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ABSTRACT
Determining the correctWarfarin dosing regimen is a processwhich
relies on a multitude of factors individual to each patient. Incorrect
dosage can lead to life threatening adverse effects; and thus the
development of a reliable prediction model could have profound
impact. Herewe analyse several prior attempts to build such amodel
using machine learning. The superiority of ensemble methods and
importance of correct feature selection form the key observations
made by the end of the survey.
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1 INTRODUCTION
Warfarin is a widely used anticoagulant, primarily administered
in order to thin blood when treating thrombosis and pulmonary
embolisms.[3] While it remains one of the most popular and effec-
tive medications for this purpose, the use of Warfarin is accompa-
nied by considerable risk. Too conservative a dose; and the desired
thrombolytic effects may not take place. On the other hand, an
overdose easily causes excessive bleeding and can even lead to
more severe complications such as skin necrosis. [9]

The situation is further worsened by the fact that the therapeutic
range (TR) which lies between over- and underdosing is compara-
tively small and can vary significantly based on both clinical and
genetic factors. Clinicians thus have to make very careful decisions
when prescribing an initial dose. Once this has been made, the
patient’s prothrombin time (a measure of blood’s tendency to clot)
is measured and a standardised metric - known as the International
Normalised Ratio - can be calculated.[5] This can be used by the
clinician to inform their next dose and, after repeating the process
over several days, can determine a “maintenance” dosage which will
keep the patient within the therapeutic range. This trial-and-error
based strategy begs for a more systemic approach. While manually-
followed algorithms exist, their convenient use relies on simplifying
the interdependence between the many variables involved.

Machine Learning techniques, however, excel at tackling high-
dimensional data and are thus the natural choice if we wish to
confront the problem without sacrificing any its complexity.[3] In
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this review, we survey representative examples of machine learning
applied to the problem of determining an appropriateWarfarin dose
given a set of patient data. In the following section, give descriptions
of the various machine learning techniques used and consider the
advantages and disadvantages thereof.

2 MACHINE LEARNING TECHNIQUES
2.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) seek to emulate the biological
process of learning. A set of input nodes (or “neurons”) feeds into
one or more layers of internal, “hidden”, nodes, each with an asso-
ciated weight. At each node, the input signal combined with the
weight and, depending on the implementation, may be cut off if it
does not reach a chosen threshold. The output of the network is
given by the value(s) of the node(s) in the final layer. In the train-
ing phase, the output will be compared with the expected output
and the magnitude of the difference will then be used to alter the
weights of the hidden nodes through a process known as back-
propagation. This is repeated until the network meets the desired
specifications. Numerous parameters affect the performance of an
ANN: in particular its architecture (number and size of the hidden
layers) as well as its learning rate (how aggressively the weights
are altered at the end of each training iteration).

Figure 1: Example of An ANN Architecture

Hu et al. [3] experimented with a variety of ANN parameters as
well as with which subsets of patients’ dosages could be predicted
best by this technique, however the transfer function used was
not specified. The population was split according to whether War-
farin was begin taken concurrently with at least one of the forty
medicines which are known to interfere severely with Warfarin’s
effects (Drug-to-drug interaction, or, DDI). In this case, the ANN
performed best on patients without DDI. Furthermore, an archi-
tecture consisting of one five node hidden layer, a learning rate of
0.1 and an upper bound on training epochs of 600 proved optimal.
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We note that this implementation may have been improved with a
learning rate that decreases over the course of the training process.

Pavani et al. [6] also experimented with several architectures but
also varied the transfer function. The result of the optimal archi-
tecture is not reported; but it is noted that the hyperbolic transfer
function worked best. The network’s training set was comprised of
patients who were already in their TTR; and as a result it performed
well at predicting maintenance doses for patients in the same cate-
gory. Its performance suffered when predicting doses for patients
outside of their TTR however; which points to the possibility of
overfitting.

Solomon et al. []

2.2 Support Vector Regression
Support Vector Machines are a well established Machine Learning
classification technique. The basic concept (in the linear case) is
to determine a hyperplane which maximises its distance from the
closest point in the feature space. Support Vector Regression aims to
turn this model into a predictive one by learning a vector function

f (xi) = w · xi + b (1)

which best estimates the training data, subject to the minimisation
of w ·w.

Hu et al. [3] made use of a “ϵ-insensitive” loss function which
penalises the system only if a data point occurs a distance greater
than epsilon from the hyperplane. To make the problem soluble,
slack variables ξi , ξ ∗i ≥ 0 are incorporated which allow point i to
deviate further than ϵ in each direction. In other words, the model
is now subjected to minimising the sum of the squared norm of w
and the weighted slack variables, as well as to the constraints

yi −w · xi − b ≤ ϵ + ξi (2)
w · xi + b − yi ≤ ϵ + ξ ∗i (3)

where yi is the target value for xi. Of the nine other methods they
tried, this SVR implementation was the second most successful
when applied to a population which contained patients both with
andwithout DDI - only bested by themodel which used an ensemble
of SVRs.

Cosgun et al. [1] also used an ϵ-SVR except instead of the dot
product w · xi, they used a Gaussian kernel

K(w, xi) = e−γ | |w−xi | |2 (4)

The constant γ and the weight of the slack variables during minimi-
sation where determined empirically with five-fold cross validation.
This study took a combination of clinical and pharmacogenetic
features in the form of single nucleotide polymorphisms (SNPs).
The feature set was varied to use between 0 and 500 SNPs. SVR
performed best with a feature set containing clinical factors as
well as 200 SNPs. Performance was greatly sabotaged when SNPs
were excluded from the feature set. Compared to the other methods
used in the paper, SVR outperformed Boosted Tree Regression on
average; but yielded slightly worse results than Random Forest
Regression.

