
Constructing Statistical Data-driven Natural Language
Generation Systems for Comparison Against Template-based

Systems
Jarryd Dunn

University of Cape Town
dnnjar001@myuct.ac.za

ABSTRACT
Natural Language Generation is the process of generating natu-
ral language text from some set of information. The process may
broadly be split into two parts text planning (what to say) and
linguistic realisation (how to say it). Templates and data-driven sys-
tems are two common approaches to the problem. Using templates
it is easier to produce grammatically correct utterances though the
utterances often lack fluency and variation. Templates also do not
generalise well to other domains. On the other hand data-driven
approaches have the capacity to generate more natural and varied
texts but with more errors and higher training costs. This raises
the question, are data-driven approaches worth the extra cost or is
it better to use a template-based approach.
Data-driven systems can be designed in many ways though most
are based on neural networks. These systems may either employ
an end-to-end approach or may be split into several distinct sub-
systems. The end-to-end approach tends to be costly and often
requires multiple neural networks to be trained. Rather than us-
ing neural network another approach is to use is reinforcement
learning, where policies are devices to generate the natural lan-
guage utterances. These systems tend to be simpler to implement
and produce less errors, though their outputs are often less varied.
This implies that a successful system could be built using different
approaches for different phases, for example using reinforcement
learning to generate the text plan then a neural approach to realise
the text plan. This provides a system that promises varied utter-
ances, with fewer errors and lower training cost than some of the
more complex data-driven approaches. Though it may not be able
to generate the same variance or exhibit the same ability to reflect
the style of the training data.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; Natural language generation.

KEYWORDS
NLG, Datasets, Neural Networks, Data-driven, Template-based

1 INTRODUCTION
Natural Language Generation (NLG) is the process of converting
information into Natural Language utterances. This review focuses
more specifically on data-to-text NLG systems, thus the meaning
representations used will typically take the form of non-natural
language strings. There are three main approaches to building
an NLG system: modular approach, a template-based approach
and a data(corpus)-driven approach[4], this review focuses on the

template-based and data-driven approaches. A template-based ap-
proach makes use of one or more templates, these are either hand
crafted or learnt from training data[11], data from the meaning
representations is inserted into the relevant positions of the tem-
plate to produce an utterance. Since there are usually only a few
templates it may be possible to manually remove any errors in
generated templates. This means that the utterances produced tend
to have few if any semantic errors. On the other hand data-driven
techniques learn from the data in order to produce natural language
utterances. Thus data-driven techniques should produce more nat-
ural and varied utterances[10, 18] as they will tend to mimic the
style of the data they were trained on. Though this does mean that
data-driven systems will be more prone to semantic and syntac-
tic errors since they are not explicitly trying to learn these rules
but rather picking up statistical patters in the data. It is infeasible
for the data-driven systems to be manually corrected once trained
without adding additional algorithms to alter the utterances af-
ter the utterance has been generated. Besides not generating as
varied utterances there are a few other reasons to consider data-
driven systems over template-based. Template-based systems do
not tend to scale as well as data-driven approaches on large open
domain systems[17] where it is difficult to learn a widely applicable
structure for the templates. Template models will also generally
require redundant information in text in order to construct useful
templates[16]. Notwithstanding, based on the systems written for
the E2E NLG Challenge Puzikov et al[11] concluded that the cost of
developing a complex data driven system are not worth the results
and it is better to use simpler approaches.[10]
The remainder of this review seeks to preview a few data-driven
systems, which use different techniques, in order to ascertain if data-
driven systems may be worth the extra cost. Section 2 gives a brief
outline of the basic architectures of common NLG systems. Section
3 then examines four examples of relatively successful data-to-text
data-driven NLG systems. Section 4 gives an overview of some
of the methods that may be used to evaluate NLG utterances and
looks at the performance of the architectures analysed in section 3.
Finally section 5 outlines a way forward.

