] is an Intensity threshold source finder. Various efforts to
accelerate the algorithm with regards to multi-threading, SIMD, memory management
have been studied in [Badenhorst 2014]. The Selavy project [Whiting and Humphreys
2012] is also a parallelized implementation of DUCHAMP.

[Badenhorst 2014] notes that the combination of SIMD and CPU multi-threading
has terrible performance. However, in the context of GPU processing, [Mahesri et al.
2008] finds that MIMD has superior performance to SIMD. We note that this may be
useful in the context of CUDA processing.

Literature review, Vol. , No. , Article , Publication date: April 2015.



:5

Fig. 2. Figure taken from [Popping et al. 2012] showing the completeness of source finders as a function of
integrated flux. We note the table showing the reliability of the source finding algorithms

Results from tests in [Popping et al. 2012], see fig.2, utilising a datacube of point
sources show that DUCHAMP has the highest completeness when considered as a
function of integrated flux, integrated signal to noise, peak flux, and velocity width.
DUCHAMP obtained reliability ratings of 99.7% and 72.2% for the point source dat-
acube test, and reliability ratings of 60.8% and 69.9% for the model galaxies datacube.

4.2. CNHI source finder
The Characterised noise HI source finder (CNHI) [Jurek 2012] is an alternative to in-
tensity based source finders which uses a method for automatic detection of sources
called matched filtering. It implements the Lutz one-pass algorithm, with a com-
pressed, sparse representation.

[Jurek 2012] lists two core concepts behind the CNHI algorithm. The first is that
a datacube is treated as a bundle of HI spectra, as opposed to a collection of voxels.
Secondly, contiguous blocks of voxels are tested for sources. Sources are detected by re-
gions which do not appear to be noise, the inverse approach to shape based algorithms.

Noise is detected with comparative statistical tests using the Kolmogorov-Smirnov
test [Kendall and Stuart 1979] and the Kuiper test [Kuiper 1960].

CNHI’s performance with respect to completeness is presented in [Popping et al.
2012]. In these tests CNHI performed with the worst reliability rating of the compared
source finders on both point source and model galaxies datacubes, with reliability rat-
ings of 8.3% and 34.7%, and 4.1% and 40.1% respectively.

4.3. The Gamma-Finder
The Gamma-Finder [Boyce 2003] estimates noise variance, known as the Gamma
Statistic. A signal-to-noise ratio is then used to clip the data. There are no param-
eters to the Gamma-Finder and it does not output a binary mask, which makes it
problematic for packages such as SoFiA.

4.4. 2D-1D Wavelet Reconstruction finder
2D-1D Wavelet Reconstruction [Flöer and Winkel 2012] takes into account that the
spectral dimension is not isomorphic to either of the two positional dimensions. The
shape of a source along the spectral dimension is therefore different. The algorithm

Literature review, Vol. , No. , Article , Publication date: April 2015.



:6

performs a 2D wavelet transform in all planes of the cube and a 1D wavelet trans-
form at each pixel. The wavelet coefficients from these transformation steps are then
thresholded and the coefficients which result from this are noise free.

4.5. Smooth plus Clip source finder
This algorithm optimises the signal-to-noise ratio of objects in a datacube. It looks for
sources in both the original and the smoothed cube. Smoothing can be done on the sky,
velocity, or all three axes. [Serra et al. 2012]

5. GPU ACCELERATION
5.1. GPU-accelerated Filter-based source finder
In [Westerlund and Harris 2014] PGSF was built on SSoFF and parallelized on mul-
tiple nodes using the CPU. It was later implemented in [Westerlund and Harris 2015]
for GPU processing, in both OpenCL and CUDA.

[Westerlund and Harris 2015] describes the sequence of the GPU processing in
which small portions of the data cubes are processed by reading data onto the GPU,
running the filter and writing back the results. The largest portion of the data is along
the frequency axis and is kept coalesced in memory, and a single thread can be as-
signed to each line of frequency and processed independently from the others.

