

Computer Science Honours

Final Paper

2015

Title: Data Management of an Exploratory Search System

Author: Dylan Henderson

Project Abbreviation: Travsrch

Supervisor: Maria Keet

Category Min Max Chosen

Requirement Analysis and Design 0 20 20

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 15 15

Results, Findings and Conclusion 10 20 15

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Adherence to Project Proposal and Quality of

Deliverables

10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80 80

DEPARTMENT OF COMPUTER SCIENCE

 1

Data Management of an Exploratory Search System

Dylan Henderson

Department of Computer Science

University of Cape Town

Rondebosch, 7701, South Africa

Dylan9h@gmail.com

ABSTRACT
When users search for flights for holiday destinations, they can be

given the option to make keyword based exploratory searches when

they are not entirely sure of what they are looking for. The system

required to allow for such queries would need a data management

layer to manage initialization, insertion, retrieval and updating of

destination based data. Flight data is currently not available in a

form required to make keyword based queries. Destination data

needs to be linked to keywords and flights to allow for these

exploratory searches. Keywords must be defined by their relevance

to destinations. One of the problems is that there are conflicts

between stored categories and user queries, this is solved by

allowing keywords to be built up from user input. A system was

developed to allow for keyword based searches, this paper focuses

on a solution to the data-management of the system. The

development methodology followed an agile approach allowing the

system to be developed in short iterations. Keyword-destination

pairs are stored with a weight indicating the relevance of the paired

keyword to the destination. Weightings are updated based on user

input with an initial manually created seed of weights. Use case

scenarios were used to test the functionality of the system while

running. The system allows for storage and retrieval of keyword

based results that are user-driven and automatically updated.

Future work could improve the system to allow for multi-word

keywords and more destination based information.

Keywords--- database, mongoDB, keyword, flights, destination,

search, use case scenario

1. INTRODUCTION

Searching for flights online has become a common task for anyone

wishing to travel. To access the vast number of available flights,

users need a way to quickly query results, be this for a known item

such as a flight to a specific location on a specific date or an

exploratory item [1] such as users searching for a holiday location

while being unsure of where they are going. Current flight websites

offer users the ability to search for flights based off of various preset

choices that the user must make. These generally include the

selection of a departure date, a return date, an origin location and a

destination location. Some flight websites such as Travelstart [2]

offer some more advanced selection options such as non-stop

preferences, variable dates, and ordering of results by price or by the

faster flights but do not offer options for natural language based

queries such as a search for a keyword. An exploratory system has

been developed to allow users to have even more control over the

available data. The system allows users to perform keyword based

exploratory searches when searching for flights.

The aim of the system is to allow users who do not know exactly

what they are looking for to explore available destinations and

flights. These types of users are generally users searching for

holidays and as such the system focuses on linking destinations with

relevant keywords. Users enter a query into a search bar in plain

English such as “an exciting romantic location”. They enter their

origin and also have the option to enter a price range and possible

destinations, but these are not required. Users are then presented

with a list of flights that match their query.

The entire system uses a multi-step process to retrieve results for the

user, involving user interface management, query formulation, data

management and results ranking. This paper will focus on the data

management subset of the full exploratory search system. Flight

data is currently not available in the form required to make keyword

based queries. The system solves this problem by linking

destinations with relevant keywords and flights and allowing this

data to be queried.

The system aims to initialize a base database with a limited amount

of keyword-destination pairs and build upon the initialized data

dynamically by using user input. The system also aims to link

destinations with images from Dbpedia as well as flights. This is

important because the system requires the data to be available in a

form that can be queried through a single request. Results from this

request are required to contain flight data, destination data and

keyword relevance data. Flights, destinations and keywords are

separated into separate collections. Each destination-keyword pair is

stored in its own document with a weighting indicating relevance.

The system is tested using unit tests as well as use case scenarios to

test run-time functionality.

The system was requested by and developed for the flight company

Travelstart [2] who aim to broaden their user-base by adding a

unique exploratory option to their website for users searching for

holiday destinations.

2. RELATED BACKGROUND

Searching has become a fundamental application in web-based

development due to the popularity and growth of querying the web

[3]. One form of searching which involves a high level of learning

and investigation by the user [3] is exploratory search. Different

aspects of setting up an exploratory search system are investigated,

including faceted search, the conflict between user queries and

System Documentation and system design process information can be

found at http://pubs.uct.ac.za/cshonours/2015/Travelstart

 2

stored categories, the storage structure and the difference between

the available database technologies.

2.1. Exploratory Search

Due to the webs exploratory nature, people are now using strategies

that involve navigation and trial and error to locate information that

they are searching for. Exploratory search can be seen as the

combination of both querying and browsing [3]. where the target

they are querying may be undefined [7]. Search engines tend to

work well when the user‟s information needs are well defined but

are inadequate when users lack knowledge to make an educated

query [7]. Users tend to begin making investigative queries to gather

information on their desired topic and then reformulate their queries

multiple times [8] before exploring results [7].