2 ARCHITECTURES
The task of natural language generationmay be decomposed into six
subtasks[4, 13]. The organisation of these six tasks varies greatly be-
tween different architectures ranging from all six being performed
by by a single module to a separate module for each task. The most
common configuration makes use of two[14] or three modules[13].
The tasks are typically split among three modules (text planning,
context planning and linguistic realisation) as follows:



(1) Text Planning takes the input for the system and produces a
text plan. The text plan is an abstract structure that describes
the structure and information for the output utterance. This
module encapsulates the tasks of content determination and
discourse planning.
Content determination involves deciding what information
should included in the output text. It involves creating mes-
sages expressed in some formal structure that allows entities,
concepts and the relationships between them to be distin-
guished.
Discourse planning involves the creation of a text plan. The
text plan usually takes the shape of a tree where the leaves
are messages and the internal nodes are used to determine
how the leaves/messages are grouped. The text plan may
also specify information about the relationship between the
leaves and groups for example if one group may describe
an example or elaboration of the contents of a neighbour-
ing message. Some systems will include the direction of the
relationship as an additional attribute of the relationship[6]

(2) Context Planning can be split into the following sub-tasks:
sentence aggregation, lexicalisation and referring expression
generation (REG).
Sentence Aggregation involves placing the messages from
the previous stages into sentences. These sentences may be
combined in order to increase the readability and natural-
ness of the output text. Sentence aggregation may be done
based on rules, however, it can also be done by learning from
the training data. By learning from the data sentences may
better reflect the context of the utterances.
Lexicalisation is performed once the sentence structure has
been decided in order to determine the phrases that are used
to convey the concepts and relationships described by the
messages. This may be done by hard coding a specific phase
for each concept or relation or the phrases could be learnt
from the training data.
Referring Expression Generation occurs after the phrases have
been determined for the concepts and relations the words
or phrases. REG involves identifying the entities involved in
the text. The goal of REG is to allow the reader to distinguish
each entity without providing too much redundant infor-
mation, this can be achieved by using referring expressions.
This task makes helps make the text appear more natural.

(3) Linguistic Realisation: Finally the grammar rules of the
language are applied to generate a text output that conforms
to the rules of the language and is syntactically (correct syn-
tax), orthographically(conforms to the rules of the language
such as capitalisation) and morphologically(correct form of
the words) correct.

In a two model architecture the context planning and linguistic
realisation modules are combined. The two module architecture
splits up the tasks quite naturally where the first module describes
what information the text should communicate while the second
determines how best to convey the information. Using a two stage
approach simplifies the process of generating text since it allows the
first module to ignore the complexities of syntax and morphology
which can be explicitly handled in the secondmodule, however with

the inclusion or a reranker to try ensure the outputs are syntacti-
cally correct a single module approach can outperform a two-stage
approach [3]. The modules can be arranged such that a later model
feeds into an earlier module to provide feedback and help deal with
long term dependencies[13], however this architecture doesn’t ap-
pear to be popular with data-driven systems.

3 DATA-DRIVEN DESIGN
In recent years there have been several different approaches to
the problem of natural language generation from data using data-
driven methods mostly utilising neural networks. The difference
designs give rise to various strengths and weaknesses in generating
natural language utterances.

