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1 PROJECT DESCRIPTION
Many individuals su�er from abnormalities in blood coagulation
which can lead to obstructive blood clots, strokes, and heart at-
tacks. The standard method for treating these conditions is the
use of anticoagulant drugs, such as warfarin. Whilst oral warfarin
treatment is extremely e�ective, the drug has a narrow therapeu-
tic range and severe side-e�ects at extreme concentrations. This
makes the precise dosing of warfarin an important concern for clini-
cians. Unfortunately, warfarin metabolism di�ers across individuals
based on age, weight, genetics, diet, drug interactions, and various
pre-existing conditions [13, 35]. This makes the task of accurately
dosing warfarin a highly individualised endeavour.

To simplify and standardise the process of anticoagulant moni-
toring, the World Health Organisation established the international
normalised ratio (INR) as a universal reference value [18], with
a recommended therapeutic range between 2.0 and 3.0 for most
patients [1]. Dosing protocols have attempted to formalise the dos-
ing procedure [12, 15], and software tools exist to assist clinicians
[14, 16], but the high individual variability of warfarin, and the risk
of severe bleeding, make the development of more accurate dosing
methods an ongoing priority.

Many studies [7, 8, 10, 11, 19, 20, 22, 28–30, 37] have looked
at applying machine learning techniques to the problem of indi-
vidualised warfarin dosing, but the datasets are often small and
restricted to speci�c population groups. To address this, we pro-
pose a series of experiments to determine the value of training
warfarin dosing models on a local dataset. This is possible with ac-
cess to comprehensive warfarin records provided by the pathology
group PathCare. We suggest it may be possible to use this dataset
to construct a model for warfarin dosing that o�ers real bene�ts to
patients in South Africa.

Arti�cial neural networks (ANNs) are one of themost widespread
and successful [20] approaches to warfarin dose prediction. In some
studies [10], ensemble techniques like bagging and voting are used
to improve the robustness and accuracy of ANNs for warfarin
dosing. We term this class of algorithms wide, as they utilise many
simple ANNs to collectively produce a consensus prediction. This
would be in contrast to a deep algorithm, which would make use
of only a single, highly-layered ANN for warfarin dose prediction.
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Despite the success of ANNs in warfarin dosing research, there are
no notable attempts to apply deep learning – usingANNswithmany
hidden layers – to the problem. We propose a series of experiments
to compare the performance of deep and wide algorithms both to
one another, and to conventional techniques like linear regression
(LR).

The combined evaluation of models trained on local datasets
using deep and wide approaches may reveal �ndings of signi�-
cance to both South African clinicians and to the greater research
community.

2 PROBLEM STATEMENT
This project has the goal of investigating avenues for improved
warfarin dosing in South African patients through the use of ma-
chine learning. To achieve this goal, two research aims are declared.
The �rst is to determine whether training models on local data can
lead to tangible bene�ts for South African clinicians and patients.
The seconds is to compare the performance of “wide” and “deep”
algorithms for warfarin dosing. In an e�ort to achieve these aims,
the following research questions are proposed:

(1) Does training models on a South African dataset produce
more accurate warfarin dose predictions for South Africans?

(2) How does the performance of “deep” algorithms compare
to the performance of “wide” algorithms on local versus
international datasets?

(a) Is a bagged arti�cial neural network ensemble a viable ma-
chine learning technique for the application of automated
warfarin dosing?

(b) Does deep learning produce more accurate warfarin dos-
ing than established neural network approaches?

Question 1 can be answered by training our own models on the
PathCare dataset and comparing the clinically-relevant metrics 1

to those of a test subset (Section 3.2). Question 2 can be answered
by comparing a deep neural network approach to an ensemble
approach (both implemented using the same framework) on the
same (PathCare) dataset using clinically-relevant metrics. Specif-
ically, question 2a can be answered by comparing the predicted
doses of the ensemble model to the clinically prescribed doses using
clinically-relevant metrics, and question 2b can be answered by
comparing the performance of a model created with a neural net-
work of more than two hidden-layers to the performance of a neural
network with two or fewer hidden layers, using clinically-relevant
metrics.

1clinically-relevant metrics are detailed in Section 3.4.



UCT, CSC4000W, May 2018 Gianluca Truda and Neville Varney-Horwitz

3 PROCEDURES AND METHODS
3.1 Data Pre-Processing and Balancing
The successful training of a supervised machine learning model
relies greatly on the quality of the data provided. There are two ma-
jor criteria for determining the quality of a dataset for this purpose:
whether it is clean and whether it is balanced. A clean dataset has
the following properties:

• Every row has a value for every column
• A column corresponds only to a single variable
• Within a column, every value is of the same unit of measure

A balanced dataset is one which contains an equal proportion of the
di�erent classes of values that can occur in the domain of interest.
It has been shown [34] that machine learning algorithms perform
better on balanced datasets than on ones with a more “natural”
distribution. If the data is unbalanced, the model may perform
poorly in the cases on which it was inadequately trained.

