

CS/IT Honours
Final Paper 2019

Title:

Author:

Project Abbreviation:

Supervisor(s):

Category Min Max Chosen
Requirement Analysis and Design 0 20
Theoretical Analysis 0 25
Experiment Design and Execution 0 20
System Development and Implementation 0 20
Results, Findings and Conclusion 10 20
Aim Formulation and Background Work 10 15
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Salsational Graphical Application

DEDANCE

Jordy Chetty

Dr Maria Keet

20

0
0

20
10
10

Jordy

Jordy
The Engineering of a Dance-Notation Visualization System Through the Iterative-Waterfall Approach

The Engineering of a Dance-Notation Visualization System
Through the Iterative-Waterfall Approach

Jordy Chetty
University of Cape Town
Cape Town, Western Cape
chtjor001@myuct.ac.za

ABSTRACT
Most recent e�orts relating to dance-notation animation systems
generate static three-dimensional output derived from analysing the
structure of an annotation on a best-e�ort basis. These annotations
are derived from complex, paper-based notation schemes, making
the systems di�cult to use without prior knowledge of a dance
notation scheme. They provide little value for dance learners in
terms of being able to understand how dance moves are performed
accurately due to information loss that occurs during conversion
from notation to animation. Fundamentally, these systems are not
able to produce meaningful output that can be utilized by dancers
e�ectively. Using the Salsa dance style, we present a new dance-
notation visualization system that both simpli�es the annotation
analysis step and eliminates information loss through the use of
motion capture data rather than syntactical analysis. Additionally
we add an interpolation component to blend separate segments of
motion data. As a result, we improve the state of the art through the
mitigation of information loss, removing the complexity associated
with recording sequences of dance moves and through additional
functionality.

CCS CONCEPTS
• Software and its engineering → Requirements analysis;
Software design engineering; Software implementationplan-
ning; Software development techniques; System description lan-
guages.

KEYWORDS
motion data, software engineering, computer graphics, interpola-
tion

1 INTRODUCTION
Conventional learning patterns for dance typically involve two
parties, one that possesses competent knowledge about how move-
ments are performed, other movements that can be performed in
succession, and how they integrate within a rhythm count. Infor-
mally, this may be considered as the de�nition of the dance. The
second party, the student, learns through observation or practice,
or a combination thereof. Once adequate knowledge has been trans-
ferred to the student, dance movements can be easily identi�ed,
but conveying this information symbolically remains a challenging
problem. The issue of encoding a dance style is challenged by vari-
ability in execution that can occur for a given motion and the data
that is required to accurately denote how to perform a movement
without losing information. The best e�orts to achieve this store

the position and orientation of vital limb information as time pro-
gresses along with a set of rules detailing where the movement can
be performed. The set of data that is needed to convey this infor-
mation is infeasible to write manually and confusing for a learner
to understand. As a result, no standardized notation exists to ac-
curately encompass the full set of dance movements for all dance
styles. Cillekens [11] states that this possibly could be attributed
to the complexity of recording time-series three-dimensional data.
Cumulative error due to the unreliability of human recollection
over multiple generations may cause the contemporary structure of
a dance style to vary from its original form. Entire movements may
also be lost within a single generation. This is in�uential as dance
styles have cultural signi�cance. As movements are forgotten, her-
itage is lost. As a result, systems have been created to expedite the
notation process and visualize notations through animations, but
are greatly constrained making them impractical for general use.
Several notations exist for notating dance movements but Labano-
tation [12] has become most widely accepted, and is thus used in
most dance-notation animation systems. Other notation schemes
are either more complex or not descriptive enough to be able to
record dance movement su�ciently. The use of Labanotation in
these types of systems is debatable as they only implement a subset
of it due to its inherent complexity and lexis. Fundamentally the ex-
pressiveness of existing systems is dependent on the notation that is
used to represent movement. On the other hand, the expressiveness
of notation schemes increases as the complexity of the notation
increases. This makes designing e�ective systems of this nature a
di�cult challenge. In this paper, we present Salsational, a system
for visualizing dance-notations through the use of motion-captured
data. In contrast to prior systems of a similar nature, our system
can display three-dimensional movement sequences as opposed
to static images and does not require technical knowledge of a
dance style or notation system to store and record movement. It
functions by using a global or local movement data store that users
can contribute to in a simple way, which can then be used to create
sequences of movement. The requirements for the system were
speci�ed by Angus Prince of Evolution Dance Studio (EDC), and
can be found in section 4.1. Mr. Prince helped to test and evaluate
the system throughout the development life cycle.