3.1 TGEN
Developed by Dušek and Jurčíček (2016)[3]; TGEN v2 is a sequence-
to-sequence generation approach to generate deep syntax trees
or strings. A rule-based external surface realiser is then used to
produce the text utterances. This does mean the the system may
not generalise well to other datasets[7]. The output of the gener-
ator is then filtered using beam search and a reranker to reduce
the amount of irrelevant information and linguistic errors in the
utterances produced.
The inputs to the system are Dialogue Acts (DA). In the BAGEL
restaurant dataset DAs consist of a predicate (which defines the
purpose of the DA for example to inform or request) as well as one
or more attributes and their values for example area=citycentre.
Each DA is converted into a sequence of triples containing the pred-
icate, an attribute and the value associated with the attribute. These
sequences are the input the sequence-to-sequence generator. The
sequence-to-sequence generator consists of two stages an encoder
and a decoder. The encoder takes the input sequence and using a
Long Short-Term Memory (LSTM) based recurrent neural network
(RNN) produces a sequence of hidden states. The decoder, using a
second LSTM-based RNN, is then initialised using the last hidden
state and uses the output from the previous token at each step
to produce a sequence of tokens. To increase the accuracy of the
system an attention-mechanism is introduced to the decoder RNN.
This consists of a feed-forward neural network which is effectively
used to create an alignment model. The probability of each token
is then calculated using Softmax (Softmax gives the probability for
each possible outcome occurring given a finite number of possible
outcomes[1]). A beam search algorithm is used to keep track of
the probabilities of the n-best outputs. A reranker is then run over
the n-best outputs to penalize any that are missing information
or have additional information not included in the original DA. A
weighted penalty, calculated based on the number of ommited or
additional facts included in the utterance, is subtracted from the
log-probability of the utterance. The classifier used for reranking
has an architecture similar to the generator using a RNN as an
encoder but only a single logistic layer as a decoder.
This system improves on the original TGEN system, TGEN v1, cre-
ated by Dušek and Jurčíček (2015)[2] by making use of the LSTM-
based RNNs and beam search rather than perception scorer and A*

2



searching. A perception scorer is in less powerful than an LSTM-
based RNN since it essential consists of a single weighted edge
while an RNN has multiple nodes where the output from a node
may be fed back to previous nodes essentially giving the network
memory.
The encoder-decoder paradigm is widely used since it enables a
variable-length sequence of input tokens to be mapped to a variable-
length sequence of output tokens[4]. LSTM-based RNNs are used
for the encoder and decoder in TGEN v2 since they are supposed
to better capture long distance dependences between tokens com-
pared to a normal RNN[5]. A disadvantage of the is approach is the
computational cost of training three separate RNNs.

3.2 Joint RNN and CNN System (RNNLG)[18]
RNNLG is an end-to-end system meaning that the modules of text
planning and linguistic realisation(the process of forming natu-
ral language utterances from the text plan) are not separated. As
in TGEN this system uses an over-generate and rerank approach,
however, unlike TGEN it generates natural language utterances
without the need of an external surface realiser. A generator is used
to create multiple possible options before using a reranker to select
the most coherent utterances.
The RNNML used for the generator is trained over a delexicalised
corpus. In a delexicalised corpus the values for a dialogue act at-
tribute are replaced with a token type. Thus the machine learning
algorithm can learn how to deal with a entity in general (e.g restau-
rant names) rather than a specific instance of a entity. This approach
does run into difficulties where there is no single values to tokenise
for example the attribute dogs_allowed can be represented in may
different ways such as "pet friendly" or "dogs allowed". It is far more
complex for the system to recognise that the phrase "pet friendly"
means that dogs_allowed=true then to swap a single word or phrase
with a token. This tends to lead to mistakes in the output utter-
ances. It is also not always desirable to delexicalise an attribute, for
instance if it appears several times in the corpus (the same area
may be mentioned several times) then by delexicising the attribute
some of the more context specific language relating to the attribute
will not be learnt.
A recurrent neural net language model (RNNML) is used for the
generator. The generator operates on a 1-hot vector encoding of a
DA, representing which attributes are included, and a delexicalised
utterance. A 1-hot vector representing a token forms the input at
each time step. The vector is used as a gate to try and reduce the
probability of the same slot featuring multiple times in an utter-
ance. The output from the RNNML is a probability distribution,
calculated using Softmax, for the next token based on the hidden
states. A delexicalised output text is found by choosing the most
likely output tokens until some criteria is fulfilled such as an end
of sentence token being reached. By replacing the delexicalised
tokens in the sequence with the corresponding values from the DA
an output utterance can be produced; however before the token
sequences can be lexicalised they are reranked to try improve the
quality of the utterance.
The reranker consists of two modules; a convoluted neural network
(CNN) sentence model and a backward RNNML which is used to
rerank the outputs.