3.1.1 Cleaning. The two datasets under consideration – the
IWPC [36] and PathCare datasets – will need to be scrutinised
for inconsistencies. Various pre-processing libraries exist (such as
the one included in the Keras framework) which can be used to
determine if the data fall within the above constraints.

3.1.2 Balancing. Within the PathCare dataset there are three
natural classi�cations into which the data points fall: those for
which the INR is greater than the therapeutic range (TR), within
the TR, and below the TR. In these cases the warfarin dose should
be decreased, left unchanged and increased accordingly. Should the
data not be proportioned equally into these three classes, several
courses of action are available. The two most commonly used meth-
ods are oversampling (in which the smaller classes are resampled
until they approximate the size of the largest class) and undersam-
pling (data points are removed from larger classes). The latter poses
problems in that valuable data is lost; whereas the former leads to
the possibility of over�tting [9]. The most appropriate technique
to use will depend on the distribution of the dataset and may likely
involve a combination of both approaches in order to retain the
data’s integrity.

3.2 Dataset Splitting Policy
Upon receiving the de-identi�ed PathCare dataset, data pre-processing
will take place. This will involve organising the data and dealing
with missing values (see Section 3.1). Upon completion, between
5% and 20% (depending on the size of the dataset) will be randomly
assigned to a holdout set. This will be separate from the active
dataset used to train the models. The holdout set will only be used
to perform the �nal evaluations and comparisons at the end of
the project. Because the contents of this set is the same across all
algorithms and team members, it makes for a fair evaluation of
performance. The majority of the data will be used for training
and validating new models. It is likely that the PathCare dataset
will not be su�ciently large for a conventional train/validate split,
which necessitates that cross validation (CV) will be required. Team
members are free to use K-fold cross validation (KFCV) or leave
one out cross validation (LOOCV) as is necessary and practical.

A �nal consideration is whether splitting should occur record-
wise or subject-wise. The PathCare dataset containsmultiple records
for each patient. If the dataset is split record-wise, then the separate
sets will be inherently linked by the shared patients from which
the records are obtained. This would cause extremely biased results.
To avoid this, the dataset will be split patient-wise. This may result
in slight imbalances, but this can be easily remedied with standard
techniques (Section 3.1).

3.3 Algorithm Development
The algorithms will be developed independently by the team mem-
bers and compared at the end of the project. Development will be in
the Python 3 programming language, with the use of a number of
libraries, including Keras and/or scikit-learn for rapid prototyping
of models, and Tensor�ow for more intricate manipulation of neural
networks.

Initially, simple linear regression (LR) models will be built on the
PathCare dataset to establish a baseline for performance. Thereafter,
simple arti�cial neural network (ANN) models will be built using
the PathCare dataset to establish a benchmark for later models to
beat. By evaluating more complex models against the LR baseline
and ANN benchmark during the development stage, the team can
have immediate and meaningful feedback on model performance.

Upon completion of the baseline and benchmark models, itera-
tive development of the “deep” and “wide” algorithms can begin.
In each iteration, a model will be developed by training on the
dataset, then compared to the LR baseline and ANN benchmark
using clinically-relevant metrics (see Section 3.4). Modi�cations
can be made based on the results before the next iteration.

3.4 Evaluation
In order to accurately compare the performance of models, a set of
clinically-relevant metrics are essential. The literature features a
number of metrics for model evaluation, but a blend of statistically-
and clinically-relevant metrics was used in the most notable studies.
Section 5.5 elaborates on this topic. For the purposes of this project,
three popular and reliable metrics will be utilised:

(1) MAE: Mean absolute error of dose estimates compared with
actual doses.

(2) R2 value: Closeness of �t between estimated and actual doses.
(3) PW20: Percentage of patients with dose estimates within

20% of the actual dose.