This system was created in conjunction with a complementary
system, created by Micara Marajh and Alka Baijnath, which allows
Description �les (referred to in appendix A) to be loaded into the
system. The scope of this paper is restricted to the graphical aspect
of the Salsational system, but references are made to the description
module for completeness. The intellectual property rights of the
source code is held and maintained by the creator, Jordy Chetty.
The source code for this system is released as open-source software

Che�y

to the public and licensed under the GNU General Public License
(GPL) V3. Although the software is open-sourced, the system con-
tains both licensed and unlicensed code from several vendors. The
paper is structured as follows. In section 2, we discuss related work
in dance-notation visualization systems and provide background
theory on subjects referred to in this paper. In section 3, we dis-
cuss the software development methodology used to create the
system. In section 4, we discuss the requirement analysis phase
of development. In section 5, we discuss the system development
and implementation phase. In section 6, we discuss the results and
provide a discussion of the development process. Finally, we state
conclusions in section 7.

2 BACKGROUND
This section �rst describes the state of the art in dance-notation
visualization systems. Then background theory is provided for
motion capture formats and auxiliary processes. Interpolation and
approximation methods are then discussed brie�y.

2.1 Existing Dance-Notation Visualization
Systems

LabanWriter is a notation-transcribing application which allows
users to graphically create scores by way of a graphical interface.
The �les generated by this application were used by LabanDancer
[13] to convert scores into graphical representations. The symbols
in LabanWriter �les were transformed and placed into a data struc-
ture which was then used as a reference to drive the animation
of a three-dimensional model. The movement of the model was
synthesised using IKAN, an inverse kinematics algorithm. The use
of inverse kinematics as opposed to animation data presents pos-
sible inaccuracies in the performance of the animation as it is not
data-driven. Furthermore, the limitations of LabanWriter directly
a�ect the results of [13]. Laban Editor [7] has functionality for
both creating scores and generating animations. Similarly to La-
banWriter, scores can be written using an graphical interface. The
application stores the movement data in Labanotation Data (LND)
format. Animation is performed by converting LND using motion
conversion template �les. These �les generate the data required to
drive the movement of a �gure. In contrast to [13], the system o�ers
several conversion methods which enable the �gure to perform the
animation di�erently by using di�erent templates. [14] stated this
as problematic as the quality of the animations relied on the quality
of the template �les available. Both [13] and [7] only allow a single
�gure to be animated at a time. Life Forms, a proprietary software
platform, addressed the issue of single character animation by al-
lowing multiple �gures to be animated using motion capture data.
The system can import and export several popular motion capture
�le formats. It is packaged with additional motion capture data that
can be used to extend animation sequences by using its blending
functionality. Users can also edit models graphically, and create
new poses from existing poses by editing the skeletal structures
imported into the program. It can be integrated with popular ap-
plications such as Maya. It is more extensible and �exible than the
applications previously described, but the support for Labanotation
is limited.

2.2 Motion Capture
The BioVision Hierarchy (BVH) �le speci�cation, shown in Fig-
ure 11 is used to encode data recorded using motion capture sys-
tems. The �le consists of two sections. The �rst section describes
a skeleton hierarchy and segment information. The hierarchical
description implies that parent segment transformations a�ect all
child transformation segments. Each segment contains a channel
description, which parameterizes segment animation and de�nes
the order in which transformation are composed. Each channel de-
scription identi�es the axes along which a segment can be rotated
and translated. The second section contains motion samples speci-
�ed in Euler angles. Each motion sample is de�ned on a separate
line. The data for each channel is listed in the order in which the
channel appears in the hierarchy description on every line [9]. Seg-
mentation of motion capture is the process of isolating a sequence
of motion data, usually for the purpose of capturing a recognizable
movement. In practice, motion capture systems record continuous
motion and thereafter the data is segmented manually or via an
automated process.

2.3 Interpolation
n-dimensional Bezier curves [3], de�ned as

B(t) =
n’
i=0

✓
n

i

◆
(1 � t)n�i t iPi

with t 2 [0, 1], points P0, P1, ..., Pn , and
✓
n

i

◆
=

n!
i!(n � i)!

are used interpolate and approximate curves between a set of
n control points. Linear interpolation between two points can be
achieved by using a linear Bezier curve, and approximating curves
for higher dimensions.

