
Literature Synthesis on Dynamic Viewing of Large 3D
Models

Timothy Trewartha
Supervisor: Hussein Suleman

May 14, 2012

Abstract

This literature synthesis examines existing solutions for real-time viewing of large
3D models using multiresolution data-structures. Various hierarchical structures such
as octrees, bounding sphere hierarchies and hierarchies of tetrahedra are discussed and
examined. Experimental results indicate that using these techniques results in a significant
speedup and enables us to view large models at interactive frame rates. The R-tree is also
presented as an efficient way to index 3D data. Additional techniques such as visibility
culling and out-of-core storage are also discussed.

1



Introduction

The Zamani project, started by the UCT Department of Geomatics, aims to preserve
African cultural heritage by documenting heritage sites and producing laser scanned mod-
els. Some of the models are very detailed, containing over 8-billion points. Given this
vast scale of data, traditional viewing methods and the current hardware and software
systems are not able to cope. In particular, commonly used GIS systems such as ArcGIS
cannot handle the volume of data. As a result, before viewing or manipulating the data,
one must go through a process of decimating the original data by a factor of 10, 100
or more. This can be achieved with 3D point cloud processing software such as Leica
Cyclone. However, this solution is inadequate in many cases as one may lose too much
detail. Ideally, one would like to be able to view the model at a low-resolution initially,
and have the software dynamically increase the resolution as one zooms in, up to the point
where the full original detail is available. This level of detail is often necessary for cultural
heritage sites in order to view details such as cracks and flaws, with a view to preserving
the site and preventing damage.

This literature review examines existing solutions for dynamic viewing of 3D data.
Common methods for structuring 3D data include octrees [Wand et al., 2007], R-trees
[Zhu et al., 2007], bounding sphere hierarchies [Rusinkiewicz and Levoy, 2000], and Hilbert
Space Filling Curves [Wang and Shan, 2005], each with their own advantages and disad-
vantages. For this project it will be important to review the literature on these methods
and consider their implications for developing a more efficient real-time rendering system
for the Zamani models.

Hierarchical Datastructures

As early as 2000, systems were being developed for handling models with hundreds of mil-
lions of polygons, perhaps the most notable of which is QSplat [Rusinkiewicz and Levoy, 2000].
This system made use of a bounding sphere hierarchy to achieve a significant speedup. For
example, they were able to render models containing over 8 million points interactively
using a multiresolution scheme. In order to gain an additional speedup they also imple-
mented visibility culling (that is, discarding of primitives that are not visible from the
current view point). Although the QSplat system met with a significant degree of success,
the models considered are not as large as those scanned by the Zamani project. Most of
their models were sourced from The Digital Michelangelo Project [Levoy et al., 2000] and
contained only millions of points, not billions.

Around the same time, an alternative approach was suggested for rendering complex
geometric objects. This is described in the paper ‘Surfels: Surface Elements as Render-
ing Primitives’ [Pfister et al., 2000]. Surfel is short for surface element; surfels are point
primitives but without any explicit connectivity as is common in mesh based schemes.
To enable interactive rendering the authors chose to use an octree as a multiresolution
hierarchical structure. Although the results they achieve allow for interactive frame-rates,
the sizes of the models are still small compared with some of the sites documented by the
Zamani project. However, these approaches laid the basis for the work to follow.

Cigoni et al. present yet another spatial partitioning multiresolution data structure in
their paper [Cignoni et al., 2008]. The authors use a regular conformal hierarchy of tetra-
hedra to spatially partition the model. The resulting technique is fully adaptive and is
able to retain all the original topological and geometrical detail, even for massive datasets.
Additionally, it is not limited to meshes with a particular subdivision connectivity and
is strongly GPU bound. This means that it is over one order of magnitude faster than

2



previously existing adaptive tessellation solutions since the data structure is able to ex-
ploit on-board caching, out-of-core representation and prefetching for efficient, real-time
rendering.

In addition to viewing models, more recent research in the area of handling massive
point clouds has also included the ability to edit and manipulate the data. There have
been a number of papers on this topic, and while editing of the Zamani models is not ex-
plicitly required, the data structures presented are still important. Wand et. al. describe
a new out-of-core multiresolution data structure for real-time visualization and interactive
editing of large point clouds [Wand et al., 2007]. Their chosen data structure consists of
a dynamic octree with a grid-quantization-based dynamic multiresolution representation
in each inner node. The octree is able to easily handle dynamic operations due to its
regular structure. Using this data structure the authors were able to achieve real-time
walkthroughs and interactive modifications of a data set containing 2.2 billion points and
totaling 63.5GB, although it took over 14 hours to build the data structure.

Gobetti and Marton also present a simple and efficient data structure for rendering of
large point sampled models such as those that are common in GIS [Gobbetti and Marton, 2004].
The resulting system is capable of rendering over 60 million points/second. The multireso-
lution approach creates a hierarchy over the samples of the datasets, simply by reordering
and clustering them into point clouds of approximately constant size arranged in a bi-
nary tree. It is thus possible to obtain the required density by accumulating point clouds
as the hierarchy is traversed top-down. The root node is thus the coarsest available model.