The sentence model produces a matrix based on the token con-
tained in a given candidate utterance. This matrix is then passed
to a feed-forward neural network which classifies the utterance
type as well as if it contains values for the required attributes, to
try ensure all the facts from the input are represented. The output
of the sentence model is a feature map for the candidate utterance.
Including the CNN should decrease the number of missed and ad-
ditional facts compared to the input DA.
The feature map is given as input to the backward reranker. The
backward reranker is a second RNNML. The backward reranker
computes the log-probabilities for each of the candidate utterances
produced by the forward reranker. The quality of the outputs was
further increased by adding an error term to penalise any slots from
the input DA that were not included in the output or the inclusion
of additional attributes that were not in the input DA.
The two RNNMLs are separated by the sentence model CNN to try
and replicate the behaviour of an bidirectional RNN, since bidirec-
tional RNNs have been shown to outperform RNNs at tasks such
as handwriting analysis[18]. The authors found it was not possible
to directly apply a bidirectional-RNN since it is sequential in time.
Many of the data-driven systems use some form of neural network
in order to generate text (such as the previous two). The use of
LSTM-based recurrent neural networks is particularly popular ince
there is evidence that LSTM cells are good at dealing with long
term dependencies between n-grams[15]. These dependences are
common in natural language so LSTM-cells should enable a system
to accurately learn more complex behaviour. An alternate way to
try capture these dependences is to use gated recursive units (GRU)
[11, 16]. GRUs outperform LSTMs for most tasks though language
modelling appears to be an exception[5]. The performance of a
system using an LSTM-based RNN can be improved significantly
by using a deep LSTM-based RNN[15]. It may also be increase by
adding a large forget bias[5]. Other approaches include using rein-
forcement learning to learn the most appropriate outcomes based
on some reward/loss function (such as the next system, LOLS).

3.3 Locally Optimal Learning to Search
(LOLS)[6]

LOLS like the TGEN systems features a sentence planner and sur-
face realisation module. Also similar to the RNNLG system a delex-
icalised corpus is used to train the imitation learning frame work.
LOLS takes a different approach to the previous two architectures
essentially viewing NLG as a classification problem by grouping
words that are related to attributes from the input DA then using
them to express the attribute. The system first predicts the con-
tent of the utterance by predicting a sequence of attributes one by
one. Each attribute is selected based on its predecessors. Once a
sequence of attributes has been found words are selected, from a
dictionary corresponding to the the particular attribute, to express
the attribute. The dictionary for a particular attribute is learnt from
the text based on words that appear in close proximity to the at-
tribute.
A policy must be learnt in order to determine the sequence of at-
tributes/tokens that will make up the content prediction. Similarly

3



a word prediction policy must be learnt to realise the content to-
kens into a natural language utterance. The policies are trained
separately but are learnt in the same way, using a set of training
examples and a loss function. These policies are used to generate
the next token given the current token and all previous tokens that
have been generated. The loss function is used to compare the sen-
tences produced by the policy and the reference utterances given in
the training set. The policy is then updated based on the loss func-
tion. One of the natural language evaluation metrics, such as BLEU,
is typically used as the loss function. Using an evaluation metric
means that the utterances that the trained policy produces should
score highly when evaluated with the metrics it was trained on and
avoid certain mistakes such as repeated words or information not
in the reference text; however, this does not guarantee it will score
highly when judged by people[9]. The learnt policy is trained over
multiple iterations, in each iteration the sequence of content tokens
is generated by either an expert reference policy or the learnt policy
from the previous example. The reference policy is derived from
the reference sentence, so is only available for the training data,
while the learnt policy should be able to generalise and so produce
token sequences for unseen DAs. To ensure an optimal learnt policy
at each iteration the algorithm must decide if it should exploit a
known token or set of tokens or try explore different tokens to
try and increase the loss function (produce better utterances). The
exploration is done by using the reference policy. The reference
policy is chosen over the learnt policy from the previous iteration
with probability p = (1 − β)i where β is the learning rate and i is
the number of iterations. This allows the learnt policy to be chosen
more frequently as it gets better at generalising. To speed up the
training and avoid mistakes a sequence correction mechanism is
incorporated to correct sub-optimal choices. To avoid over fitting
the sequence correction mechanism looks at the sub-optimal token
and the next E tokens generate before deciding if it would reduce
the cost function to rather use the reference policy to generate
the next E tokens. This helps solve a common problem with NLG
systems where errors tend to propagate as tokens are generated
one at a time based on previous tokens.[12]
In order to generate a natural language utterance a delexicalised
DA is used with the content classifier to generate a set of tokens.
This set of tokens is then used with the word classifier to generate
an utterance. Finally the utterance will be delexicalised by inserting
explicit values from the DA, this is essentially the reverse of the
process carried out to delexicalise the training corpus.