A spline is a piece-wise function de�ned by polynomial functions.
They are advantageous in comparison to other forms of interpola-
tion as they . Multiple spline functions exist, with common variants
being the Hermite Spline function, the Catmull-Rom spline function
[2], being used in computer graphics due to their computational e�-
ciency and simplistic nature. In comparison to Bezier curves which
only pass through the �rst and last control points when more than
two control points are speci�ed, spline curves can pass through
each speci�ed control point - called interpolating - or near to each
control point - approximating - depending on the parameterization
of the function.

Euler angles [5], generally denoted by

(� , � ,�)
are three angle that, in combination, de�ne an axis and a rotation

value. They are used to represent the orientation of a rigid body
with respect to a �xed coordinate system within a space.

Quaternions [6], given by

a + bi + cj + dk

can be used to represent rotations and orientation in space. In
contrast to Euler angles, they are not subject to gimbal lock - which

The Engineering of a Dance-Notation Visualization System Through the Iterative-Waterfall Approach

Figure 1: The Iterative-Waterfall Model, displaying the feed-
back loops that were used to create iterative behaviour.

results in the loss of a degree of freedom, and are more computa-
tionally e�cient.

3 SOFTWARE DEVELOPMENT
METHODOLOGY

The project was developed using a hybrid-model of the Iterative
and Waterfall approaches, the Iterative Waterfall [4], pictured in
Figure 1. This model provided a degree of �exibility in the develop-
ment process by way of the Iterative process, but simultaneously
enabled rigidity through the Waterfall process. The implication of
this approach allowed the client to review the artefacts of each
iteration and to provide modi�cations to the original speci�cation,
but with initial requirements provided during the requirements
gathering phase remaining largely intact. This provided equilib-
rium in the development life cycle due to limited client interaction
having been expected as opposed to an active-engagement model
common to Agile approaches. With respect to the software creation
process, this allowed multiple build cycles to run concurrently.
Development iterations comprised implementation, testing, and
maintenance. The implementation phase initiated the actual pro-
gramming of a set of tasks. The testing phase assessed the intended
functionality of the system through a variety of testing techniques,
and the maintenance phase was used to enhance and revise the
functionality of the outputs of each iteration. Three iterations were
conducted during the development period. Iterations one and two
were evaluated by members of EDC. The iterative cycles that were
conducted are discussed in sections 5.6, 5.7 and 5.8.

4 REQUIREMENT ANALYSIS
The requirement analysis phase was concerned with the conceptual
design of the systemwith respect to the user requirements. The �rst
section brie�y describes the requirement-gathering phase, which is
then followed by a description of stakeholders and the architectural
design model used to analysis the requirements.

4.1 Requirement Elicitation
Requirementswere collected fromAngus Prince during the requirement-
gathering phase of development. A meeting took place to discuss
the the core functionality of the system. The requirements describe
the functional and non-functional aspects of the system needed to
aid the teaching process.

(1) Motion playback: Movements should be displayable to the
end-user. In particular, the user should be able to view both
the leader and the follower performing a sequence.

(2) Multi-angle camera: The movements of the �gure should
be viewable from multiple angles in order for vital limbs
to be seen without occlusion as well as to complement the
learning process. A top view and side view were speci�ed
explicitly.

(3) Graphical user interface: The system should be navigable
using a graphical interface that the end-user can easily ma-
nipulate in order to use the application functionality.

(4) Line of dance: The line of dance should be able to be viewed
by the end-user while a movement is being played. This is to
allow the end-user to understand the how the �gures should
move relative to the space available to them.

(5) Multi-colored �gures: The animated �gures should be dis-
playable in di�erent colors in order for the end-user to be
able to distinguish between the leader �gure and the follower
�gure during movement playback.

4.2 Stakeholders
The stakeholders in the system were identi�ed as the users of the
system, developers of the system and maintainers of the system.
The users are further de�ned as Salsa instructors.

4.3 4+1 Architecture View Model
The 4+1 Architecture ViewModel [8] was used to create a high-level
abstraction of the system derived from the requirement analysis
phase. This architectural framework was used to separate and iden-
tify concerns of the system of di�erent stakeholders that were used
to inform design decisions during the iterative phase of develop-
ment. The scope of the architecture is limited to the Salsational
system and and user interface. The following sections address each
of the viewpoints in the model and primary concerns of each of the
stakeholders that they represent. The resulting software design can
be seen in Figure 9.

Figure 2: State diagram for changing the camera

4.3.1 Logical View. The logical view aims to identify the manner
in which users interact with the system. Each interaction was mod-
eled using state diagrams to show the behaviour of the system in

Figure 3: State diagram for changing the �gure color.