Figure 1: Exploratory Search Activities [6]

Exploratory searches tend to enclose learning and investigation

activities as depicted in Fig. 1. Exploratory systems allow users to

be active in the processing of their query. The ClearMap framework

is one such system which allows users to visually see the processing

of their query and manually change the way the underlying data is

processed [8].

2.2. Development Technologies

MongoDB is an open source NoSQL database and the leader in the

market [10]. It is a non-relational database that was created to

handle unstructured data. While relational databases have been

around since the 1960‟s, new types of NoSQL databases are being

developed and are being used by an increasing number of

developers [13]. The performance of NoSQL databases has been

compared to that of SQL databases [11]. Without predefined

Schema, NoSQL databases like MongoDB can allow developers to

make changes in real time without affecting the end-users

experience. Yogesh Punia and Rinkle Aggarwal [11] compare the

insert time of records in both an SQL and NoSQL database.

MongoDB performs considerably better for larger amounts of

records [11]. It can however be seen that when considering update

and lookup intensive databases, the speed overhead of SQL is more

due to the implementation of its ACID properties [12].

Node is a JavaScript back-end programming language. Node is

event-driven and non-blocking making it highly efficient [14]. Some

of the major node packages available include Mongoskin [15] for

database communication and Sparql-Client [17] for Dbpedia

queries.

2.3. Faceted Search

Faceted search can be seen as a combination of direct search and

navigational search that attempts to solve the problem of user

understanding [6]. Direct search offers users a text box to enter data

into and performs a lookup on the exact words but offers no options

for refinement. Navigational search provides a hierarchy of content

but is unable to classify content that does not easily fit into that

hierarchy. Categories can be displayed as separate facets and these

facets can even be displayed to the user in the form of results [5].

Each facet can have multiple values and values can fit under more

than one facet [16]. An example search with the keywords “Sunny”

and “Romantic” would find results under the categories

<Romantic> and <Sunny>. Faceted search systems can be

combined with query-based systems to allow for searching with the

expressiveness of queries [9] but with the simple storage of data

under categories.

2.4. Conflict between user queries and stored

categories

With regards to the vocabulary problem, users often do not

understand the way the information has been stored in the facets

created by the developers [5,6]. As an example, a user might make

the search: “Warm Romantic Getaways”. The system will find no

facets that exactly match this search but might break the search

down into the following facets: <Romantic> and <Warm> and

provide options from those facets instead of the intersection

between those facets. A simpler and more common error would be a

search for “Seasonal Romantic Getaways” where the system has no

facet for <Seasonal> even though the user would probably be

perfectly happy with the facet <Warm>.

As seen, the items that the end user wants to see may not be what

the developers have under their facets due to different underlying

data storage assumptions. One suggestion to this problem is to

approach the problem from a user-centric point of view where facets

are found for the specific users and then these facet categories are

mapped to the underlying ontologies [5]. An experiment was done

to test this theory using the card sorting method [4]. Volunteers are

given cards with the names of single items on them. Users group the

cards into piles based on similarity, these piles are then used as the

basic facet groupings to map to the systems underlying ontology.

This card sorting method displays that there are multiple right

answers for sorting results into different categories and that different

users will sort the same items differently. As an example in the

experiment [4], two participants grouped different given words

under categories. Participant A grouped the words smoking, drugs

and tobacco under Intoxicants while participant B grouped these

words under Stimulants. Both categories are correct but had the

system been designed around participant A‟s choice, participant B

would not be able to find for example “smoking” by searching

stimulants. As such it can be noted that the system cannot be

designed around a single person‟s categorization of an object.

This problem is also addressed through dynamic category sets [6].

These dynamic category sets are aimed to address 3 problems.

Firstly they must be data driven: they do not provide empty results;

 3

if a search results in two facets where the intersection is null then

they must be omitted. For example a search for “Romantic family

getaways” where the facets <Romantic> and <Family> exist but

there are no destinations containing both those facet-types. Secondly

the dynamic sets must address matching semantics, either matching

all query terms to facets or if that is impossible, matching partial

queries with facets. Lastly dynamic category sets must not provide

more specific results than necessary. As an example a user

searching “Warm getaway” should only match the facet <Warm>

and not include the facet <Romantic>.

2.5. Document Structure: Embedded and

Referencing

Data is stored as JSON objects in MongoDB called documents.

Referenced data stores relationships between documents by

including links to each other [20] while embedded data stores all the

information in a single document. Embedded data makes for faster

queries as each query only has to make one call to the database.

Referenced data on the other hand can save space if the referenced

data is used many times.

3. SOFTWARE METHODOLOGY

An agile approach was used in the development of the software as

depicted in Fig. 2. A large focus of the approach was the

development of working software. Each iteration of the data

management system worked, with changes and additions being

made each iteration. Every 2 weeks, the separate components of the

system were integrated and validated to be working. Unit testing

was done on each function of the data management system

throughout the development process.