Liu et al. [4] compared the use of various ML techniques on
patients of different ethnicities. SVR performed in the top three
(of nine) techniques across all three of the different ethnicities
considered. A notable observation was that it outperformed all the

Figure 2: Low Dimensional Representation of SVR

other methods when the patient required a lower than normal dose
and was the third best at predicting a higher than normal dose. Its
predictions of intermediate dosages were comparatively its weakest
point.

2.3 Ensemble Methods
Ensemble methods involve the combination of results from several
individual Machine Learning methods. Two common variations are
given here.

2.3.1 Bagging. Bagging is a homogeneous ensemble method
in that relies on a single base ML technique. The data set is boot-
strapped (randomly sampled with replacement) repeatedly to gen-
erate several derivative data sets. The base method is then applied
to learn a model for each of these data sets and, once trained, pre-
diction is made by averaging their outputs.

Hu et al. [3] applied bagging to four different base algorithms:
K-nearest neighbours (kNN), SVR, ANN, and a decision tree based
method dubbed M5. In all instances the bagged variant outper-
formed its base algorithm. The algorithm which saw the greatest
improvement with the use of baggingwas ANN and the best method
overall (when applied to the whole data set) was Bagged SVR.When
the population was limited to patients without DDI, Bagged kNN
proved to be the most effective method with single kNN coming
second. This is interesting as kNN is the simplest of all methods
described here.

Tao et al. [9] considered Bagging as applied to Genetic Program-
ming (GP) and Genetic Algorithms (GA). For each chromosome c
which encodes parameters such as the population size of the GP,
the probability of crossover and the maximum tree depth; a multi-
variable nonlinear regression model is built using GP. This entailed
initialising a set of sub trees whose nodes could either be (binary
or unary) operations and features from the data set. A function
is then built by composing the nodes of the tree and its fitness is
determined by its prediction accuracy. Fitter trees have a higher
chance of surviving to the next generation. The fittest trees will
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then swap branches in the process of crossover and the process
repeats until a baseline fitness is achieved across the population.
The surviving subtrees then each form an element in a vector f(x).
The regression model then takes the form:

F (x) = β · f(x) (5)

where β is a vector containing the weight associated with each
function.

Figure 3: Example of Expression Trees Generated by GP

The success of F (x) at predicting doses determines c’s fitness
and the entire evolutionary algorithm is iterated over at this level
until a set of successful yet varied regression models are converged
upon. These form the base models which the Bagging algorithm
averages over to determine a final result.

The authors compared this technique to two different variants
of SVR and ANN; and also across different feature sets. A compari-
son of the mean-square-error showed indicated that while the GP
approach would underperform on the training set compared to the
other methods, it performed best on the testing set in all cases but
one (of nine).

2.3.2 Stacking. Stacking refers to using the output of one ML
model as the input of another. This generalises to stacks of arbitrary
size.

Sharabiani et al. [7] made use of a Relevance Vector Machine
which classified patients into one of two groups and based on this
classification would apply one of two linear regression models to
determine the exact dose to be prescribed. This approach proved
successful compared to non-stacked techniques used in previous
studies.

Martin et al. [5] however, reported no benefit from using a
stacked ensemble as opposed to a single base method. This may be
as a result of their relatively small sample size (< 70).

3 DISCUSSION
Table 1 provides a representative summary of results. We note that
the majority of these found an ensemble method to outperform
the other techniques considered. The majority also made use of
pharmacogenetic features. This comes with its own cost, however,
as accurate genotyping remains a relatively time consuming and
expensive process. Many of the techniques also used feature optimi-
sation strategies in conjunction with the employed ML algorithms.
For example, Sohrabi et al. [8] made use of Multi-Objective Par-
ticle Swarm Optimisation to choose the best possible feature set.
Given the sheer number of factors which can affectWarfarin uptake,
opting for the extra computation involved in choosing an optimal
selection of features appears to be a worthwhile decision.

Unfortunately many of the studies used different metrics for
evaluating their models and thus a direct comparison is not always
possible. Many employed the Mean Absolute Error however fur-
ther standardisation of evaluation metrics would be a beneficial
convention.

Another observation is that the average error generally increased
with the population size. This implies that the true complexity of the
problem only becomes apparent once there is sufficient variability
in the population.

4 CONCLUSIONS
We have see a wide variety of Machine Learning techniques ap-
plied to Warfarin dosage prediction. Across the variety of studies
surveyed several factors stand out: ensemble methods tend to out-
perform their simpler counterparts, feature optimisation can play
a significant role in a given model’s performance, and that the
specifics of the training population (such as DDI and ethnicity)
favour particular models.
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Table 1: Comparison of Studies

Author(s) Techniques Compared Best Technique Population Size Metric Value

Hu et al. [3] 10 Bagged SVR 587 MAE/dose (mg) 0.210
Pavani et al. [6] 1 ANN 207 MAE/week (mg) 1
Tao et al. [9] 4 Evolutionary Ensemble Model 289 MSE/dose(∗10−2) 1.71

Cosgul et al. [1] 3 Random Forest Regression 290 R2 66.4
Grossi et al. [2] 4 ANN 377 MAE/week (mg) 3.

Sharabiani et al. [7] 5 Stacked SVM + Regression 2274 RMS/week (mg) 8.4
Liu et al. [4] 9 Multivariate Adaptive Regression Splines 960 MAE/week (mg) 8.84
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