Figure 4: State diagram for description �le loading

Che�y

response to user-provided input. The provided �gures address how
the system is achieves the functional requirements of the system.

Figure 5: State diagram for playing a move

Figure 6: State diagram for playing a sequence

4.3.2 Development View. The development view shows the high-
level software design of the system which can be seen in Figure
7. The viewpoint is depicted using a package diagram and shows
the interactions between modules. The model addresses the is-
sues of maintainability and structure of the system. It shows the
separation of components into a layered architecture, as well as
the component-wise decomposition of functionality into cohesive
units. The diagram additionally displays the core services provided
by the system in order to meet the functional and non-functional
requirements as speci�ed by the requirements.

4.3.3 Process View. The process view describes the interactions
between components in the system. It was created using an ac-
tivity diagram and is shown in Appendix B.1. It shows the basic
engagement between users and the system in which a user loads
description �les and then plays a series of sequences and moves
until completion.

4.3.4 Physical View. The physical viewpoint conveys the deploy-
ment of the system within the user environment and is shown in
Figure 8. This view is intended to model the conditions under which
the system is expected to function.

4.3.5 Scenarios. Scenarios were created from user stories that were
modeled from the gathered requirements, which can be seen in
Table 1. Each user story was given condition(s) of satisfaction as
evaluation criteria. The scenarios can be used to illustrate the func-
tioning of the elements of the architect described above.

Figure 7: Package diagram exhibiting the high-level struc-
ture of component interactions in the system, as well as the
separation of components into functional layers.

Figure 8: Deployment diagram showing the physical envi-
ronment of the system.

5 SYSTEM DEVELOPMENT AND
IMPLEMENTATION

This section describes the manner in which artefact speci�cations
were realised and the implementation of software engineering pro-
cesses that were used during the project life cycle.

5.1 Programming Language
C++11was used to program the system. Despite bindings of OpenGL
to other languages, support for external libraries that were needed
during development were limited. Version 11 introduced several
features which were used in the system. The list below describes
core features of the version 11 speci�cation and their signi�cance
to the system:

(1) Type inference through the auto data type
(2) The override identi�er for specifying overridden virtual func-

tions in child classes
(3) Default initialization of in-class values
(4) std::chrono for tracking time during frame-based animation

playback
(5) Operator overloading

The Engineering of a Dance-Notation Visualization System Through the Iterative-Waterfall Approach

Figure 9: Salsational Class Diagram

User Story Condition(s) of Satisfaction
1 As a user, I want to view the leader and follower from di�erent angles,

so that I can clearly see how certain movements are performed.
The �gures can be viewed from several viewpoints that clearly
show di�erent limb positions.

2 As a user, I want to see the leader and follower performing di�erent
movements, so that I can understand how moves are performed.

The user does not have to reinitialise the program in order to view
multiple movements.

3 As a user, I want to be able to interact with the system using an interface,
so that I can use the system easily.

The user can use valid system functions through a user interface.

4 As a user, I want the leader and follower to be drawn in di�erent colours,
so that I can distinguish between them.

The user can clearly distinguish between the leader and follower
when a movement is played.

5 As a user, I want to see the line of dance, so that I know where the
leader and follower should be standing.

During a movement playback, the line of dance is drawn on screen.

Table 1: User stories and conditions of satisfaction captured during the requirements gathering phase and subsequentmeetings
after consultation with the client

5.2 Frameworks and Libraries
OpenGL 2.1 was used to program the rendering engine, using FreeG-
LUT for window con�guration and I/O processing, and GLU for
utility functions. FreeGLUT was chosen to compensate for the
limitations of the original GLUT library, predominantly the imple-
mentation of the main loop function. The use of legacy OpenGL
over modern OpenGL was to improve support for user systems
and as performance was not an intended system design goal. The

system currently has support for loading and displaying BVH �les.
This was chosen as it is most widely adopted, and most anima-
tion systems support importing and exporting of this format. The
Dear ImGui C++ library was used to create the user interface. The
Catch testing library was used to perform unit testing on system
components.

Che�y

5.3 Data Structures
5.3.1 Description files. Description �les comprise Move and Se-
quence �le pairs and represent movement-motion mappings for a
given dance style. The are the primarily input into the system.

5.3.2 Mathematical Types. The structures required for the system
predominantly comprised mathematical types, and operations on
those types. For this purpose, Eigen was used to provide vector,
matrix, quaternion and Euler angle types. It provided n-ary vector
objects for storing renderable object data and matrix types for
performing transformations. Quaternion and Euler angle typeswere
used for processing during smoothing calculations. The library was
chosen because it multi-platform, does not require to be separately
installed by users, and for its minimal storage footprint.