Figure 2: Agile development approach

3.1. Requirements Analysis

The development of the query based search system needed to meet

multiple requirements given from the company Travelstart, with the

main focus on keyword management and keyword based queries.

Additional requirements were added in early iterations to add to the

practicality of the system.

3.1.1 Travelstart requirements
1: Keyword based queries: A user may make a query to the system

that includes keywords. The system should allow the user to enter 0

or more keywords and search each of the keywords and return each

destination code associated with each keyword by a weighting value

as well as available flights for each destination. Priority = high.

2: Additional destination information query: A user may query the

system for additional information on a list of given destination

codes. The system will search for each destination code and return

full information on each destination. This includes: country,

location name and an image url. Priority = medium.

3: Basic queries: A user may make a query based on a destination,

date or price range. The system will return results that meet at least

one of the entered requirements along with flights. Priority =

medium.

4: Fetch flights: The system should be able to link to the Travelstart

API to request flights for selected destinations. Priority = medium

3.1.2 Additional requirements
1: Initialization of destination information: The system will populate

a pre-made database with destination information including the

country, name and an image url queried from Dbpedia. Priority =

medium.

2: Update keyword relevance: The system should be able to increase

the keyword relevance for any destination when that destination is

selected by the user or searched by the user along with a keyword.

Priority = high.

3: Add new keywords: The system should be able to add new

keywords to the database for a specific destination through user

input. This occurs when a user enters a keyword for a selected

destination. Priority = high.

4: Keyword weighting normalization: The system will normalize

and dampen the growth of keywords when keywords deviate too far

from the mean. Priority = high.

3.2. Design

The entire system is designed with a model view controller

architecture where the view consists of the User interface, the model

includes the formulation, retrieval and ranking functions and the

controller consists of a routing setup for integration. The overall

system design is discussed but the main focus is on the data

management system used for initialization, insertion, retrieval and

maintenance of flight, keyword and destination data.

3.2.1 Overall System Design
Users are able to enter their query in a search bar along with dates, a

price range as well as an origin location.

Once the query has been entered, the system uses a 3 step process to

retrieve relevant results, this is depicted in the system architecture

diagram (see Fig. 3) . The initial step, is the query formulation of

the user entered query. The query is broken down, stop words are

removed and entered keywords are checked against a dictionary of

 4

words as well as their synonyms and alternative forms. The

resulting query consists of a list of keywords and an origin location

as well as an optional list of locations, price range and dates.

The second step involves the retrieval of flight and destination data

from the data management layer. Destinations are matched against

keywords and each destination-keyword pair is given a weighting

indicating the relevance of the keyword to the location. The query

that has now been formulated queries the database for any matching

keywords, price ranges and locations and sends through detailed

destination and flight information through to step 3 where ranking

takes place.

Destinations are ranked based off of keyword relevance, amount of

keywords entered matching a location, flight prices and user entered

destinations. These ordered results are then displayed to the user.

Figure 3: System Architecture Diagram

3.2.2 Data Management System
The system is designed with 4 main features in mind: initialization,

retrieval, insertion and updating of location and flight data. Each

system feature serves as a list of functions that can be utilized to

access and change the stored data. The data management system

aims to automatically learn new keywords from current users that

can later be explored by future users as opposed to ClearMap [8]

which allows each user to define the way in which they search. The

system also aims to follow in the footsteps of query-based faceted

search systems which allow for the expressiveness of queries [9]

with the simple storage of data under categories. The system was

built using Node JavaScript due to it being event driven and

incredibly efficient. Unit tests for the system were done using

Mocha [18] and Chai [19]. Mocha as the test framework and Chai as

an assertion library.

A use case diagram shown in Fig. 4 is used to display the user

interaction with the system. Users are able to enter queries, of which

they can enter a string with keywords, a price range and a location,

only one of which is required to make up a valid query to the

system. Users can view flights as well as select a flight to view

more information. Users can enter a relevant keyword for a

destination they have selected. The system needs to be capable of

handling these different requests from the user.

Figure 4: System Use Case Diagram

3.2.2 Use Case Scenarios
It is important to capture the dynamic behavior of the system and as

such use case scenarios are used to capture system behavior while it

is running. These scenarios attempt to mimic possible system

behavior as if the system were live.

Scenario 1: A user makes a search query with the keyword

<Romantic>. The user receives the results of the romantic locations

with the highest weights which include flights to the locations:

Paris, Athens and Rome.

Scenario 2: The user selects Paris as one of the results returned by

the system when searching with the keyword: „romantic‟,

incrementing the weight value of Romantic-Paris by 1 point.

Scenario 3: The user enters a new keyword: “beautiful” along with

the location Paris in their query. The system adds the new keyword

to the database with a weight of 2.

3.2.2 Long-term Scenarios
While capturing the dynamic behavior of the system for single use

case scenarios is important, it is also important to analyze the

systems expected changes with multiple insertions and retrievals.