The kernel begins by mapping the thread’s grid coordinates to its voxel in the dat-
acube, then the line of frequency values for that voxel is read from memory, after which
it is blocked by a barrier. Each thread then performs filtering on the line and stores
the result to local memory before hitting another barrier, after which the results are
output. Filter data is stored in constant memory so multiple threads can read values
from the same voxel without bank conflicts. Multiple kernel executions are used to
avoid the watchdog timer from timing out.

[Westerlund and Harris 2015] reports that the speedup for OpenCL and CUDA was
similar, between 1.8 and 2.1 times faster than the CPU implementation, but with
OpenCL slightly outperforming CUDA. This was a little surprising, as [Karimi et al.
2010] reports that CUDA noticeably out performs OpenCL in all problem sizes, with
OpenCL having end-to-end times 16% to 67% slower than CUDA. [Karimi et al. 2010]
notes that CUDA has better performance in transferring data to and from the GPU,
and it is possible the data set being used in [Westerlund and Harris 2015] was too
small for this to have an affect.

[Westerlund and Harris 2015] details that the statistics functions have not been
implemented on the GPU, and now take up a noticeable portion of time the overall
runtime.

5.2. K-Means
K-Means is an algorithm which is used to find clusters of points. It is iterative and has
a guarantee of converging. [Wu et al. 2009] implements the K-Means algorithm on the
GPU and achieves a 35x speedup over a four-threaded CPU implementation. The test
was performed with a data set fitting on device memory and performance may take a
hit when data is too large to fit onto the device.

This type of algorithm is used during the merging process of source finding. It in-
volves transferring a block of data from the CPU onto the GPU, transposing it into a
column based layout, computing the cluster for each point, and transferring the re-
sults back to CPU. A streaming kernel can be used to asynchronously process multiple
blocks at once, allowing for overlap between memory transfer and computation.

[Wu et al. 2009] notes that Texture memory is sometimes slower than global memory
in cases where the centroids array is large enough to cause cache misses in texture

Literature review, Vol. , No. , Article , Publication date: April 2015.



:7

memory, and that it can be hard to tell which is better to use. If the centroids array
fits into GPU constant memory then 10x speedups were obtained on the GPU over the
8-core CPU implementation.

5.3. Matrix Transposition
[Sung et al. 2014] discusses an algorithm for in-place matrix transposition imple-
mented on GPUs. DUCHAMP uses transposition to keep the memory accesses coher-
ent in the de-noising process and we note that it may also be useful, if needed, in CNHI
to obtain the contiguous blocks of voxels used along the spectral axis.

Matrix transposition is useful when transforming row-based matrices into column-
based matrices for contiguous memory access along columns, and vice versa.

6. DISCUSSIONS
SoFiA is a software package which is intended to process both wide and deep surveys,
and it allows the user to choose the source finding algorithm most appropriate for their
data. Its modular structure allows source finding algorithms to be added, and it comes
with CNHI and S+C already integrated. As seen in fig.2 CNHI and S+C give the worst
reliability results, and it is interesting that those two were chosen. It may be the case
that CNHI and S+C are favorable for SoFiA in that they require fewer parameters from
the user and are more consistent between different datasets. SSoFF, on the other hand
is a framework for implementing source finding algorithms which are then distributed
among compute nodes. It’s possible that SSoFF based source finders could be used by
SoFiA. This would allow the user to specify which source finder to use in a distributed
environment. Significant effort is required to implement each algorithm with SSoFF.

As mentioned, fig.22 shows that the reliability of DUCHAMP is considerably su-
perior to CNHI. Yet DUCHAMP is an intensity thresholding algorithm which [Jurek
2012] reports becomes a limiting factor in high resolution surveys, a limitation which
CNHI is not subjected to. It is unclear whether this limitation is purely theoretical, or
whether the surveys just weren’t of a high enough resolution for this to have an affect.
It is also unclear at what resolutions this limitation might start having an affect.