4 ETHICAL, PROFESSIONAL, AND LEGAL
ISSUES

Because this research does not interact directly with patients, there
are only very limited ethical concerns. These concerns revolve
around the privacy and consent of the patients in the PathCare
dataset. PathCare will be de-identifying the individuals in their
dataset before it is employed for the project, rendering it impossible
for anyone to link data points back to the patients from which they
came. PathCare, as the owners of the dataset and the client in this
project, are responsible for obtaining the consent of the patients via
their own channels. Once received, the dataset will be held securely
by the research team and will remain inaccessible to the public. An
application for ethics clearance has already been submitted to the
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Faculty of Science Research Ethics Committee, and is pending ap-
proval. In the event of publication of research �ndings, the project
will follow the guidelines of the UCT Authorship Practices Policy,
with all contributing parties being acknowledged for their work. In-
tellectual property directly derived from this project will be subject
to UCT’s Intellectual Property Policy.

5 RELATEDWORK
5.1 Dosing with Arti�cial Neural Networks
After linear regression (LR), arti�cial neural networks (ANNs) are
the next most common technique employed for warfarin dose pre-
diction. Simpler ANNs sometimes perform less e�ectively than LR
at some dosage levels on some ethnicities [20, 29]. However, in
more sophisticated implementations, ANNs were superior to LR
and other methods in their dose prediction accuracy [10, 37]. Addi-
tionally, it was found that a multi-layer perceptron (MLP) neutral
network can outperform k-nearest neighbours (kNN) and model
tree (MT) approaches, and is more responsive to ensemble tech-
niques [10]. Zhou et al. attribute the success of ANNs to greater
fault tolerance [37]. Despite widespread use of ANNs in many stud-
ies, no notable publications have been submitted on the topic of
deep learning – using ANNs with many more hidden layers – for
warfarin dosing. A recent article by Ching et al. [6] suggests this is
due to the mismatch between individuals skilled in deep learning
and individuals well-versed in biological and medical �elds. This
suggests that deep learning is an avenue worthy of investigation in
the future.

5.2 Dosing with Ensemble Approaches
Ensemble machine learning methods involve synthesising the out-
puts from several, (often) simple models to obtain better perfor-
mance than consulting individual ones [26]. There are numerous
methods with which one can integrate the di�erent base algorithms,
however here we will only consider bagging which involves train-
ing multiple models of the same type with di�erent samples of the
dataset. Each base model is then given an equal vote to determine a
�nal outcome. ANNs have been found to act as a particularly adept
base model in conjunction with bagging [5].

Hu et al. [10] found that bagged ANNs outperformed a single
ANN in terms of greater predictive accuracy and lower variance
when applied to the warfarin dosing problem. ANN performance
can vary highly depending on the correct choice of parameters for
the model. They took the approach of iterating through a range of
possible parameters to �nd a locally optimal con�guration. Tao et
al. [32] and Bashiri et al. [4] made use of evolutionary algorithms
to select a population of models to form an ensemble and tune
the parameters of an individual ANN, respectively. The success
of the above approaches informs our decision to opt for a bagged
ensemble model, using evolutionary algorithms to optimise the
parameters of the base ANNs.

5.3 Pharmacogenetic and Clinical Data
All notable studies on warfarin dose prediction use one of two
factor classes to develop models – either only clinical factors, or
both clinical and pharmacogenetic factors. Common clinical factors
include age, body mass, height, other medications the patient is

taking, whether or not the patient smokes, and what other dis-
eases the patient su�ers from. Pharmacogenetic factors include all
the genotypes for each of the SNPs (single nucleotide polymor-
phisms) associated with warfarin metabolism and interaction. The
two most notable of these are found in CYP2C9 and VKORC1, which
explain approximately 40% of the individual variation in dose re-
quirement [13]. Whilst many studies have reported improved model
performance when using both clinical and pharmacogenetic factors
[19, 24, 25, 27, 33], there is doubt as to whether pharmacogenetic
dosing is actually clinically bene�cial [2, 3, 10, 17]. Genetic testing
is still very expensive, takes additional time and resources, and
is unavailable in many parts of the world [10]. There is still no
consensus about whether or not pharmacogenetic factors provide
notable bene�t to the model. More advanced machine learning
approaches have produced signi�cant gains in performance over
previous models, despite many of them [10, 22, 28–30, 37] not in-
corporating any pharmacogenetic factors whatsoever. It appears
that a better approach to improving warfarin prediction is found in
making superior use of the data available. This suggests that even
though the PathCare dataset does not contain any pharmacogenetic
data, it may still allow us to develop local models that a�ord high
precision at low �nancial and time costs.