These scenarios aim to show how the system changes in the long-

term.

Scenario 1: Multiple users enter keywords for the location: Paris.

Most users choose to enter the keyword <Romantic> while some

users choose to enter the keywords <Fun> and <Exciting>. Even

fewer users choose to enter the keyword <Dull>. The system

updates the weights of each keyword when entered and adds new

keywords to the database. The weightings of the keywords are

 5

normalized and dampened at the end of the day due to the standard

deviation being higher than 50. The common, uncommon and rare

keywords are now pushed closer together.

Scenario 2: Users enter a keyword that finds the location Paris or

Dubai or search either directly by entering the location. Each time

the user enters their own keyword for the location. Paris is more

popular that Dubai. The system adds new keywords to the database

and updates the weights of existing keyword-destination pairs. The

database grows fast at first with the new keywords and slows down

as more and more insertions contain already stored keywords.

3.2.3 Previous Processing
The current system assumes that query formulation has already been

done on the user query and that the request comes in the form of a

Json object with a list of keywords, locations, dates and price range.

Any of the lists may be empty but at least one is expected to contain

information to retrieve relevant results.

Wordnet and a list of common English words was used to define

keywords [21]. Only keywords in the word list could be sent

through to the system and similar words are mapped to a single

word in the wordlist using Wordnet. This creates a limit to the

amount of keywords a location can have as well as prevents the

system from automatically accepting unwanted keywords such as

certain jargon that would bloat the system. It also to a degree

prevents storage of multiple keywords that mean the same thing.

3.2.3 Data Storage
All data is stored in MongoDB collections. These include a

collection for routes, keyword-destination pairs, destinations and

flights. Due to the large amount of repeated destinations in the

destination collection, data has been stored using a referencing

format where destination data is referred to from its own collection

as opposed to embedding the data in the keyword document (Fig. 5).

Figure 5: Data Storage Structure

This is done to prevent the keyword collection from having too

much repeated data that would then have to be individually updated

with every destination update. This helps keep the data consistent

and drastically reduces document size. If embedded data was used,

an extra 3 elements would need to be stored with each new keyword

(image url, country and location name) as opposed to just once for

the destination. We tested the effects on the performance of the two

options and even though retrievals need to make extra calls to the

database to fetch the destination information when using a

referencing format, the results clearly show that query times are not

largely affected (see Table 1) and as such we use a referencing

format to reduce document size and keep data consistent. The query

times were tested by creating a keyword collection with documents

and either referencing destinations or embedding them.

Table 1. Query Times

Number of

Documents

Referencing

(ms)
Embedding data (ms)

10 34 33

100 38 36

1000 50 47

10000 180 152

The structure of stored data can be seen in the Entity Relationship

Diagram (see Fig. 6). All data is stored in separate MongoDB

collections represented by the entities in the entity relationship

diagram. The most used collection being the keyword collection

where keyword-destination pairs are stored with a weighting

indicating the relevance of the keyword to the destination.

Additional destination data is stored in the destination collection

including an image url of the location, the country the location

belongs to as well as the location‟s full name and the code it is

stored under. These codes are unique and are used to link

destinations with keywords as well as flights. Each flight has an

origin and a destination. At the moment only 3 origins are used:

Johannesburg, Cape Town and Durban. This was done for testing

purposes.

Figure 6: Entity Relationship Diagram

 6

3.3. Development

3.3.1 Data Initialization
A large part of the project involved gathering and mapping the data

to Json objects to be stored in the database. When searching for

flights, all destinations are identified by a unique 3 letter code.

Destination codes were scraped from the Travelstart website and

stored with their country and full name. Flight routes were stored in

a separate collection.

The keyword collection was created with a small amount of

manually created data that is used to initialize the system.

Location names are used to query Dbpedia for urls of image

montages of the location through a union of select statements.

Dbpedia only accepts 200 select statements in a single query. To

gather data on all 600 locations, a recursive function is used that

splits the data into sets of 200 select queries and then queries one set

at a time, waiting for the previous set to complete before continuing.

These depiction urls are stored with the relevant destination in the

destination collection. About 70% of destinations queried from

Dbpedia contain a relevant image. This is due to an inconsistency

with the storage of location depictions on Wikipedia. Most locations

have a montage stored as their depiction but some have individual

images placed close together as opposed to a single image montage.

When this occurs, an image from the page, often the location‟s flag

is stored as the depiction instead.

All initialization functions are only run on the first database

population. When an update is needed the relevant databases can be

dropped and will re-initialize automatically.

3.3.2 Difficulties encountered and changes in strategy
The system has included a few limitations to allow for rapid

development and testing as well as limited by the amount of data

available currently from Travelstart.

Difficulties were encountered in the keyword initialization process.