CNHI treats datacubes as bundles of HI spectra. This is to take advantage of the
distorted shape of sources along the spectral dimension in which the voxels are con-
tiguous. It’s possible to accelerate this technique in a multi-threaded or GPU envi-
ronment by assigning each thread to a voxel in a 2D spatial plane, the spectral lines
along each of these points are independent and can be processed in parallel. A deeper
look into the Kolmogorov-Smirnov test [Kendall and Stuart 1979] and the Kuiper test
[Kuiper 1960] would assist in further understanding how this process can be paral-
lelized. CNHI is unique in its approach of characterising noise and detecting sources
by that which is not characterised noise. Techniques for parallelizing this algorithm
may as a result also be unique for CNHI, and may be subject to different degrees of
acceleration.

In the GPU implementation of PGSF we note that OpenCL performed similarly, but
outperformed, CUDA. However, [Karimi et al. 2010] tested OpenCL and CUDA on a
multitude of data set sizes and found that OpenCL performed 16% to 67% slower than
CUDA. This test was performed in 2010, while the PGSF implementation in [West-
erlund and Harris 2015] was conducted in 2015. Either OpenCL’s performance has
developed at a faster rate than CUDA, which is unlikely, or the implementations in
[Westerlund and Harris 2015] differed and the CUDA implementation was less effi-
cient. The latter case is also unlikely, as CUDA and OpenCL have interchangeable
APIs and implementing two separate versions would have been unnecessary work.
[Karimi et al. 2010] notes that memory transfer to and from the device is faster with
CUDA, and memory accesses on larger datacubes should be noticeably faster than

Literature review, Vol. , No. , Article , Publication date: April 2015.



:8

OpenCL. It might be the case that the datasets in [Westerlund and Harris 2015] were
too small for this difference to have an affect.

7. CONCLUSIONS
Various source finding software packages have been developed to assist with the de-
mands of larger radio astronomy surveys such as ASKAP and MeerKAT, and effort
has been made to accelerate the processing of source finding algorithms used in these
surveys. We reviewed and compared characteristics of various source finding algo-
rithms as well as speedups achieved on the CPU and GPU with the PGSF source
finder. The SoFiA package has implemented S+C and CNHI source finding algorithms.
DUCHAMP has been implemented with CPU multi-threading on desktops [Baden-
horst 2014] and also a grid of compute nodes such as in Selavy. SSoFF is a framework
which can be used to distribute source finding algorithms among a grid based clus-
ter of machines, and separate effort is needed in implementing each individual source
finder. GPU processing, as shown in the GPU implementation of PGSF [Westerlund
and Harris 2015], K-Means and matrix transposition, achieved 25x speedups in CPU
processing and 9x less energy consumption [Huang et al. 2009].

REFERENCES
Scott James Badenhorst. 2014. Acceleration of the noise suppression component of the DUCHAMP source-

finder. Master’s thesis. University of Cape Town.
Peter James Boyce. 2003. GammaFinder: a java application to find galaxies in astronomical spectral line

data cubes. Ph.D. Dissertation. Citeseer.
Lars Flöer and Benjamin Winkel. 2012. 2d–1d wavelet reconstruction as a tool for source finding in spectro-

scopic imaging surveys. Publications of the Astronomical Society of Australia 29, 3 (2012), 244–250.
Christopher A Hales, Tara Murphy, James R Curran, Enno Middelberg, Bryan M Gaensler, and Ray P

Norris. 2012. BLOBCAT: software to catalogue flood-filled blobs in radio images of total intensity and
linear polarization. Monthly Notices of the Royal Astronomical Society 425, 2 (2012), 979–996.

Benne Willem Holwerda and Sarah-Louise Blyth. 2010. Trumpeting the Vuvuzela: UltraDeep HI observa-
tions with MeerKAT. arXiv preprint arXiv:1007.4101 (2010).

Song Huang, Shucai Xiao, and Wu-chun Feng. 2009. On the energy efficiency of graphics processing units
for scientific computing. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 1–8.

Justin L Jonas. 2009. MeerKATThe South African array with composite dishes and wide-band single pixel
feeds. Proc. IEEE 97, 8 (2009), 1522–1530.

Russell Jurek. 2012. The Characterised Noise Hi source finder: Detecting Hi galaxies using a novel im-
plementation of matched filtering. Publications of the Astronomical Society of Australia 29, 3 (2012),
251–261.