3.4 Modular Approach[8]
Again this system is split into two modules; text planning and sur-
face realisation. Unlike RNNLG which is an end-to-end system, this
system separates the tasks of learning text planning and surface
realisation. By separating these tasks the two subsystems each have
a simpler set of rules to learn, thus should be able to produce better
results.
The text planning phase takes a similar approach to LOLS, where
a plan is learnt it decides what facts to include in each sentence
and the order in which the sentences should appear. Additionally
within each sentence the text plan determines the ordering of enti-
ties within each fact and the structures between facts. To achieve

this the text plan consists of a sequence of sentence plans where
each sentence plan is a tree. The trees give the order in which the
facts should be realised. The text model assumes that each entity
only appears once per sentence thus it is not clear how well the
system would work on training sets that include multiple occur-
rences of an entity in a sentence.
The WebNLG corpus1 is used to train the text plan. The DAs in
WebNLG consist of a set of triplets (s, r ,o) where s is the subject, o
the object and r the relationship between the subject and the object.
Since the WebNLG corpus contains small sets of DAs the text plans
may be generated by constructing an undirected graph between
the entities then using a depth first search (DFS) to generate a text
plan. By starting the DFS at each node and visiting the descendants
in a different order all text plans may be generated. The edges of
the graph take the form of a triple (h, l ,m) where h andm are enti-
ties, corresponding to the subject and object, while l consists of a
relationship, r , and it’s direction. Representing l as a relationship
and direction rather than just a relationship allows the subject and
object to be swapped, this means that text can be generated in either
a passive or active voice. For larger inputs generating all possible
text plans may become impractical though some heuristic could
potentially be used to reduce the number of text plans generated.
The structure of the edges makes it easy to identify sentences that
may be combined since eitherh orm will be common in both triples.
A text plan is considered to be consistent with the reference (this
makes it more likely to produce a valid utterance containing the
required facts) if it uses the same sentence splits and has the entities
in the same order as the reference text for each sentence plan. The
system is not strict on matching entities since many entities may be
realised in several different ways making it difficult to determine if
an entity has a match, this is particularly difficult when context and
external knowledge is required to know two entities are equivalent
(e.g nicknames). Another issue is that while matching the order
of entities reduces the chance of mistakes being made in the sen-
tence, it may also reduce the variation shown in generated texts.
A product-of-experts approach is used for plan generation, this
involves evaluation the plans using several experts then multiply-
ing the results together and normalising the result to get a final
score for the text plan. The experts used are: Relational direction,
calculated as the probability of the direction of the relationship
in the plan; global direction, probability of observing n reversed
relationships (from the MR) in x triplets; splitting sentences, the
probability of a specific distribution of the number of facts amongst
sentences.Using this approach not only allows different plans to be
compared but a threshold can be found for generating good quality
utterances. By selecting a random plan above the threshold more
variance might be shown in the system while still ensuring good
quality utterances are produced.
Splitting the text plan into sentence plans makes the realisation
process easier since each sentence plan can be realised individu-
ally. The downside to this approach is that it cannot include some
structures such as referring expressions (potentially making the ut-
terances less natural). In order to realise the sentence plans they are
first linearised by performing a pre-order tree traversal. A neural
machine translation algorithm is then used to determine the words

1Documents for the corpus can be found here http://webnlg.loria.fr/pages/docs.html

4

http://webnlg.loria.fr/pages/docs.html


to realise the sentence plan. Similarly to the previous systems a
delexicalised text plan is input to the NMT and the NMT learns
over delexicalised data. The tokens in the output of the NMT are
then replaced based on the original input graph.
The utterances produces in general contained less additional facts
and omit less facts than a strong neural based system it was tested
against. The fluency of the system was measured by performing
pair-wise evaluation between two utterances using human judge-
ment to select which utterance better described the reference text.
As expected judges found the reference text to be more fluent,
however, the system was as fluent as the neural system and out
performed the grammar-based system it was tested against.