The initial plan was to use keywords from Tripadvisor and

Wikipedia. It was however noted during system design that the

Tripadvisor destinations were too specific (specific locations as

opposed to cities) when compared to the city names given by

Travelstart. Wikipedia keywords were too general to describe the

location and were not well suited to describing holiday destinations.

To solve the keyword seeding, the amount of available destinations

were limited to: Amsterdam, Paris, Dubai, Rome, Athens and

Bangkok. This allowed keywords to be initialized manually for the

locations and seed the database to be later built up by user-input.

Due to Travelstart API issues and multiple Travelstart

representative changes, working API usage and support was never

available, limiting access to real-time flight data. This was solved

through the use of storing fake flight data to fetch and adjusting the

project focus more to destinations and keywords. Stored flight data

is limited to what is required and as such does not store dates as

these are not required for the system to operate.

3.3.3 Keyword Relevance

Keywords needed to be defined in a way that described how

relevant they were with a paired destination. To achieve this, all

keyword-location pairings also include a weight between 0 and 100

that describes how relevant the keyword is to the destination; 100

indicating most relevant. The idea behind the weighting is that

higher ranked keyword-location pairs will be shown to the user

before lower ranked pairs. This in combination with the number of

relevant keywords as well as matching flight dates and prices can be

used to rank resulting flights for the user.

3.3.4 Updating keyword weightings

Keyword weightings need to change when users search and interact

with the results from the system. This is done by increasing

destination-keyword weightings.

There were 4 possible options for changing the weights of

keywords, 3 of which can be seen in the use case diagram: entering

a location as well as a keyword in a query, selecting a flight

destination after entering a keyword and entering a keyword for a

destination (see Fig. 4). Firstly, all manually created keywords are

inserted into the database with a starting weight of 1. The remaining

options are broken up into their methods which can be called

directly.

Update weighting method: This is the first use case path when a

user searches a keyword and then selects a destination. In this case

the weighting of the searched keyword is increased by 1. This is

because by selecting one of the destinations, the user confirms that

this is a result that should tie to the entered keyword.

Retrieval method: This is when a user enters a location and a

keyword in the initial query, we can immediately increase that

keywords weighting by 1 to the entered location. This is done

because by simultaneously entering a keyword and a location, the

user confirms that they believe this keyword and location to be

related.

User update weighting method: This is the only method that

involves users actively entering a new keyword for a location. It

occurs after searching for a destination, a user enters a keyword for

that location through a pop up box asking them to do so. In this case

the weighting for the location-keyword pair is increased by 2 as

opposed to 1 due to the user actively deciding on a keyword that is

related to the destination. This last case encourages the underlying

facets of the system to be user-centric [5].

Leaving weightings to continually grow would cause greater and

greater gaps between the weightings of popular and less popular

keywords as well as cause space requirements of weightings to

grow until they can no longer be stored in integers. Weightings

needed to be dampened and normalized to control the growth of

these keywords as well as lessen the gaps between popular and less

popular keywords.

The normalization and dampening of the weightings is done

automatically and once per day. For each location, the maximum

weight is found and stored as well as the mean weight for each

location. While the data needs to be normalized if weightings are

greater than the maximum weight, data does not always need to be

dampened if keywords are already close enough. The standard

deviation is calculated for the set of locations and if one location

weight deviates by more than 50% of the maximum keyword

weight, the keywords are dampened before normalizing.

 7

Dampening was included in a later iteration when it was noticed that

common keywords would become overly dominating. Dampening is

done with a log function. When dampening, the normalization value

n is calculated by dividing 100 by the log of the location maximum

m. When dampening is not required, just the location maximum is

used in the calculation (as opposed to the log of). The log function

has a larger effect on smaller weights compared to larger weights.

This causes larger weights to be dampened. This can be seen in

Graph 1 where a test was done on a sample of keywords, on day 5,

the data is dampened using the log function and normalized. The

graph shows how the strong keyword “Romantic” is dampened to

be closer to the other keywords.

n

log m
 or n

m

Each weight w for each keyword for the location is multiplied by

this normalization value. Again if dampening is required, the log of

this weight is used when multiplying. The new weight W, replaces

the old weight.

)

After this process, all weights are now between 0 and 100 and the

standard deviation of all keywords is lower, popular keywords are

still retained, but less common keywords are now more visible.

Graph 1: Dampening and normalization of keywords

3.3.1 Database Querying
The system was designed to allow for function calls to perform

various queries and insertions to the underlying Mongo database.

The system offers a retrieval method that accepts a JavaScript object

as a query parameter. This object is expected to contain at least one

of the following: a keywords list, a locations list, a departure date,

an arrival date, a minimum price and a maximum price. A departure

location is needed for every query. The system will query the

keyword collection for keyword-destination pairs matching the

query, the destination-collection for matching destinations and the

flights collection for a matching price range. The system will return

a JavaScript object containing a list of matching keywords-

destination pairs, locations and flights. The example seen in Fig. 7

shows the first resulting flight and destination in an array returned

for the query containing the keyword: “Exciting”.