Figure 10: Salsational architecture diagram, showing
the high-level structure of the system consisting of
conceptually-divided layers to separate the front-end and
logic.

5.4 Third-Party Services and Processes
CMake, Trello, Git, GitHub, Travis.CI, CodeFactor, Instruments, and
Doxygen were used within the development life cycle. The project
source code was built using the CMake build system. A kanban
board was created on the Trello and platform extensions on the
platform were used to control the software creation life cycle, and
manage sub-tasks. This enabled work �ow management, constraint
identi�cation and relationship establishment between tasks. Where
a unit of work was actively being worked on, the task was moved
to an active board, and to a completed board when �nished. Git
was used as the primary version control system. GitHub was used

Figure 11: A visualization of the BioVision Hierarchy File
skeleton hierarchy, showing the skeletal structure for sev-
eral segments. [A Method for Comparing Human Postures
from Motion Capture Data. Wei-Yang Tang et al. 2010.]

for remote code storage. Commits were performed irregularly. Ini-
tially, the project sca�old was generated entirely from the master
branch. Thereafter, new branches were created. In this way, the
master branch always contained a stable version of the software.
Conceptually, the branches were categorised according to their
primary functions, and su�xed with the category. A utility script,
update_branches.sh, was used to synchronize every branch with the
master branch and to push changes to the remote repository. Travis
CI was used for continuous integration throughout the project for
build noti�cations and error logging. Builds were initiated upon
every push to the remote server. In this instance, GitHub. In the
event of build errors, automated emails were sent. The build ma-
trix included build operations across several operating systems,
and was tested for Linux and Mac compiled with g++ using Make.
Automated code review was conducted using CodeFactor. Each
commit to the remote master branch was cloned to CodeFactor and
issues raised within their online interface. The CodeFactor system
ranked each class using a scale of A-F. The cumulative scores of
each class determined the overall rating of the code. The code for-
mat was assessed using the Google style guide. The system contains
GitHub Flavored Markdown (GFM) [1] which contains descriptions
of the system as well as sample code. Additionally, Doxygen-style
documentation is provided. Executable builds were pro�led inter-
mittently using Instruments, a built-in MacOS pro�ling tool. Where
obvious performance issues occurred, the stack trace was observed
to identify bottlenecks in the system and revisions were consid-
ered and made to improve the system running time. Throughout
the development emphasis was placed on producing working soft-
ware before refactoring tasks were completed, this was generally
performed on completion of a functional class or complex method.

The Engineering of a Dance-Notation Visualization System Through the Iterative-Waterfall Approach

Figure 12: A visualization of the e�ects of the arguments to
the gluLookAt function.

5.5 Software Quality Characteristics
The ISO/IEC 25010:2011 Standard addresses issues regarding soft-
ware quality requirements and evaluation within the software devel-
opment life cycle. The standard de�nes the Product Quality Model
which characterizes the calibre of a software product using eight
attributes, each of which comprise several sub-characteristics for
evaluation. Of the eight, three were used that were relevant to the
context of the software. This was to ensure that the system had
been produced using modern techniques and in a robust manner.

5.5.1 Maintainability. Maintainability was achieved through the
use of modular components which interface with one another uni-
formly. Provided that the interface between two interacting compo-
nents remains unchanged, parts of the system can be interchanged
with one another. A consequence of the modular design is modi�a-
bility of the components themselves. The division of components
into functional subsystems creates functional cohesion model in the
system. Functionality is divided in terms of the user requirements
outlined in table 1.

5.5.2 Portability. Portability was achieved by using cross-platform
external libraries and standard library headers exclusively. External
dependencies can be installed using package managers on Unix-
based systems. OpenGL 2.1 was used to facilitate wider system
support over OpenGL 3.x . Installation and installation scripts can
be automatically generated through the use of CMake.

5.5.3 Usability. Usability considerations were signi�cant in the
development of client application due to the computer-related com-
petency of the end-users. Nielsen’s 10 Usability Heuristics for User
Interface Design were used to guide the design of the graphical
interface to facilitate learnability of the system towards users. This
was re�ected in the design of the interface components. Error recov-
ery was achieved by performing internal validation on user actions
where input was required.