Kamran Karimi, Neil G Dickson, and Firas Hamze. 2010. A performance comparison of CUDA and OpenCL.
arXiv preprint arXiv:1005.2581 (2010).

M Kendall and A Stuart. 1979. The Advanced Theory of StatisticsVolume 2 Inference and Relation-ship,
(London: Charles Griffin). Kendall4The Advanced Theory of Statistics 2 (1979).

Bärbel S Koribalski. 2012. Source Finding and Visualisation. Publications of the Astronomical Society of
Australia 29, 3 (2012), 213–213.

Nicolaas H Kuiper. 1960. Tests concerning random points on a circle. In Indagationes Mathematicae (Pro-
ceedings), Vol. 63. Elsevier, 38–47.

RK Lutz. 1980. An algorithm for the real time analysis of digitised images. Comput. J. 23, 3 (1980), 262–269.
Aqeel Mahesri, Daniel Johnson, Neal Crago, and Sanjay J Patel. 2008. Tradeoffs in designing accelerator

architectures for visual computing. In Proceedings of the 41st annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE Computer Society, 164–175.

Attila Popping, Russell Jurek, Tobias Westmeier, Paolo Serra, L Flöer, Martin Meyer, and Baerbel Koribal-
ski. 2012. Comparison of potential ASKAP HI survey source finders. Publications of the Astronomical
Society of Australia 29, 03 (2012), 318–339.

Paolo Serra, Tom Oosterloo, Raffaella Morganti, Katherine Alatalo, Leo Blitz, Maxime Bois, Frédéric Bour-
naud, Martin Bureau, Michele Cappellari, Alison F Crocker, and others. 2012. The ATLAS3D project–

Literature review, Vol. , No. , Article , Publication date: April 2015.



:9

XIII. Mass and morphology of H i in early-type galaxies as a function of environment. Monthly Notices
of the Royal Astronomical Society 422, 3 (2012), 1835–1862.

Paolo Serra, Tobias Westmeier, Nadine Giese, Russell Jurek, Lars Flöer, Attila Popping, Benjamin Winkel,
Thijs van der Hulst, Martin Meyer, Bärbel S Koribalski, and others. 2015. SoFiA: a flexible source finder
for 3D spectral line data. arXiv preprint arXiv:1501.03906 (2015).

I-Jui Sung, Juan Gómez-Luna, José Marı́a González-Linares, Nicolás Guil, and Wen-Mei W Hwu. 2014. In-
place transposition of rectangular matrices on accelerators. In Proceedings of the 19th ACM SIGPLAN
symposium on Principles and practice of parallel programming. ACM, 207–218.

Stefan Westerlund and Christopher Harris. 2014. A Framework for HI Spectral Source Finding Using
Distributed-Memory Supercomputing. Publications of the Astronomical Society of Australia 31 (2014),
e023.

Stefan Westerlund and Christopher Harris. 2015. Performance analysis of GPU-accelerated filter-based
source finding for HI spectral line image data. Experimental Astronomy 39, 1 (2015), 95–117.

Stefan Westerlund, Christopher Harris, and Tobias Westmeier. 2012. Assessing the Accuracy of Radio As-
tronomy Source-Finding Algorithms. Publications of the Astronomical Society of Australia 29, 3 (2012),
301–308.

Matthew Whiting and Ben Humphreys. 2012. Source-finding for the australian square kilometre array
pathfinder. Publications of the Astronomical Society of Australia 29, 3 (2012), 371–381.

Matthew T Whiting. 2012. duchamp: a 3D source finder for spectral-line data. Monthly Notices of the Royal
Astronomical Society 421, 4 (2012), 3242–3256.

Jonathan P Williams, Eugene J De Geus, and Leo Blitz. 1994. Determining structure in molecular clouds.
The Astrophysical Journal 428 (1994), 693–712.

Ren Wu, Bin Zhang, and Meichun Hsu. 2009. Clustering billions of data points using GPUs. In Proceedings
of the combined workshops on UnConventional high performance computing workshop plus memory
access workshop. ACM, 1–6.

Literature review, Vol. , No. , Article , Publication date: April 2015.