Figure 7: Keyword Query Result

A method is available to get additional information from keyword-

destination pairs. This is due to this pair not containing any

information on the destination other than the 3 letter location code.

This information is not returned immediately with the pair as it is

not needed for any form of ranking and will only need to be queried

for results that have been chosen to be displayed to the user as

opposed to retrieving this information for each destination that

matches the query only slightly. This method accepts a query in the

form of a list of destination ID‟s and retrieves information from the

destination collection.

The last two methods involve updating the keyword-destination

weightings. Both methods accept a query in the form of a list of

keywords and a location. The location has it‟s corresponding

keyword-destination pair updated/created with each keyword. The

first method being when a user selects a destination after entering a

query, the weighting updates by 1 and the second being when a user

enters a keyword on request for a destination, updating the

weighting by 2.

3.3. Experimental Evaluation and Discussion
The system is evaluated through the mentioned use-cases to show

run-time functionality as well as unit tests to show that functions

work and show database consistency.

3.3.1 Unit Testing
Mocha is used to write unit tests for each function to show

correctness and reliability. Each function is run using a test

database, filled with test data that resembles real-life data but is

altered for the purpose of the test. Functions are generally checked

to behave correctly when given different forms of relevant data as

well as edge cases such as empty queries or incorrect queries.

As an example, one of the unit tests is used to check the method that

is used to extract destination data from a text file and return it in the

form needed to post to the database. The unit test checks that the

method is a function, it returns an array, it can handle empty inputs

it returns a correct result and that it can handle errors.

Unit tests are also used to test database queries as well as database

consistency. Database methods are checked for retrieving correct

results, only adding elements if they do not already exist, not

initializing data that is already available and checking that the live

database does not contain duplicates.

0

50

100

150

200

250

day
1

day
2

day
3

day
4

day
5

day
6

w
e

ig
h

ti
n

g Romantic

Fun

Exciting

Dull

 8

3.3.1 Use Case Scenario Evaluations
The use case scenarios are also tested using unit tests, in this case

the initialized database and queries are very specific to the scenario.

Scenario 1: System retrieve method is called with a query

containing only the keyword: “Romantic”. System correctly calls

the get results method from the retrieval layer and retrieves

keyword-destination pairs from the keyword collection. The system

then retrieves all flights to each location in the keyword-destination

pairs. The flights and pairs are returned to the user.

Scenario 2: The database is initialized with a few keyword-

destination pairs, one of which is “Romantic-Paris” with a weight of

1. The update weighting method is called with the query containing

“Paris” in the location list and the keyword “Romantic” in the

keywords list. The keyword collection update method from the

insertion layer is called. The database is checked to see if the weight

for the pair has increased to 2.

Scenario 3: The database is initialized with a few keyword-

destination pairs, none of which is “Beautiful-Paris”. The user

update weighting method is called with a query containing “Paris”

in the location list and “Beautiful” in the keyword list. The keyword

collection update method from the insertion layer is called. The

database is checked to see if the destination-keyword pair has been

added with a weight of 2.

3.3.1 Long Term Scenario Evaluations
Scenario 1: A database is created with the location Paris in the

destination collection. The keyword collection is empty. The user

update weightings method is called 100 times with the keyword

“Romantic”, 20 times with the keyword “Fun”, 15 times with the

keyword “Exciting” and 3 times with the keyword “Dull”. It is

important to show the change in weighting when the keywords are

normalized to prevent additional growth and to prevent overly

dominating keywords. The keyword weighting before and after

normalization and dampening can be seen in Table 2.

Table 2. Effect of normalization on weighting

Keyword

Weighting

before

normalization

Weighting after

normalization

Romantic 200 100

Fun 40 70

Exciting 30 68

dull 6 34

The standard deviation was calculated for the set of keywords in

Table 2. This shows how much weightings deviate from the mean.

The standard deviation before normalization is 88.50 (which would

normally cause the automatic normalization and dampening

methods to call at the end of the day while live.) After

normalization, the standard deviation is 27 which is acceptable. It

can be seen that the maximum weighting is once again 100.

In a live test this would be a likely occurrence for a more popular

keyword such as “Romantic” to be entered for a location than

keyword such as “Dull”. It can be seen that the keywords are

significantly closer after normalization and that the keywords “Fun”

and “Exciting” could compete with “Romantic” more in a form of

ranking. This prevents 1 or 2 popular keywords from dominating

and preventing diversity. The database could be diluted down to a

top percentage of keywords each day to prevent bad keyword

choices from polluting the database.

Scenario 2: A limited database is initialized with the destinations

Paris and Dubai in the destination collection and no keyword-

destination pairs in the keyword collection. The user update

weighting method is called 10, 100, 1000 and 10,000 times with a

60% probability of the location being Paris and a random keyword

from the dictionary that is used in the query formulation containing

2727 common English words. This long-term scenario models a

possible real world scenario where more users search for one

location than another and shows the growth of the keywords for

these locations, eventually reaching the maximum number of

keywords as the dictionary has been exhausted. The growth of the

keywords can be seen in Graph 2.