5.6 Iteration 1: Rendering System and Line of
Dance

5.6.1 Implementation. The data for the motion data rendering
process was acquired freely from the Carnegie Mellon University
(CMU) Motion Database. Fifteen �les were used, each of which
contained several distinguishable movements. Segmentation was
performed internally on each �le in order to identify and name

each dance move. The segments were then veri�ed with Angus
Prince during a meeting for accuracy and metadata. The accuracy
validation involved resolving whether segmented sequences fairly
represented each dance move. The metadata for each segment com-
prised the name of the dance move, which were recorded on a
best-e�ort basis prior to the meeting and corrected during the
consultation. A third-party library, BVH11, was used to parse and
render each �le between a subset of frames. The line of dance was
implemented as a standard grid across the viewable area and drawn
iteratively using the OpenGL line primitive.

5.6.2 Testing. Unit testing against the output of the BVH11 trans-
formation method was performed. The global and local transfor-
mation of a single segment within a sample BVH �le was manually
calculated and tested against the library output. Further, acceptance
testing for graphical output was conducted at EDC with Angus
Prince and one EDC student. Minor revisions were proposed in
order to improve the visibility of dancing �gures.

5.6.3 Maintenance. Perfective maintenance was conducted to in-
crease the radius of the limbs in each �gure in order to improve
visibility of the �gures. The implementation of the coloring of
each of the �gures was modi�ed enabling them to be dynamically
changed during run-time.

5.7 Iteration 2: Camera and User Interface
5.7.1 Implementation. The camera component was designed in
collaboration with EDC. Prior to implementation, several high-level
con�gurations for the camera were given by Angus Prince, on the
premise that the speci�ed viewpoints assisted with the learnability
of moves. Using the GLU toolkit, a camera is parameterized using
three vectors in order to specify a viewing transform, which can
be seen in Figure 12. Full control of the camera system was pre-
sented during an evaluation session at EDC. The user interface was
constructed in C++ using the ImGui framework. Separate interface
panels were used with the purpose of dividing disparate units of
functionality. The viewpoints are shown in Figures 14, 15 and 16.

5.7.2 Testing. The outputs of the iteration were discussed at meet-
ing at EDC. Angus Prince, one Salsa instructor, and three learners
were present. The preset camera views, camera control system and
user interface were discussed. From the feedback that was given it
was found that the mechanism to control the camera system was
not intuitive to use as well as the use of sliders. Improvements to
the camera system were to provide additional pre-con�gured views
in the form of an upper- and lower-body view, the use of a mouse
to control the camera over the �oating sliders. Improvements to the
user interface were suggested to make the user aware of changes
to the state of the system when actions were performed.

5.7.3 Maintenance. Adaptive and perfective maintenance was con-
ducted on the system following the output from the testing phase
to improve the system based on the suggestions that were given.
The low-level camera controls were removed and replaced by pre-
de�ned viewpoint buttons. The �oating sliders were also removed.
The additional viewpoints were also added to the system.

Che�y

5.8 Iteration 3: Smoothing System
5.8.1 Implementation. Given two keyframes (a,b) from separate
BVH motion �le sources with the same skeleton layout, we aimed
to create a smooth transition between the two frames dynamically.
From [10], the position of a rigid body can be speci�ed fully by the
composition of rotations and translations, in which case we require
two separate interpolation functions to generate intermediate sam-
ples. The rotation interpolation function would be applied to all
BVH rotational channels and the translation interpolation function
to all positional channels.

Bezier curves were used for positional interpolation and Quater-
nion Spherical Linear Interpolation (Slerp) for animating the rota-
tion of each channel. A preliminary conversion from Euler Angle
to Quaternion representation was required before interpolating
rotational channels due to BVH storing data as Euler angles and
trivially needed to be converted back to Euler Angles prior to ren-
dering. The addition of additional control points was supported in
order to re�ne the blending of the transitions between two �les.

5.8.2 Testing. Unit testing for di�erent parameterizations of the
Bezier curve were performed with the value of t incremented in
constant intervals of 0.2 per unit test on the same parameteriza-
tion. Outputs were truncated to four decimal places. Similarly, the
quaternion interpolation function was tested in constant intervals
of 0.2 for t 2 [0, 1].

5.8.3 Maintenance. A �nal refactoring of the system was per-
formed during this stage. The structure of the system was modi�ed
in order to conform to the class speci�cation in Figure 9.

Figure 13: The Salsational System

6 RESULTS AND DISCUSSION
This system was intended to be an application of software engi-
neering to the creation of a dance-notation visualization system
that could be used within Salsa learning environment. The most
important measure of the success of this system is in its ability to
meet the requirements set out at the beginning of the development.
Generally positive feedback was given during the meetings that
were conducted with members of EDC which gives reason to be-
lieve that the system will be able to assist Salsa instructors in order

Figure 14: Salsational camera side view

Figure 15: Salsational System top view

Figure 16: Salsational camera behind view

to accomplish their goals. Unfortunately a �nal validation meeting
was not able to be conducted to con�rm the �nal changes expressed
by EDC during the second iteration, although they were completed.