A more mathematical approach to partitioning the 3D data is based on Hilbert Space
Filling Curves. These can be used to partition the dataset, which can then be stored in
a spatially indexed relational database [Wang and Shan, 2005]. In 3-Dimensions one can
think of a Hilbert Curve as being a curve that passes through every point in the specified
3-Dimensional space. Although this seems counterintuitive, it is possible since the two
spaces have the same cardinality. This provides a way to partition the space, as well as
a mapping between a 1D space (for example the hard disk) and the 3D space in which
the points are located. Additionally, Hilbert Curves have the advantage that points that
are close together on the curve, are also close together in the 3D space. It is possible to
consider other Space Filling Curves (there are many) but both mathematical analysis and
practical applications suggest that the Hilbert curve has the best clustering ability and
performance in data retrieval and response time [Faloutsos and Roseman, 1989]. In the
paper by Wang J. and Shan J, this technique is described and used to gain better query
performance on large 3D data consisting of millions of points [Wang and Shan, 2005]. It
is not certain if this method will, however, scale to billions of points, as is required by the
Zamani models.

Indexing 3D Data

As well as developing efficient level-of-detail hierarchies to allow for real-time render-
ing of large models, it is also important to consider the indexing of the 3D data. Al-
though there are many different spatial indices such as kd-trees and cell-trees, they are
not however well suited to 3D applications [Zhu et al., 2007]. Based on the idea of B-trees,
Guttman presented the R-tree as a new way of indexing multi-dimensional information
[Guttman, 1984]. Subsequent modifications to the R-tree include the R+-tree, which al-
lows one object to exist in multiple nodes [Sellis et al., 1987] and the R∗-tree, which has
better clustering [Beckmann et al., 1990]. More recently, Zhu et al. have introduced a new
spatial cluster grouping algorithm (k-means clustering) that uses 3D overlap and coverage
volume as well as the minimum bounding box shape as the integrative grouping criteria

3



[Zhu et al., 2007]. Using these methods, the authors were able to gain significantly better
performance when querying the spatial data.

There has also been some effort to find a way of integrating the level-of-detail hier-
archies discussed in the previous section with different indexing methods. Of particular
interest is the paper by Kofler that attempted to combine the R-tree with LOD (level-of-
detail), and presented the LOD-R-tree method in which the level of the R-tree represents
the required level-of-detail representation [Kofler et al., 2000]. Zlatnova also tried to find
a similar way of uniting R-trees with LOD and put forward various grouping methods
that take into account location, shape and altitude [Zlatanova, 2000]. It seems, however,
that this area has not been investigated thoroughly and there is still more work to be
done as noted by Zhu et al. [Zhu et al., 2007].

Out-of-core Storage

A common problem encountered when dealing with large amounts of data such as with
these vast point clouds is the inability to store all the data locally in random access memory
[Cignoni et al., 2008]. Consequently, all algorithms dealing with interactive rendering
must take into account the location of the data that they are accessing, as access to data
on hard-disk presents a significant bottleneck. Such algorithms are termed out-of-core
algorithms, meaning that a portion of the working dataset must be stored on the hard-
disk. The octree data structure previously discussed is fairly efficient even when some
data is out-of-core [Wand et al., 2007]. Standard virtualisation techniques are applied to
the given data structure. This works and is efficient because only those nodes that are
needed for rendering must be loaded into main memory. Given a certain required level-
of-detail, only a small number of the nodes needs to be accessed while a large fraction
of the data structure remains unused. The authors also built in two methods to support
specific out-of-core operations: fetch and access. Fetch indicates that a node is to be
used in the near future and should hence be moved to main memory (this is handled by
a separate thread to hide disk-access latencies). Access asserts that the data is already in
main memory and hence readily accessible. The authors opted for a Least-Recently-Used
policy to swap out unused nodes to disk when the memory cache is full. Determining the
correct block size is also an important parameter for gaining optimal efficiency.

Visibility Culling

Visibility culling is another important technique for achieving real-time rendering of large
data sets. Visibility culling refers to the fast exclusion of portions of the data that are
not visible from the current point of view. Greene et. al. describe a general algorithm
to discard primitives that are blocked by closer geometry using a hierarchical Z-buffer
[Greene et al., 1993]. This is a type of visibility culling known as occlusion culling. The
methods presented in this paper performed well regarding the two key criteria for an ideal
visibility algorithm, namely that it should quickly reject most of the hidden geometry in
the model and, secondly, it should exploit the spatial and temporal coherence of the im-
ages being generated. This was a considerable step forward given that previous methods
had only been able to satisfy either one or other of these criteria but not both. The key in-
sight on their part was to use two hierarchical data structures: an object-space octree and
an image-space Z-pyramid, thus making it possible to reject hidden geometry very rapidly.