4 SYSTEM PERFORMANCE AND
COMPARISONS

The performance of a system may be measured by running evalua-
tion metrics on their output utterances, however, a fairer compari-
son between systems may be achieved by running both systems on
the same data set and comparing the evaluation scores achieved.

4.1 System Evaluation Metrics
There are several automated metrics that may be used to evaluate
natural language utterances. These metrics are useful since they
provide a relatively fast and inexpensive way to judge generated
texts. Metrics may generally be classed as word-based or grammar-
based. Word-based metrics use several features to try and evaluate
an utterance:

• Word overlap and string distance: This is based on n-grams
common to both the generated and reference text. For ex-
ample BLEU which measures the accuracy with which the
utterance captures the information of the ground-truth ref-
erence or ROUGE which measures the recall.[6] The dis-
advantage of using BLEU is that it considers the length of
texts thus shorter reference texts are likely to receive lower
scores[4]. While string distance is a measure of the number
of insertions, deletions, substitutions and transpositions that
would need to be applied to convert the generated text to
the reference text. TER is a string distance metric.[4]

• Semantic similarity, based on the similarity of word distribu-
tion and semantics analysis.[9].

In general the higher the score the more similar the generated text
is to the human reference, TER is an exception where the scale is
reversed[9]. Though these scores may not always to representative
for instance most word-based metrics struggle with recognising
synonyms.[4]
An alternative to word-based metrics are grammar based metrics.
These use grammars to evaluate the grammatical correctness and
readability of text. An advantage of grammar-based metrics over
word-based metrics is that no reference text is required, this means
that errors in evaluation cannot occur due to faulty reference texts
(this is a risk particularly when reference texts are crowd sourced).
Grammar-based metrics may be used to measure readability and
the grammatical correctness of a text. Readability refers to how
easy a text is to understand. Metrics such as Flesch Reading Ease
score maybe used to measure readability based on the number of
characters, words and symbols present in a sentence. The Stanford

parser may be used to calculate a parsing score to measure how
grammatically correct a sentence is.
The ERR value, which is used in several systems[18][6][17], gives a
good idea of how well the utterance generated reflects how well the
generated text captures the facts from the input MR. This is very
useful since the purpose of the NLG system is to represent the facts
in the data as text, thus it can help prove how reliable the score of
a more complex evaluation metrics is (by leaving out information
an utterance doesn’t need to be as complex so may score higher on
some evaluations)
Evaluation metrics do not negate the need for human judges since
there is little correlation between the score produced by evaluation
metrics and human evaluation of utterances[9]. Thus human judges
provide valuable insight into the performance of a system, espe-
cially since the systems are designed to produce text for humans.
Human evaluations of systems maybe done as pair-wise compar-
isons, essentially an AB test, displaying two generated utterances
for a DA and asking human judges which they prefer. This could
be done in addition to a quantitative judging of the texts based on
some criteria most likely informativeness, fluency and naturalness.
The AB test could reveal how humans perceive the text without
analysing it too closely, it is possible that by making the judges pay
closer attention to the text, in order to try and score it, the judges
would be changing their perceptions of the text. AB testing would,
however, not provide much insight into why people preferred one
text over another while qualitative testing could. There is evidence
that a AB testing approach to evaluation is more sensitive and has
less variance[4]. Though qualitative evaluation may be improved by
using a visual scale such as a slider for grading rather than getting
the judges to assign numerical scores[4]. The reference texts are
required to be shown along side the generated text so the judges
can determine how informative the texts are.