Aside from supporting Salsa, the system is designed to scale to
support other pair-based dance styles. With novel modi�cations
to the rendering process, support for arbitrary numbers of �gures

The Engineering of a Dance-Notation Visualization System Through the Iterative-Waterfall Approach

can be achieved to make the system extensible to a greater class of
dance styles.

7 CONCLUSIONS
Salsational is designed to be a dance-notation visualization tool,
with the primary goal to support the Salsa learning process using
motion data. Salsational improves current dance-notation visual-
ization systems through the use of motion data.

7.1 Future Work
Additions to the system include skinning and audio playback. A port
of the system to Python, Unity or Maya would allow SMPL models
to be used which would enable automatic deformable characters to
be displayed in the system. This would be advantageous as di�erent
body types would be able to be viewed and adjusted to see how a
performance would change depending on the physique of a learner.
Support for additional motion data formats would be welcomed.

7.2 State of the Art System
The system improves on the state of the art by providing animated
movement and dynamic sequence playback. The use of motion
data as a means to express notation is something that has not been
created before in this �eld.

7.3 A Dance Learning Tool
Using the above, we also believe that the system can be used by
Salsa instructors in order to help teach learners dance movements
in a simpli�ed manner. We believe that the use of motion data will
be e�ective within the learning process.

7.4 Smoothing
Salsational can create a contiguous motion sequences from separate
motion �les by using interpolation to generate dynamic motion
between two source motion �les. The accuracy of the dynamic
motion is improved by the additional of intermediate controls points
between the two �les.

ACKNOWLEDGMENTS
I’d like to extend my sincerest gratitude towards our supervisor,
Maria Keet, for her continued support and warming cheerfulness
from start until end, and Angus Prince of Evolution Dance Com-
pany his invaluable insight, dedication and enthusiasm towards
the Salsational project. Finally I would like to thank my parents
for the opportunity and that they have given me and the sacri�ces
they have made for my sake to ensure that I am provided for, to the
best of their abilities. I can con�dently say that I would not be here
today if it were not for both of you.

REFERENCES
[1] 2019. GitHub Flavored Markdown Spec. view-source:https://github.github.com/

gfm/#what-is-github-�avored-markdown-
[2] Edwin Catmull and Raphael Rom. 1974. A CLASS OF LOCAL INTERPOLATING

SPLINES. In Computer Aided Geometric Design, ROBERT E. BARNHILL and
RICHARD F. RIESENFELD (Eds.). Academic Press, 317 – 326. https://doi.org/10.
1016/B978-0-12-079050-0.50020-5

[3] Paul De Casteljau. 1959. Courbes à pôles. National Industrial Property Institute
(France) (1959).

[4] Dr Nitin Deepak and Dr Shishir Kumar. 2015. Flexible Self-Managing Pipe-line
Framework Reducing Development Risk to Improve Software Quality. Interna-
tional Journal of Information Technology and Computer Science 07 (06 2015), 35–47.
https://doi.org/10.5815/ijitcs.2015.07.05

[5] Leonhard Euler. 1776. Novi Commentarii academiae scientiarum Petropolitanae.
Nr 20 (1776), 189–207.

[6] William Rowan Hamilton. 1848. XI. On quaternions; or on a new system of
imaginaries in algebra. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 33, 219 (1848), 58–60.

[7] K. Kojima, K. Hachimura, and M. Nakamura. 2002. LabanEditor: Graphical editor
for dance notation. In Proceedings. 11th IEEE International Workshop on Robot and
Human Interactive Communication. 59–64. https://doi.org/10.1109/ROMAN.2002.
1045598

[8] P. B. Kruchten. 1995. The 4+1 View Model of architecture. IEEE Software 12, 6
(Nov 1995), 42–50. https://doi.org/10.1109/52.469759

[9] Maddock Meredith, Steve Maddock, et al. 2001. Motion capture �le formats
explained. Department of Computer Science, University of She�eld 211 (2001),
241–244.

[10] Ken Shoemake. 1985. Animating rotation with quaternion curves. In ACM
SIGGRAPH computer graphics, Vol. 19. ACM, 245–254.