5.4 Dataset Splitting
To prevent over�tting models to the data, it is essential to split the
total dataset into multiple sets, train on one and test on the other.
This is not only good experimental design, but an essential tool
in training robust models of any kind. However, just as a model
can over�t to training data, tweaking model parameters to increase
performance can result in over�tting to the test data. This is the
motivation behind holding back a small subset of the data to test the
model at the very end of the experiment. Ideally, more data allows
for more robust models through more stringent test splitting. In
cases of small datasets (such as for warfarin dosing), it is tempting
to reserve as much of the data as possible for training, but this
makes evaluating the performance of the model di�cult and could
result in a model that does not generalise – which is disastrous in
clinical practice. Studies of warfarin dose prediction have reported
splits ranging from 50/50 [8, 11, 28] to 80/20 [19, 20, 29]. This is
unsurprising given that the size of the cohorts in these studies
ranged from a mere 174 [11] up to 4798 [20]. However, due to a lack
of standardised terminology across di�erent �elds, it is di�cult to
interpret whether these reported splits included or excluded holdout
sets. As a result, it is challenging to accurately evaluate the clinical
signi�cance of results in the literature. In recent years, many studies
have begun using the International Warfarin Pharmacogenetics
Consortium (IWPC) dataset [36]. Whilst this is advantageous due
to its wealth of data, consistency, and size (N⇡ 5000), it makes the
likelihood of over�tting much greater. With many studies [19, 20,
28] competing to improve performance on this same dataset, the risk
of (intentional or unintentional) over�tting is heightened. For this
project, both holdout and cross-validation techniques will be used.
Additionally, both the PathCare dataset (which is novel for this �eld)
and the IWPC dataset [36] can be used to train and evaluate models.
With more data available, stricter holdout and cross-validation
policies can be implemented. The same initial holdout set will be
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used to evaluate both team members’ models, giving an accurate
and unbiased comparison of performance.

5.5 Evaluation Methods
There have been a number of suggested approaches to evaluating
model performance for warfarin dosing. Many standard statistical
measures provide highly-precise measures of model performance,
but do not take clinical relevance into account. The output variable
is INR, which has a therapeutic range of 2.0-3.0 in most patients [1].
Using tighter target ranges for maintenance dosing does not achieve
any improvement in anticoagulation control [23]. As a result, many
studies use metrics that re�ect this acceptable therapeutic range.
The three most notable metrics for warfarin dose prediction will be
used in this project (see Section 3.4). These a�ord both statistically-
and clinically- relevant measures of model performance. They also
allow for direct comparison with the reported performance of other
studies.

(1) Mean absolute error (MAE) is widely used across warfarin
prediction studies [8, 10, 20, 21, 28, 29, 31, 37].

(2) R2 is the gold standard for statistical comparison and was
utilised in numerous studies [7, 8, 11, 20].

(3) Percentage of patients with dose estimates within 20% of the
actual dose (PW20) was used by a number of notable studies
[8, 19, 20, 37].

6 ANTICIPATED OUTCOMES
6.1 Resulting System
The project should reach its conclusion with the development of a
coherent software system for running and statistically evaluating
the new machine learning models. This would likely take the form
of a command-line interface for a Python 3 program that can take in
the name of the desired model and a vector of patient information
as parameters, then return the model’s prediction. It should also be
able to compare all themodels (including benchmarks and baselines)
on any given dataset using clinically-relevant metrics (see Section
3.4), producing an easily-interpreted output. This output may take
the form of a graphical rendering through the use of libraries such
as matplotlib. All major design challenges will occur in the pursuit
of this �nal system. A likely challenge is overwhelming training
periods for the models, which may result from sub-optimal design
choices in the development iterations. A development goal of this
project is, therefore, to produce models that are not only accurate,
but train rapidly on consumer hardware – enabling other members
of the research community to easily replicate any results.

6.2 Expected Impact
If our hypotheses are correct, training models on local datasets
will produce more accurate warfarin dosing suggestions for South
African patients. If the resulting technology were to be imple-
mented, it would improve the ability of clinicians to prescribe the
correct warfarin doses to their patients, whilst minimising the time
required to do so. It would also reduce the risk of severe haem-
orrhaging in patients and the number of return visits required to
establish a therapeutic dose. If the proposed “deep” and “wide” al-
gorithms reveal new insights into warfarin dosing in general, the

greater medical community would bene�t from the knowledge,
which may lead to a future in which warfarin therapy is entirely
safe and easily automated – freeing up valuable human resources
to address other medical challenges. Even if the project �nds no
bene�t in training local models or the new algorithms fail to out-
perform previous ones, the �ndings may reduce the problem space
for future research and serve as evidence in the literature.