4.2 System Comparisons
Lampouras and Vlachos[6] compared the performance of their NLG
system, LOLS, against RNNLG(WEN)[18] over the SF dataset which
contains meaning representations(MRs) for hotels and restaurants
in San Francisco. The results are shown in table 1. RNNLG consis-
tently score higher in both the BLEU and ROUGE metrics, however,
if the DAs where lexicalised then there was some overlap between
the training and test sets (Resturant1 is in Newlands and Restu-
rant2 is in Rondebosch both would become <Restaurant-name>
is in <Area>). Since both systems are trained on using a delexi-
calised corpus they would have seen some of the DAs used for
testing in training. Once the test set was reduced to only those
where there was no overlap between the test and training sets for
delexicalised DAs the difference in the metrics score narrowed sig-
nificantly. Though this test set was small (11 in the hotel and 13 in
the restaurant dataset) so limited conclusions can be drawn from
them.
Lampouras andVlachos also compared their system against TGEN[2]
(table 2) where it was found that the TGEN v1 system scored higher
using the BLEU and ROUGE metrics but lower using NIST metric
and it had a higher ERR (ERR = attributes present+attriutes excluded

attributes present in DA )
score than LOLS. A lower ERR score indicates that LOLS is better
at including the facts from the DA in the output utterance. When

5



SF Restaurant
FULL TEST (1040 MRS) UNIQUE (158 MRS) NON-OVERLAPPING (13 MRS)

BLEU ROUGE ERR(%) BLEU ROUGE ERR(%) BLEU ROUGE ERR(%)
RNNLG 74.50 77.75 2.54 52.97 43.52 6.29 27.04 20.44 10.38
LOLS 66.01 64.56 0.15 49.44 38.52 0.58 28.21 21.47 0.00

SF Hotel
FULL TEST (1076 MRS) UNIQUE (96 MRS) NON-OVERLAPPING (11 MRS)

BLEU ROUGE ERR(%) BLEU ROUGE ERR(%) BLEU ROUGE ERR(%)
RNNLG 86.54 84.36 0.88 66.37 56.19 3.99 37.24 27.27 6.82
LOLS 80.00 76.88 0.25 68.65 68.37 0.52 33.31 27.01 3.63

Table 1: Results of the comparison of LOLS and RNNLG[6]

BAGEL
BLEU ROUGE NIST ERR(%)

TGEN 56.71 48.08 5.441 24.16
LOLS 54.22 47.39 5.547 16.66

Table 2: Results of comparison between LOLS and TGEN v1[6]

BAGEL SF Resturant SF Hotel
TGEN v1 LOLS RNNLG LOLS RNNLG LOLS

Fluency 5.15 4.79 4.49 4.23 4.41 4.68
Informativeness 4.53 5.24 5.29 5.36 5.36 5.19

Table 3: Results of comparison between TGEN v1, LOLS and RNNLG[6]

Lampouras and Vlachos used humans to evaluate the three sys-
tems (table 3), based on informativeness and fluency, it was found
that TGEN v1 and RNNLG where in general more fluent but less
informative than LOLS. Though compared to RNNLG using the
SF hotel dataset the reverse was true and LOLS was deemed to be
more fluent but less informative.

5 FINDINGS
Based on the current research data-driven NLG systems show great
capacity for generating fluent, natural and varied utterances, how-
ever, they do tend to produce more errors than template-based
systems. In general the systems based on neural networks tend to
produce more varied and natural texts than than other systems,
however they also tend to produce more linguistic errors than the
data-driven systems that rely on non-neural mechanisms based
NLG systems. This suggests that a solution similar to Moryossef et
al.(2019) could provide a promising way forward since their system
was able to generate utterances that are informative, fluent (table
3) and contain few errors(table 1 and table 2).
A potential problem for constructing a data-driven methods is noisy
learning data[9], thus the corpus used for training should be care-
fully selected especially since it seems that noisy data may decrease
the performance of a data-driven system more than a template-
based system.
Word-based metrics can serve as valuable testing mechanisms since

they are quick and easy to use. There is, however, a need for hu-
man judges since these evaluation metric are weakly correlated to
human judge’s evaluations [9]. In order to comprehensibly com-
pare systems it should be necessary to use some form of human
evaluation.