[11] Colwyn Trevarthen and Stephen N. Malloch. 2000. The Dance of Well-
being: De�ning the Musical Therapeutic E�ect. Nordisk Tidsskrift for
Musikkterapi 9, 2 (2000), 3–17. https://doi.org/10.1080/08098130009477996
arXiv:https://doi.org/10.1080/08098130009477996

[12] Rudolf Von Laban. 1928. Schrifttanz. Universal-edition.
[13] Lars Wilke, Tom Calvert, Rhonda Ryman, and Ilene Fox. [n. d.]. From dance

notation to human animation: The LabanDancer project. Computer Animation
and Virtual Worlds 16, 3âĂŘ4 ([n. d.]), 201–211. https://doi.org/10.1002/cav.90
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.90

[14] Xueyan Zhang, Zhenjiang Miao, and Qiang Zhang. 2018. Automatic Generation
of Labanotation Based On Extreme Learning Machine with Skeleton Topology
Feature. In 2018 14th IEEE International Conference on Signal Processing (ICSP).
IEEE, 510–515.

A DESCRIPTION FILES
The input into the Salsational graphical system is a set of two data
exchange �les, a Move �le and Sequence �le (speci�ed in YAML
format), and motion data �les. A Move �le contains a reference for
the moves of a variation of a dance style. Each reference consists
of the name of the move, an optional description of the move, a
reference to the �le path of the motion �le where the movement
occurs, and either a pair of integers specifying the beginning and
ending frames that show the move, or raw transformation data
between the two frames that can be used directly to render the
move. Move �les can act as local or global references, as speci�ed
by the user. A Sequence �le speci�es valid sequences of moves,
where each move is derived from the associated Move �le. The use
of global Move �les facilitates a standardized knowledge-base that
every user shares and can learn from. It also allows movements
for a dance style to be speci�ed once, and unique sequences to be
derived from the �le.

A.1 Move File Speci�cation
• dance_style: de�nes the style of dance
• variation: the variation of the style of dance
• source_method: either external or inline
• moves: an array of move objects
– ref: a unique identi�er for this move

⇤ name: the name of the move
⇤ desc: an optional description of the move
⇤ src_ref: the relative �le path to the motion data �le
⇤ begin_frame: the beginning frame of the move
⇤ end_frame: the ending frame of the move

view-source:https://github.github.com/gfm/%23what-is-github-flavored-markdown-
view-source:https://github.github.com/gfm/%23what-is-github-flavored-markdown-
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.5815/ijitcs.2015.07.05
https://doi.org/10.1109/ROMAN.2002.1045598
https://doi.org/10.1109/ROMAN.2002.1045598
https://doi.org/10.1109/52.469759
https://doi.org/10.1080/08098130009477996
http://arxiv.org/abs/https://doi.org/10.1080/08098130009477996
https://doi.org/10.1002/cav.90
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.90

Che�y

Figure 17: Activity diagram showing the high-level function-
ing of the Salsational system

A.2 Sequence File Speci�cation
• name: the name of the sequence �le
• mov: the �le path to an associated Move �le
• sequence
– ref: a unique identi�er for the sequence

⇤ name: the name of the sequence
⇤ moves: the list of validated moves in the sequence

When a Sequence �le is loaded, the system locates the associated
Move �le and retrieves the list of moves de�ned in each sequence.

The system then parses the motion data for each move and
calculates the transforms for each object, stopping at the ending
frame. Each transform is then stored locally and can be referenced
by other components until run-time completes in order to prevent
redundant reloading of the same �le.

B SUPPLEMENTARY INFORMATION
B.1 Process View Activity Diagram

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Dance-Notation Visualization Systems
	2.2 Motion Capture
	2.3 Interpolation

	3 Software Development Methodology
	4 Requirement Analysis
	4.1 Requirement Elicitation
	4.2 Stakeholders
	4.3 4+1 Architecture View Model

	5 System Development and Implementation
	5.1 Programming Language
	5.2 Frameworks and Libraries
	5.3 Data Structures
	5.4 Third-Party Services and Processes
	5.5 Software Quality Characteristics
	5.6 Iteration 1: Rendering System and Line of Dance
	5.7 Iteration 2: Camera and User Interface
	5.8 Iteration 3: Smoothing System

	6 Results and Discussion
	7 Conclusions
	7.1 Future Work
	7.2 State of the Art System
	7.3 A Dance Learning Tool
	7.4 Smoothing

	Acknowledgments
	References
	A Description Files
	A.1 Move File Specification
	A.2 Sequence File Specification

	B Supplementary information
	B.1 Process View Activity Diagram