6.3 Key Success Factors
When evaluating the newly developedmodels, the clinically-relevant
metrics (MAE, R2, and PW20) will need to compare favourably with
both those of the benchmark models and those reported in the liter-
ature. MAE values in the new models that are lower than those of
the benchmark and literature would indicate success, whilst R2 and
PW20 values should be higher in the success case. If the clinically-
relevant metrics are more favourable for models trained on the
PathCare dataset than those trained on the IWPC dataset, then we
may successfully conclude that training local models is valuable. If
not, we have evidence to suggest that training local models may
hold little value.

7 PROJECT PLAN
7.1 Risks
There are a number of core risks to the project. Aside from the
risks common to all tasks of this nature – scope creep, missed
deadlines, etc. – there are two primary classes of risk that are unique
to this instance. The �rst class is associated with the PathCare
dataset, whichmay be insu�ciently large or lack critical parameters.
In the worst scenarios, the dataset may be entirely unusable or
may not even be provided. This class of risks is largely absorbed
by the presence of the International Warfarin Pharmacogenetics
Consortium (IWPC) dataset [36], which is the gold standard for
warfarin dosing models. This freely available resource allows our
project to supplement (or entirely replace) the PathCare dataset if
necessary. In the scenario that the PathCare dataset lacks important
attributes (such as ethnicity) for adequate training, random forest
regression (RFR) models can be trained in place of arti�cial neural
networks (ANNs). The results of the RFR methods can also be
compared to results in the existing literature using the samemetrics.
The second class of risks is associated with failure to successfully
implement speci�c machine learning algorithms. These risks are
largely overcome by the wealth of libraries and resources available
for developing simple, o�-the-shelf models. The speci�cs of all risks
are detailed in a risk matrix in the appendix.

7.2 Timeline and Milestones
Table 1 shows the most relevant internal and external project mile-
stones. A full timeline of the project is detailed in the Gantt chart
found in the appendix.

7.3 Resources
The most notable resource required is the PathCare dataset, which
will be obtained directly from PathCare once ethical clearance
has been obtained. Another notable resource is the IWPC dataset
[36], which is open sourced and available for free download. The
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Table 1: Project milestones, with critical milestones in bold.

Date Description

2018-05-22 Written project proposal submitted
2018-05-28 Proposal presentation
2018-06-11 Revised project proposal submitted
2018-06-15 Project web presence goes live
2018-07-02 Data pre-processing and splitting complete
2018-07-09 Rudimentary models in testing
2018-07-27 Feasibility demo to supervisor
2018-08-06 Training completed, testing begins
2018-08-13 Testing completed, writing begins
2018-08-23 Draft papers given to readers
2018-09-03 Final papers completed
2018-09-04 Final code completed
2018-09-17 Final project demonstrated
2018-09-18 Project web page and poster completed
2018-10-03 Re�ection papers submitted

development of models requires at least two modern computers
with the open sourced Python 3 programming language and freely
available libraries such as numpy, matplotlib, Tensor�ow, scikit-
learn, and keras. Access to a high-performance computing cluster
may be required if there is both su�cient need and justi�cation for
training on such architectures. The ongoing input of our supervisor
will help guide development choices throughout the process, as
facilitated by regular meetings.

7.4 Deliverables
The following are the expected deliverables for this project:

(1) Two advanced machine learning models that can output
recommended warfarin dosage given a vector of patient
information via a command-line interface.

(2) A series of statistical comparisons of the performance of
these models against the LR baseline and simple ANN bench-
mark using clinically-relevant metrics (see Section 3.4).

(3) A series of statistical comparisons of the value of the Path-
Care dataset compared to the IWPC dataset [36] using the
same clinically-relevant metrics.

7.5 Work Allocation
The initiation of the project has begun with both team members
working in direct collaboration. Henceforth, the project will feature
both independent and collaborative work. Teammembers will work
together to clean, process, and split (see Sections 3.1 and 3.2) the
PathCare dataset when it is received. Once this is completed and the
holdout set is agreed upon, the project will fork into two branches.
Gianluca will begin implementing “deep” algorithms (see Section
1), with a focus on deep learning techniques in arti�cial neural net-
works; whilst Neville will begin to develop “wide” algorithms (see
Section 1), with a focus on ensemble approaches to arti�cial neural
networks. Team members will develop baseline and benchmark
models (see Section 3.3) independently to improve the robustness
of the experimental design and ensure reliable results during the
�nal evaluating stage. In that �nal stage, the team members will

work together to thoroughly compare the performance of all models
and the value of the PathCare dataset so as to address the research
questions identi�ed. Each avenue of inquiry has su�cient merit to
stand as an independent project, but the �nal combination allows
for more interesting and reliable comparisons.
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Figure A1: Gantt chart depicting prospective timeline and task durations (in days) 
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