Graph 2: Number of stored keywords with increasing queries

The growth seen can be expected to occur when the system is live.

A typical location will grow largely initially and then begin to

stabilize as fewer new keywords are inserted. This is seen by

running the slightly bias random function with the list of keywords

for the two locations. In a real environment, it might take a lot

longer for the entire list of available keywords to be exhausted as

some of the less common keywords may take a while or never be

entered.

3.3.1 Insertion/Retrieval Time Growth
The growth of the insert and retrieval times of a document are

checked to test scalability. The original destination collection is

used with approximately 600 destinations. The keyword collection

is tested for increasing amounts of keyword-destination pairs (see

Table 3) created randomly from a word list and available

destinations. Both insertion and retrieval times are similar in

comparable literature [12]. Retrieval times are manageable up to

100,000 documents where it starts taking around a second to

retrieve a document. Insertion times are largely similar to retrieval

times. With the limited amount of locations, this growth in number

of documents is capped.

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

ke
yw

o
rd

s

Number of Queries

Paris

Dubai

 9

Table 3. Insertion/Retrieval times

Number of

documents
Retrieval (ms) Insertion (ms)

10 34 32

100 38 35

1000 50 51

10000 180 168

100000 1293 1363

3.3. Integration

The data management component needed to be integrated each

iteration with the other components of the project. These include the

user interface, the query formulation and the result ranking. This

integration was done through a controller which called the correct

methods based on post requests from the front-end. For retrieval,

query formulation is called with the initial query data, the keywords

are extracted and sent through to database retrieval where flights,

destinations and keywords are fetched and sent through to ranking

where results are ordered and flight data and destination data are

combined. Two additional post requests are included to update

keyword weightings when a user enters a keyword for a destination

via the UI popup box [22] and when a user selects a destination after

previously searching a keyword.

4. DISCUSSION

The experimental evaluation shows that the system is able to

support keyword-based queries made by users. This can be seen

through the first scenario evaluated as well as the unit tests done on

the methods required to make such queries. This solves the problem

of exploratory search but is limited in this solution due to the

limited amount of initialized keywords as well as the way in which

keywords are defined. Only 5 destinations have been initialized

manually with a few keywords to seed the growth process. All

destinations would need to be initialized with a few set keywords

which would require a significant amount of manual research and

time or an already set keywords-destinations structure which could

be linked with Travelstart‟s destinations, neither of which were

available. Keywords are defined as destination-keyword pairs along

with a weighting indicating relevance, this definition does not yet

allow for multi-word keywords which limits the user in their

exploratory nature to single word keywords. Additional information

on retrieved destinations can be successfully queried from the

database, meeting the second requirement set out by Travelstart.

All the additional requirements work mostly as expected, these

include initialization of destination information, keyword relevance

updating, keyword normalization and the addition of new keywords.

All are tested through use case scenarios for functionality and

through experimental scenario evaluations, both short and long-

term. Keywords grow as expected and normalization of keywords

successfully eliminates the focus on single strong keywords. The

initialization of destination data was unable to gather images for all

destinations due to inconsistencies with Dbpedia storage where

images were often not stored as a montage but rather as separate

images as well as destination names being different on Dbpedia and

Travelstart. This lead to approximately 70% of images retrieved

being correct, this is an acceptable amount for the project scope.

The system is usable and can be connected to a front-end with query

formulation and ranking through routing to allow for a fully

working system. The system does not use live flight data due to API

issues on Travelstart‟s side and multiple communication issues. The

system would need access to live flight data to provide usable

results.

5. CONCLUSIONS

A system was developed that is able to match and update keyword-

destination pairs based on user queries and input when searching for

flights through an exploratory search system. The system uses only

enough destinations, flights and manually created keywords for

testing purposes. Unit testing done with Mocha showed that the

system functions as expected with both valid and invalid input data.

The system meets all but one of the requirements set out by

Travelstart including keyword based queries, additional destination

information queries and basic queries. The requirement to present

users with real-time flight data was not met due to issues with the

available API. All additional requirements were met, the system is

able to add and update keyword relevance, as well as normalize

stored keyword weightings. It allows for growth of keyword-

destination pairs through user input on destinations and is able to

control the weightings of these pairs automatically. This shows that

there is a plausible exploratory alternative to the way that flights are

currently searched for (requiring specific information on flight dates

and destinations). The additional destination information

requirement was met but with only 70% of locations containing a

valid image due to inconsistencies with Dbpedia storage and

differences in name conventions between Dbpedia and Travelstart.

The retrieval and insertion times for the keyword based queries

requirement was tested and are low (less than 1 second when the

keyword collection contains 100,000 documents or less).