In addition to occlusion culling, two other important types of visibility culling are frus-
trum and backface culling. Frustrum culling is the removal of objects that lie outside the
view frustrum. As previously mentioned, the QSplat system implements both these tech-

4



niques [Rusinkiewicz and Levoy, 2000]. The authors note that backface culling of primi-
tives is commonly implemented in hardware, and Kumar and Manocha have presented an
algorithm for hierarchical backface culling based on cones of normals [Kumar et al., 1996].
Finally, most of the speed benefit from frustrum culling come as a natural consequence of
implementing the data structure correctly.

Conclusion

In conclusion, there has been a substantial amount of work towards efficient real-time
rendering of large models. This is important as the amount of data generated by 3D laser
scanners is indeed enormous and is likely to increase as one seeks to examine larger models
in greater detail. Having examined the literature and current solutions, it will be necessary
to consider future directions and the necessary steps to implement an efficient rendering
system for the Department of Geomatics, which can handle data models containing billions
of points without extensive decimation of the original data.

References

[Beckmann et al., 1990] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B.
(1990). The r*-tree: an efficient and robust access method for points and rectangles.
SIGMOD Rec., 19(2):322–331.

[Cignoni et al., 2008] Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F.,
and Scopigno, R. (2008). Adaptive tetrapuzzles: efficient out-of-core construction and
visualization of gigantic multiresolution polygonal models. In ACM SIGGRAPH ASIA
2008 courses, SIGGRAPH Asia ’08, pages 33:1–33:8, New York, NY, USA. ACM.

[Faloutsos and Roseman, 1989] Faloutsos, C. and Roseman, S. (1989). Fractals for sec-
ondary key retrieval. In Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, PODS ’89, pages 247–252, New York,
NY, USA. ACM.

[Gobbetti and Marton, 2004] Gobbetti, E. and Marton, F. (2004). Layered point clouds:
a simple and efficient multiresolution structure for distributing and rendering gigantic
point-sampled models. Computers & Graphics, 28(6):815 – 826.

[Greene et al., 1993] Greene, N., Kass, M., and Miller, G. (1993). Hierarchical z-buffer
visibility. In In Computer Graphics (SIGGRAPH ’93 Proceedings, pages 231–240.

[Guttman, 1984] Guttman, A. (1984). R-trees: A dynamic index structure for spatial
searching. In INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA,
pages 47–57. ACM.

[Kofler et al., 2000] Kofler, M., Gervautz, M., and Gruber, M. (2000). R-trees for organiz-
ing and visualizing 3d gis databases. Journal of Visualization and Computer Animation,
11(3):129–143.

[Kumar et al., 1996] Kumar, S., Manocha, D., Garrett, W., and Lin, M. (1996). Hierar-
chical back-face computation. In Proceedings of the eurographics workshop on Rendering
techniques ’96, pages 235–253., London, UK, UK. Springer-Verlag.

[Levoy et al., 2000] Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira,
L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. (2000).
The digital michelangelo project: 3d scanning of large statues. In Proceedings of the
27th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’00, pages 131–144, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

5



[Pfister et al., 2000] Pfister, H., Zwicker, M., van Baar, J., and Gross, M. (2000). Surfels:
surface elements as rendering primitives. In Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’00, pages 335–342, New
York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Rusinkiewicz and Levoy, 2000] Rusinkiewicz, S. and Levoy, M. (2000). QSplat: A mul-
tiresolution point rendering system for large meshes. In Proceedings of ACM SIG-
GRAPH 2000, pages 343–352.

[Sellis et al., 1987] Sellis, T. K., Roussopoulos, N., and Faloutsos, C. (1987). The r+-tree:
A dynamic index for multi-dimensional objects. In Proceedings of the 13th International
Conference on Very Large Data Bases, VLDB ’87, pages 507–518, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

[Wand et al., 2007] Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke,
P., Maier, B., Staneker, D., and Schilling, A. (2007). Interactive editing of large point
clouds. In Chen, B., Zwicker, M., Botsch, M., and Pajarola, R., editors, Symposium
on Point-Based Graphics 2007 : Eurographics / IEEE VGTC Symposium Proceedings,
pages 37–46, Prague, Czech Republik. Eurographics Association.

[Wang and Shan, 2005] Wang, J. and Shan, J. (2005). Space-filling curve based point
clouds index. Geocomputation.

[Zhu et al., 2007] Zhu, Q., Gong, J., and Zhang, Y. (2007). An efficient 3d r-tree spatial
index method for virtual geographic environments. ISPRS Journal of Photogrammetry
and Remote Sensing, 62(3):217 – 224.

[Zlatanova, 2000] Zlatanova, S. (2000). 3D GIS for Urban Development. PhD thesis, In-
ternational Institute for Geo-Information Science and Earth Observation, Netherlands.

6