6



REFERENCES
[1] [n. d.]. Multi-Class Neural Networks: Softmax | Machine Learning Crash

Course | Google Developers. https://developers.google.com/machine-learning/
crash-course/multi-class-neural-networks/softmax

[2] Ondřej Dušek and Filip Jurcicek. 2015. Training a natural language generator
from unaligned data. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Vol. 1. 451–461.

[3] Ondřej Dušek and Filip Jurčíček. 2016. Sequence-to-sequence generation for
spoken dialogue via deep syntax trees and strings. arXiv preprint arXiv:1606.05491
(2016).

[4] Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation. Journal of Artificial
Intelligence Research 61 (2018), 65–170.

[5] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical
exploration of recurrent network architectures. In International Conference on
Machine Learning. 2342–2350.

[6] Gerasimos Lampouras and Andreas Vlachos. 2016. Imitation learning for lan-
guage generation from unaligned data. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers. 1101–
1112.

[7] Gerasimos Lampouras and Andreas Vlachos. 2016. Imitation learning for lan-
guage generation from unaligned data. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers. 1101.

[8] Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019. Step-by-Step: Sepa-
rating Planning from Realization in Neural Data-to-Text Generation. CoRR
abs/1904.03396 (2019).

[9] Jekaterina Novikova, Ondrej Dusek, Amanda Cercas Curry, and Verena Rieser.
2017. Why We Need New Evaluation Metrics for NLG. CoRR abs/1707.06875

(2017). arXiv:1707.06875 http://arxiv.org/abs/1707.06875
[10] Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 2017. The E2E dataset:

New challenges for end-to-end generation. arXiv preprint arXiv:1706.09254 (2017).
[11] Yevgeniy Puzikov and Iryna Gurevych. 2018. E2e nlg challenge: Neural models vs.

templates. In Proceedings of the 11th International Conference on Natural Language
Generation. 463–471.

[12] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732 (2015).

[13] Ehud Reiter and Robert Dale. 1997. Building applied natural language generation
systems. Natural Language Engineering 3, 1 (1997), 57–87.

[14] Koenraad Smedt, Helmut Horacek, and Michael Zock. 1996. Architectures for
natural language generation: Problems and perspectives. In Trends in Natural
Language Generation An Artificial Intelligence Perspective.

[15] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[16] Qingyun Wang, Xiaoman Pan, Lifu Huang, Boliang Zhang, Zhiying Jiang, Heng
Ji, and Kevin Knight. 2018. Describing a Knowledge Base. In Proceedings of the
11th International Conference on Natural Language Generation. 10–21.

[17] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-hao Su, David Vandyke,
and Steve J. Young. 2015. Semantically Conditioned LSTM-based Natural Lan-
guage Generation for Spoken Dialogue Systems. CoRR abs/1508.01745 (2015).
arXiv:1508.01745 http://arxiv.org/abs/1508.01745

[18] Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola Mrksic, Pei-Hao Su, David
Vandyke, and Steve Young. 2015. Stochastic language generation in dialogue
using recurrent neural networks with convolutional sentence reranking. arXiv
preprint arXiv:1508.01755 (2015).

7

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
http://arxiv.org/abs/1707.06875
http://arxiv.org/abs/1707.06875
http://arxiv.org/abs/1508.01745
http://arxiv.org/abs/1508.01745

	Abstract
	1 Introduction
	2 Architectures
	3 Data-Driven Design
	3.1 TGEN
	3.2 Joint RNN and CNN System (RNNLG)wen2015stochastic
	3.3 Locally Optimal Learning to Search (LOLS)lampouras2016imitation
	3.4 Modular Approachmoryossef2019step

	4 System Performance and Comparisons
	4.1 System Evaluation Metrics
	4.2 System Comparisons

	5 Findings
	References