Use case scenarios were used to test and experimentally evaluate the

run-time functionality of the system. Scenarios were also used to

observe the change in keyword weightings when undergoing the

logarithmic normalization function. This showed that the function

was able to bring the standard deviation between weightings down

considerably when needed as well as to bring keywords closer

together for diversity. Another scenario showed the growth of

number of keywords for a destination, showing that more popular

destinations would grow faster but both popular and less popular

destinations would see their growth in keywords stagnate due to the

limited number of keywords in the common English words

dictionary.

There are a few areas where this system could grow with future

work. When querying Dbpedia for images, one could choose other

images if a montage is not available, with possible checks to make

sure it is not getting a flag or coat of arms. Additional data from

Dbpedia could also be stored, currently only the image url is used

but other information such as population, history and description

could also be stored. In terms of keywords, currently only single

word keywords are supported, but multi-word keywords would be

incredibly useful. As an example Paris could be associated with the

keyword “Eiffel Tower” or London with “Big Ben”. These

multiword keywords offer more complex descriptors. A great deal

 10

of extra data could also be gathered if the system went live, data on

popular keywords and actual growth as opposed to the growth

observed by use case scenarios could also be reported and analyzed.

5. REFERENCES

[1] Kules, B. Capra, R. , Banta M. and Sierra T. What do

exploratory searchers look at in a faceted search interface? 9th

ACM/IEEE-CS joint conference on Digital libraries, (Austin,

USA, 2009), ACM New York, 313-322.

[2] Cheap Flights & Air Tickets from Travelstart South Africa:

2015. https://www.travelstart.co.za/. Accessed: 2015- 10- 19.

[3] Marchionini G. Exploratory search: from finding to

understanding. Communications of the ACM, Vol.49 (4),

2006. 41-46.

[4] Gordon Rugg and Peter McGeorge. "The sorting techniques:

A tutorial paper on card sorts, picture sorts and item

sorts", Expert Systems. Vol. 14 (2), 1997, 80 -93.

[5] Suominen, O., Viljanen, K. and Hyvänen, E. Franconi, E.

User-Centric Faceted Search for Semantic Portals. Kifer, M.,

May, W. (Eds.) 4th European Semantic Web Conference,

ESWC, (Innsbruck, Austria, 2007), Springer Berlin

Heidelberg, 356-370.

[6] Tunkelang, D. Dynamic category sets: An approach for

faceted search. ACM SIGIR Workshop on Faceted Search,

Vol. 6, 2006, 1-5.

[7] White R., Kules, B. and Bederson, B. Exploratory search

interfaces: Categorization, clustering and beyond. ACM

SIGIR, Vol. 39 (2), 2005, 52-56.

[8] Bao, Z. Zeng, W. and Ling T. Exploratory Keyword Search

with Interactive Input. The 2015 ACM SIGMOD International

Conference on Management of Data, (New York, USA,

2015), 871-876

[9] Ferré, S. and Hermann, A. Semantic Search: Reconciling

Expressive Querying and Exploratory Search. Aroyo, L.,

Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,

N., Blomqvist, E. (Eds.) 10th International Semantic Web

Conference Part 1, (Bonn, Germany, 2011), Springer Berlin

Heidelberg, 177–192

[10] MongoDB for Giant Ideas. MongoDB: 2015.

https://www.mongodb.org/. Accessed: 2015- 10- 18.

[11] Punia, Y. and Aggarwal, R. Implementing Information

System Using MongoDB and Redis. International Journal of

Advanced Trends in Computer Science and Engineering, Vol.

3 (2), 2014, 16 – 20.

[12] Stonebraker, M., SQL databases v. NoSQL databases,

Communications of the ACM, Vol.53 (4), 2010, 10-11.

[13] Leavitt, N. Will NoSQL Databases Live Up to Their

Promise?, Computer, Vol.43 (2), 2010, 12-14.

[14] Node.js: 2015. https://nodejs.org/en/. Accessed: 2015- 10- 18.

[15] Node-mongoskin: 2015. https://github.com/kissjs/node-

mongoskin. Accessed: 2015- 10- 18.

[16] Koren, J. Yi, Z. and Xue, L. Personalized interactive faceted

search. the 17th international conference on World Wide

Web, (2008), ACM, 477-486.

[17] Sparql-client: 2015. https://github.com/ruby-rdf/sparql-client.

Accessed: 2015- 10- 18.

[18] Mocha - the fun, simple, flexible JavaScript test framework:

2015. https://mochajs.org/. Accessed: 2015- 10- 18.

[19] Home - Chai: 2015. http://chaijs.com/. Accessed: 2015- 10-

18.

[20] Anuradha, K. Arpita, G. and Shantanu, K. A study of

normalization and embedding in MongoDB, Advance

Computing Conference (IACC), IEEE International, (2014),

416-421.

[21] Salie, L. Travel search: query formulation and expansion,

2015

[22] Choga, N. Travel search: user interface design and evaluation,

2015

